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Spectrum and thermodynamic currents in one-dimensional Josephson elements
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The dc Josephson effect is considered from the thermodynamic point of view. Universal thermodynamic
equations, relating both bound and continuum contributions to the Josephson current with the normal electron
scattering amplitudes are derived for the single mode case. To derive these equations we use and further
develop the method of spatial separation between the superconducting and normal parts of the junction. We
also use this method to find the Andreev bound states in structures containing superconducting components.
The general thermodynamic formulas are applied to the calculation of the current in various Josephson-type
structures. In particular, the crucial role of the continuum contribution is demonstrated, even for short junctions
(where it is usually neglecte¢dWe also find structures where the bound states supporting the giant currents are
well separated; thus they can, hopefully, be populated nonuniformly and such current can be measured.

I. INTRODUCTION mal medialii) Low current, such aseps/(mJy) (Wheredg

Numerous theoretical investigations of Josephson Junc'—S the current density ang, is the superqonduct|ng density
. o . to be much greater than all characteristic lengths such as
tions show that the equilibrium nondecaying current can be . . .

. . . _ coherence length, junction width, etc. The superconductor-
expressed in terms of a quasiparticle description based on

Bogolubov-de Genne@BdG) equations. There are two con- _sem|conductor—superconquctor and supercond_uctor—

o9 ) . . insulator-superconductor junctions usually belong to this cat-
tributions to the current: one is supported by discrete stateg or
lying within the superconductor gapo-called "bound” cur- gTﬁ/é expression for the Josephson current follows directl
rend; and the other, carried by continuum of propagatingfrom E s?l) and (2): P y
modes outside the gdpicontinuum’ current. Most authors as- '

find the bound contribution from the thermodynamic relation

2e E, dE,
I_2e dF 0 IJ:Ib+IC__?o<EZn<A tan kBTW
h de 2e o dp
] ——2kBTJ dEIn| 2 cos —, (4)
whereF is the free energy of the system apds the super- fi A kgT|de

conductor phase difference across the junction, while the
continuum one is found from a Landauer-type considerationvherep is the continuum density of statéJhe first term of
which yields a current resulting from imbalance of left-going Eq. (4) is the well-known bound state currért while the
and right-going quasiparticle fluxé# is nonzero in the su- second term represents the continuum contribution. It re-
perconductons quires the knowledge of the dependence of the continuum
A more general method, allowing us to obtain both dis-density of state$DOS) on ¢. An important tool, providing
crete and continuum contributions from the thermodynamighis information is Krein’s theorefm(see Appendix A that
approach was suggested by Beenakkide derived the fol-  connects the change in the DOS induced by any scatterer
lowing expression for the free energy: with the corresponding scattering matrix.
Using this theorem, BeenakReexpressed the continuum
contribution via the scattering matrix of the normal electrons
+const, (20 in the multichannel case. We are going to specialize this
approach to the one-dimensidiD) case developing the

where “const” represents the-independent term, canceling simplified expressions for this special case. Below we con-

the divergence of the first term at high energies. The onlfi_der a general junction, consisti_ng of an a_rbitrary one-
significant approximation made in the derivation of this for- dimensional(1D) nonsuperconducting constrictidbarriep
mula is the steplike pair-potential shape: sandwiched between two superconductors. The relevant scat-

tering matrix has the dimensionsx4t and it can be ex-
pressed in terms of the energy-dependent normal ele&ron
matrix and the scattering amplitudes on ti& boundaries.

E,

F=—2ksT 2, In T

E,>0

2 cos

Age 2 if x<—L/2
A(x)=4{ 0 it |x|<L/2, 3

ipl2 H
Age' if x>L/2 II. SPATIAL SEPARATION OF THE SUPERCONDUCTORS

. . . . - . FROM THE BARRIER
where L is the junction length. The applicability of this

model was discussed previously> The important condi- In the next sections we express the bound spectrum and
tions for applicability of this model ardi) Existence of a the Josephson current in a superconductor/general nonsuper-
high barrier on the boundary of the superconducting and noreonducting constriction/superconduct®C9 junction via

0163-1829/2000/65)/372311)/$15.00 PRB 61 3723 ©2000 The American Physical Society



3724 KRICHEVSKY, SCHECHTER, IMRY, AND LEVINSON PRB 61

barrier 2. impurity
vs |INIll~[s5 e [n[s+

1 L I g
3 — FIG. 2. Formation of a bound state &S boundary. Solid and
A 3 ;Jarel A dashed arrows represent the electron and the hole propagation, cor-
T SN TN P aNUE . respondingly. Amplitudesay ,be illustrate the Andreev and

normal reflection amplitudes for electrofeoles on NS boundary;
Fecny - the normal reflection ofR'S boundary(prime indicates that
the reflected particle moved initially to the [gfaumbers enumerate
the scattering channels.

S N barier N S | | Where the Andreev approximation is used, it is conve-
nient to set the Fermi momentum in the normal and super-
FIG. 1. (a) GeneralSbarrierS and(b) I-impurity-l-S structures.  conducting leads to be equal. In this case one can neglect the
(1) Geometric outline of the real probler(2) Our model problem.  normal reflection at th&N'S boundarie$.
(3) The energy diagram in the latter case. Thick line represents the
potential V(x), thin line: the pair potential, dashed line: the elec-

trochemical potential. [Il. BOUND STATES IN THE INIS JUNCTION

] ] ) To illustrate the spatial separation method we consider the
the scattering matrix of normal electrons. To do so we insertgrmation of the bound states in the insulating-
a fictitious ideal clean normal Ie_a(_js (_)f lendthetween the superconducting structure containing an “impurity” embed-
superconductors and the constncﬁ(ﬁﬁlg._l(a)]_. The propa-  ded in the insulating region. By impurity we mean a quasi-
gation of electrons in the “normal” medium is described by phound state of energ§, and widthI" that would be formed

the model Hamiltonian in analogous system where the superconductor is replaced by
52 a normal metal. Such a situation takes place, for instance, in
Ho=— 2—V2—,u+V. (5)  the INIS junction [Fig. 1(b)]. An analogous problem has
m

been considered by Laikhtman in terms of the tunneling

Below we consider the limit—0. Beenakket,when insert- Hamiltonian approximatior? It was found that there exists a
ing the fictitious normal metal, demanded that its size isSingle bound state in this system, whose energy can be found

smaller than all lengths in the system except the Fermi wavelom the equation

length, since in this case, he claimed, the normal-metal in- 2T E2
sertion does not affect the results. This is true in the zero E3+ FZ—EZZW. (6)

order inA/u (Andreev approximation Some of our calcu-

lations are done beyond the Andreev approximation, and ify, the limit T —0 the energyE of this state tends t&, if
this case one must take the length of the normal metal to be A < <A. On the other hand, using more exact wave-
shorter than the Fermi wavelength. This would appear meanynction matching method it was shofvthat there exists a

ingless from the physical point of view. However, we adoptyoyng state of energy close foat anlS boundary without
the formal point of view, and consider the “normal metal” ;5 rity.

as a domain in the BdG equation in which the external po- \ye consider the following problem: An impurity with
tential and the order parameter are both zero. We then CabhergyE,, —A<E,<A located at a distanck from the

take this domain to be shorter the Fermi wave length. On thgnerconductor. Using the spatial separation method we find
other hand, the scattering formulation is still valid even wheny,, energy levels: one close B, and one close td for the

the normal-metal length is infinitesimally small because in.4qe of largel (smallT"). The level close ta\ cannot be
one dimension the outgoing wave function takes itSypisined using the tunneling Hamiltonian method.

H ikx i i
asymptotic formee™ at any distance from the barrier, how- 5 order to find the bound states in this structure we insert
ever small it is, since there are no evanescent modes in the ficsitious infinitesimally short normal layer between the
1D case. superconductofS) and the rest of the structurd?). Con-

Below we demonstrate that our results for the energiiger the motion of the quasiparticle in the normal layer. The
spectrum, persistent currentshen exis}, reflection ampli- o aqinarticle can be either normal or Andreev reflected at the

tudes, etc., for arbitrary structures with fictitious normal lay- g boundary and only normal reflected at tRé& boundary
ers agree with the corresponding results for analogous Stru‘iéee Fig. 2

tures without these layers obtained previously using differen From the uniqueness of the wave function one obtains the

method&®® both under Andreev approximatiofppendix .
tion:
B) and beyond i{Sec. Ill). This is to be expected, since the elgenenergy equation
ro O
( Ny ,)—1}0. (7)
0 ry

insertion of the fictitious normal metal corresponds to a non- b. a
. . . . . e h
singular perturbation and it does not influence the results in d {(

the limit | —0.

Ae bh
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case, according to Eq8) r(E)—ro(E) as for purelS
boundary withE—Ey>1". We model the insulator by a po-
tential step of heigh¥, then the reflection amplitudgsee
Fig. 2) are

ol B ©
re=—————=rq(E),
e K+—iq+ 0
Kk —iq~ .
rh=———"—"—"—="I(—E), (10
Kk +IQ

where

g =V2m(u*+E)/4;

(* +" corresponds to electrons,

kE=\2m(V—uFE)/4 (1))

to holes). Substituting

FIG. 3. Typical behavior of discrete levels as a function of thethese values of.,r}, and the Andreev reflection amplitudes

resonance width for the Breit-Wigner-type reflection amplitudes
The higher level disappears in the continuum at very sihalso
the upper left part of the graph is shown in the inset.

In the case thaR contains an impurity we assume that the
reflection amplitude of electronioles at energies close to
the bare impurity level take the form

E
ro(E)=1o(E) Eg B =TS -E) ®)

that contains both a Breit-Wigner-type resonance and a slo%)

energy dependence,(E) as in Eq.(9) below. Note, that
[ro/=1 since there are no propagating modes within the
sulator. Substituting these reflection amplitudes to &,
neglecting the energy dependencergfand using the An-
dreev approximation which provideb.,=b,=0; a.=ay
=vo/uy [where andug,v, are the BCS coherence factors:
ui=(1+V1—AZE?)/2, vi=(1-J1—A?%E?)/2], one ob-
tains Eq.(6) which has only one positive energy solution.
Taking into account the energy dependegtE) is crucial
for obtaining the second level.

The numerical solution of Eq(7) for the casepu
=100A, V=130, E;=0.5A [see Fig. )] and the reflec-
tion amplitudes defined in Eqé&3) and(9) (below) is shown
in Fig. 3. The exact calculations foNIS structure(rather
than Breit-Wigner-type approximatid®) give analogous re-

In

-calculated in the next section to E,) and then expanding

up to first order inA/x one finds the energy of the interface
level:

AS
2V2(V—p)

(12

Note that expansion up to zero ordeAhu leads to a wrong
result{ A —E=A3/[2u(V—w)]}. This indicates that the An-
dreev approximation is to be used with care.
Taking into account the energy dependence pin Eq.
is crucial in order to obtain the edge bound state. Ne-
glecting the energy dependencergfresults in obtaining just
‘one (impurity) level, exactly coinciding with the level ob-
tained using the tunneling Hamiltonian method.

The existence of such bound states helps to understand
the discrete spectrum of Josephson elements.SIBgunc-
tion can be considered as two couplk®l boundarie$ and
the bound spectrum consists either of a pair of levels lying
close to the gap eddé¢he levels determined by E¢L2) split
by coupling analogously to the levels in a double-well
problent!] or of a single level when the coupling is strong
enough for pushing the upper level to the continuum. Analo-
gously, if the junction barrier has a transmission resonance
within the gap(for instance, &INISjunction or an element
including the impurity, one can consider it as anlS bound-
ary with a resonance” coupled to the “put& boundary”

sults. The Breit-Wigner-type approximation is used here jushnd expect at mostthree discrete levels: one close

for a clear definition of the resonance widthand for direct
comparison with the tunneling Hamiltonian method.

For smalll" there are two bound states: the upper levely

lies close to the gap edggéts wave function is localized
around the interface — mostly in the supercondfgtahile

to the resonance and two levels close to the gap edge if the
coupling is weak; two or one level for stronger coupling. For
resonances within the gap there are possible
N+2N+1N--- levels, depending on coupling strength.

All these levels can be slightly modified by changing the

the lower state is localized at the impurity and has an energghase difference between the superconductors, giving rise to
close toE,. As the coupling between the impurity and su- the bound state contribution to the Josephson current. Al-
perconductor increases, so does the overlap between tfigough the edge states often lie almost indistinguishablly

bound-state wave functions causing the repulsion of the levciose toA, their contribution to the current can be major.
els. The upper level soon disappears in the continuum. The

energy of the lower level first decreases, but then starts to

. . IV. SMATRIX
increase and tends th asymptotically.

For the uppei(surface level one can rederive, using our
formalism the result obtained by Wendin and Shum&iko

In this section we obtain the scattering matrix of a general
nonsuperconducting constriction sandwiched between two

IS boundary(they used the matching of the decaying wavesuperconductors. The knowledge of the scattering matrix and

functions on the boundarpy taking the limitl'— 0. In this

Krein's theorem, which relates the change in the continuum
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) |- lins lins Left SN boundary § Right SN boundary
in> ing> iny :
] —— ] — -~ - 2 :
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3 | | out; louty> - : I
out3>l | outy> , outy> ) 3 c? 5 : b c
~--- 3 -~ 3 4-mmom 4--eem €Ns €Ns : €Ns €nNs
ting> ling> a : a
e =2 ©Ns ENs : ens €Ns
3> <--- 4 e —— - - - -————

FIG. 4. Simple illustration of scattering processes. Solid arrows FIG. 5. The illustration of the scattering processes. LefieS
represent electronlike waves, dashed arrows: holelike ones. Nungorrespond to the normal and superconducting media, the order
bers enumerate the scattering channels. parameter on both sides is shown. Solid arrows show the electron-

like wave propagation, dashed ones show holelike ones. The index
density of states to th& matrix, allow us to calculate the € means that the incoming particle is electronlike, subsaNft
Josephson current of the continuunext section A simple ~ means that it comes from the normal pa®tiN: from the supercon-
way to obtain theS matrix is to reduce the whole scattering ductor; prime indicates that the particle comes from the right. The
process to the scattering of normal electrons on the constri€cattering processes for holes are completely analogous, one has
tion and to the processes on pBal boundaries. just to replace the indeg by h and solid arrows by dashed ones

To simplify the discussion we divide the scattering pro-(@nd vice versa
cess into several stefBig. 4):

First step: An incoming waviin) hits the SNboundaries |outy=[out;) +[outs) +|outs) + - - -
from the outside. A part of it penetrates into the normal leads T PP P PO
forming the new “incoming wave’|in,) and the rest is re- =[as+cng(l = SySa) " *Sucsnlliny=Sfin) ~ (18)
flected agout,): i . A A I
or S=ag+cys(l —SySa)  1SyCsn- (19
lout)=adin); |in;)=cgpin). (13 .
° The matrix Sy is given by Eq.(15 and the matrices
Second steplin;) scatters on the barrier and converts toa,csy,Cys,Sa are constructed from Andreev and normal

[out,): reflection and transmission amplitudes &N boundaries
R which we obtain below.
lout,) = Syling) (14 In their pioneering work Blonder, Tinkham, and
Klapwijk® considered the following scattering procesee
re te« 0 O Fig. 5): the electron, propagating from left to right in the

normal metal, is scattered by th¢S boundary. It can be

)_ (15) reflected back to the normal medium or transmitted to the
J sp(—E) superconductor either as an electron or as a hole. We follow
their treatment, but use a different normalization of the wave
functions to assure unitarity of the scattering matrix. The
incoming, reflected and transmitted waves fo® boundary

te T4 0 O so(E)
o th|
0 th r(]

Here we used the symmet8, providingt’ =t and also the i
time-reversal symmetry of Schiimger equation, assuring ~ @ré given by

M(E)=r3(-E); t(E)=t5{(=E).  (16) 1 (1)eiq+x
e

Third step:|out,) reaches theNS boundaries from inside.
Partially it penetrates into the superconducting electrodes

forming the outgoing wavéout;) and partially it is reflected ron=a 1 (0 69 X4 1 (1 ot
back to the normal region dis): refl Jo |1 Jg= 10 ’
ling)=S,lout);  |outs)=cygout), (17 1 o L
. 2 ~ . wtranszc—< ) kX
where the matrice$,,cys are the Andreev reflection and \/k—+ /uS—vé Vo

transmission matrices analogousag,Csy.
Fourth step: Continue steps 2 and 3 up to infinity. g 1 Vol .-
The total output can be found from Eq43), (14), and To——F— e " 7
(17) by summing up the geometric series: \/k—Vu(ZJ_Vg
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where Ce,, =2VKTqT (g™ +k )ugyus—vie D, (25
k"= V2m(u= VE2Z— A%)/4. (20

Our normalization differs from the one used by Blonder,

Tinkham, and Klapwijk by prespinor factors ,

ING= V(K= UZ—VD). ae =2Vd g (k" +k )ugvee ¥ID,  (27)
The amplitudes,b,c,d have been found by matching the

wave functions and their derivatives on the boundary. We_ . . _ 2 e+ -

define the scattering amplitudes analogously for the prO-beNS_[uO(q —kO) (@ +k)—vo(q  —kT)(q"+kT)I/D,

cesses on botN'S boundaries of the model Josephson junc- (28)

tion (Fig. 4) when the phase differenge is maintained be-

tween the superconductors, considering electronlike and c. =2JkTa (a- +k ) u-JuZ—v2e 94D 29

holelike projectiles coming from the normal medium to the eNs a’( JUo\Uo~ Vg (29

superconductofcorresponding amplitudes are indicated by

NSbelow and vice versgindex SN—see Fig. 5. In contrast do =2k g (kT—q )vgui—v2e ¢4D, (30

with the work of Blonder, Tinkham, and Klapwijk we do not *ns a a4 Vovto™Vo

initially neglect the deviations of projectiles momenta from

de,=2Vk g (k™ — q )voui—vZe?UD,  (26)

Ke . where
In terms of these amplitudes the scattering matrices have
the following form: D=u3(q"+k") (g +k)—v3i(q =k )(qg —k™).
- (31
beSN 0 @ O
0 bl 0 a Note, that the nonprimed amplitudes correspond to the
és: SN SN , processes where the projectile comes from the left, so the
8e,, 0 bn,, O above valuesa._ be  --- are calculated on the lefEN
0 al 0 by boundary (the phase of the order parameter is equal to
SN SN — ¢/2), while the amplitudes,, b, .-~ are on the right
/ / - boundary(the phase of the order parametg®).
bl 0 a 0 : . . .
NS NS To obtain the expressions for hole scattering amplitudes
. 0 beNS 0 ang (such asahSN) one has to replace in the above formulas
Sp= a’ 0 bl o | (21)  k*,q* by k*,q* correspondingly and also to replageby
Ns s — . All primed amplitudes are equal to the corresponding
0 @, 0O ths nonprimed ones taken at ¢. Inserting these matrices and
i én (15 into Eq. (19 we obtain theS matrix for a general
[Ce, O Oh, O SCS junction.
0 Ce 0 d
- SN PN V. JOSEPHSON CURRENTS
d 0o ¢ 0| : . : :
fsn hsn Knowing the explicit form of the scattering matrix one
0 déSN 0 C{]SN can find thep dependence of the continuum density of states
) } using Krein’s theorem:
- q’ -
:)NS co ZJNS d0 w1 7 ets 32
O 22 de 2w derE 2
deNS 0 Chs O
The idea of the proof is given in Appendix A.
L 0 deNS 0 ChNS-

Now we have all the required tools to find the Josephson

) ] ] current. The continuum contribution can be expressed in
The scattering amplitudes are again found from the solugerms of the scattering matrix using Eé) and (32):212
tion of the matching problem on the boundaries. Here we list

them in explicit form:

e (= E 4 A
l.=—> | dEtan —IndetS. 33
Beg= —2Vk K (@7 +97)Ugvo/D, 23 <" ih ) KeT o (33
bey, = —[U§(a™ —k*)(a™+k) This result can be simplified by using the Andreev ap-

o proximation (that is, neglecting the deviations & ,q*
—Vvo(q"—k7)(q”+k")]/D, (249 from kp):
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e , w R,D,B, €,y [Egs.(35—(37)] one obtains the following equa-
le=——7A S'n‘PL tions for the eigenenergies of the bound states in two equiva-
lent forms:
EVEZ-A%D sin,BtanthdeE v2
X 5 Re{—zt(E)t*(—E) =Rer(E)r*(-BE)t*(E)t(-E)]
{E2— A% co[ (B~ 7)I2]{E?— A%coS[(B+ y)I2]} Uo

(34 +D2cose, (40)
where

1 - ~
- 2—\E2A?—E*sinB=Rcose+ D cose. 41
B=[tEN(~E); A=arg(E)-argt(~E); (35) Az pReoserDoose. (41
Equation(41) can be solved with respect by squaring

R=[r(E)r(~E)[; e=argr(E)-argr(—E)-g; and some other algebraic manipulations. The result is

(36)
cosy=Rcose+ D cose (37) E*=A%cos——, if sin(f*y)=0. (42)

(we follow the definitions of Wendin and Shume®o The condition sing*7)=0 in Eq. (42) is essential, because
Equation(34), which is one of the central results of our squaring can produce a redundant solutn.

work, embraces a wide class of Josephson junctions. In par- Although the formulas(41) and (42) look like explicit

ticular, Eq.(34) describes arbitrarily long junctions, a prob- equations for the energy, there might be hidden energy de-

lem often avoided. Equatiof84) is convenient for qualita- pendence of the scattering amplitudes and consequently of

tive estimations of the continuum contribution to the currentthe anglesd, y,e. Thus Eqgs(41) and(42) are to be solved

For instance, consider a cle&NSjunction. In this case8 self-consistently.

=EL/(A¢o) where&,=u/(Akg) is the superconductor co-  Knowing the scattering properties of the barrier one can

herence lengtlfor more details see Appendix BFor a short  calculate thep-dependent current using E4) and one of

junction (L<&) I is small and it is roughly proportional to Egs. (40), (41), and (42). Below we consider several appli-
the junction’s length. In the opposite case of a very longcations of these formulas.

junction (L>¢p) the continuum contribution is small again,

but for a different reason: the integranq is now r;\ product of V1. SINIS JUNCTIONS

the oscillating{sifEL/(A&y)]} and decaying £ 1/E<) func- o o

tions of energy and the integration over energy results in For the structures containing tw8 boundarieglike SIS
strong cancellation. However, in some junctions one can exSINIS _etc)_one14can safely use the steplike pair potential
pect a significant continuum curreri) If 8,y are smalllas ~ approximatiorf,** and consequently Eqg34), (40), (41),

in the case of som&ISjunctiond) or, more general, if3 and (42) for quantitative calculations. Th8INISjunction is

+ v is close torn — the denominator in Eq34) is small at  the simplest example of the resonant structure. We solve it
E>A. (ii) If the junction transmissiol is large or if it has ~ @nalytically using the Breit-Wigner-like formulas for trans-
a sharp maximum &> A (as in the case of resonant struc- mission and reflection amplitudes. More precise calculations,
tures like SINIS SININIS etc) and thus the numerator can t@king the exact amplitudessr instead of the Breit-Wigner
also be large. approximation were performed numerically.

If the scattering amplitudes of the constriction depend. Consider the symmetricaSINIS junction. Denote the

K B R imatel lto the t N-part length byL and the single-barrier transmission coef-
weakly on energyD., are approximately equal to the rans- ;o s by D. The Breit-Wigner near-resonance transmission
mission and reflection coefficients of the barrier correspond

) ; . and reflection amplitudes are
ingly and the angleg, e are small. In this case, the integral P

in Eq. (34) can easily be done at zero temperature: r , E-E, .
t= ————=€'%;, r=_——=¢'%, (43
= . E—Ep+il’ E-Ep+il
| eAD sine sing 38
T T 2n [sin(B—y)2]|+[sin(B+ )] (38)  where E, is the bare resonance level,=#Dv/L and

o1, @, are some weakon the scale of’) energy dependent
The spatial separation method can also be used to rederiR1@ses which cancel in further calculations.
the known results for the bound-state energies and current, Substituting the Breit-Wigner amplitudes from E43) to
The eigenenergiek, correspond to the singular points of Ed.(40) we obtain

energy-dependent scattering matrix. From 9 we
Obta%_i P g 149 E2(E3+T2+A%)+2IE?/A2-E?

def ! — Sy(E,) 8a(E,)]=0. (39) —E4t E§A2+A2r2co§§. (44)

Using the definitions o8y ,Sa [Egs.(15) and(21)], Andreev  This equation has only one positive energy solution and thus
approximation, propertie$l6) of Sy and the parameters it misses the edge states as a result of inadequate accuracy of
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Junction transmission Currents, eT(E=0)A /g
1 0.03 .
T(E)
0.8
Breit-Wigner 0.0251
0.6; resonance
0.4 _
0.02| FIG. 6. Exact numerical calcu-
0.2 lations for the symmetricaBINIS
E/A junction, I'~0.04A. Dashed line
% 1 0 1 2 0.015r represents the low-energy state
current, dash-dotted shows the
x 10~ Currents, €T(E=0)A /5 .01k edge state current,+": the total
N L7 ’ bound-state contribution; “x":
‘Q( 7/ the continuum contribution, solid
-1 . L., 0.005} line: the total Josephson current.
5 »\. /'/ X
X o 12
x @"*'*'—X—*'X'V"X"X - =X
-3 X
X ICOl‘lt. ICOIlt.
x X o/ o/m
- -0.005 :
40 0.5 1 0 0.5 1

the Breit-Wigner approximation. Equatidd4) is accurate vious casg but the other one contributes and together with
enough only in the neighborhood of the resonance, but nahe continuum reduces the total currentdoy order of mag-
on the scale ofA. In order to obtain the edge states in Sec.nitude A similar reduction was observed by H. Takayanagi
Il we have introduced the slow energy dependence&yof (private communication

Now assume that the resonance is shEggA. One can see

[for example, from the graphic solution of E(44)] that VIL. SININIS JUNCTIONS

when the bare resonance level lies within the gap, the bound

state is close tdEg|. In particular, forEq<A Eq. (44) The SININISjunction represents two coupled normal lay-
simplifies’ to ers. For a short symmetrical junction without resonances one

can find “giant currents” similar to the ones iIBNINS®
® These are the contributions proportional to the square root of
E=\/E5+ TZCOSE- (45  the junction transmission rather than to the transmission it-
self. However, the current-carrying levels are close to each
other and thus they are almost equally populated in equilib-
rium and the “giant” currents strongly compensate each
other. This results in a total current which is approximately

From Eq.(45) it follows that the amplitude of the de-
pendence of such levels is of order Bf/E, when Eg>T
and of order ofl” for Eo<T". If the system allows to tune the
bare resonance position one can observe the enhancementecﬁjtuaI to
the current wheneveE, crosses the Fermi levef® In the -
latter caseE=T" cos¢/2. | standard_ eAD(E=0)

In Sec. lll we saw that for structures containing a single J h '
superconductor there exist bound states on the resonance as

well as on purdS boundary. ForSINISjunction one could & Well-known Josephson result. It is !nteresting to find a
expect an existence dhree bound states: one close to the Structure where the current exceeds this “standard” value.

(46)

|Eo| and two others close th. Exact numerical calculations !N this section we present the numerical results for two
not using Breit-Wigner approximation but exact amplitudesStructures with resonances. _ _ _
t,r for SINISjunction confirm this expectation. The contri-  1he first one is the short symmetric8ININISwith twin

bution of the “edge” states is, as in th®IScase, propor- fesonances. We have chosen the constriction with one of
tional to off-resonant transmission, that ist8. Therefore ~ tWin peeks placed within the continuufig. 8). Interesting,
these levels cannot be found using the Breit-Wigner approxilhat the continuum current exceeds the total bound-state cur-
mation. Sometimes one of the “interface” levelsr both of ~ Nt and that both discrete and continuum contributions have
them is pushed to the continuum. As for the continuum the samesign (they often have opposite signs

contribution, it is proportional to the junction transparency The second exampléFig. 9 is the long (about 3 &)
(34) which is of the order of 2. nonsymmetrical junction. One can see again the strong com-

The numerical solution for the case of a very low-lying pensation of individual levels, but the total current exceeds

resonancef,<I") is shown in Fig. 6. It is in a good agree- the standard valueAD(0)/% by about a factor of 2. More
ment with the Breit-Wigner model discussed above. How-important, the individual level currents exceed tij&"dard
ever, neither the edge state nor the continuum contributiohundredsof times and the levels, supporting these currents
can be neglected whdgy,>1". In the example shown in Fig. are split significantly E;~0.7%A,E,~0.8\ ,E3~0.9%).

7 one edge level is pushed to the continu(as in the pre- Thus it may be possible to populate the bound states nonuni-
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formly (for example by resonant electromagnetic pumping otthe superconductors from the barrier for 1D case and devel-
by coupling to the additional electrojeand to enhance the oped it for infinitesimally thin separating layefthey do not
Josephson current by ordsrof magnitude. have to be long compared to the Fermi waveleng).
Such insertion of fictitious normal layers should be treated as
a mathematical trick only, reducing quite complicated Jo-
sephson problem to Andreev reflecttdtt’ and relatively

In the present work the dc Josephson effect was investisimple scattering problem oformalelectrons on the barrier.
gated and explicit formulas for Josephson current were ob- Our results are applicable to a wide class of 1D elements.
tained in 1D case. We used the approach suggested by I. @he only approximations we used afe: Andreev approxi-
Kulik* based on the solution of Bogolubov-de Gennes equamation,A< u. (i) Existence of a large barrier on the bound-
tions. This technique treats the contributions of discrete andry of the superconductofiii) Low current,aeps/(mJg)
continuum energy states separately. Unlike the usualwherelg is the current density angl is the superconduct-
+51%we have not used the Landauer-type consideratioiing density to be much greater than all characteristic lengths

VIIl. CONCLUSIONS

way,
to find the continuum current, but Beenakker’s approach alsuch as coherence length, junction width, etc. The last two
lowing to derive both discrete and continuum contributionsconditions are required to justify the steplike pair potential
from the most general thermodynamic relations. We havepproximation(3).

also specified the Beenakker's idea of spatial separation of Applying our formulas to different junctions we have ap-

Junction transmission 04 Currents, eT(E=0A/p
T(E) ' .
' 0.8 Twin 0l /// Il \\\
0.6 resonances // \\
0.4
0.2
0 E/p FIG. 8. The “twin resonance”
-2 -1 0 1 2 structure. The bound and the con-
N / tinuum currents have the same
Currents, eT(E=0)A /g \ : )
0.15 \ /.’ sign.
Itotal =01 N /
Ay /
\ ;
0.1 Ic)cznt>< 3 _o2b \_\ ,
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FIG. 9. Currents in a long
(=3&;) nonsymmetricalSININIS
junction. In this case there are
three bound states and, corre-
spondingly three bound currents
(11,12,13). Although each one of
them exceeds the ‘standard”
value for Josephson current many
times, the total current is just two
times greater than that.

preciated the crucial role of the continuum contribution evendefinition of the density of states for the continuum
in cases where this was not expected. The continuum current
is often neglected in shorcompared to the coherence
length junctions®® but in some short structures we found
that the continuum current can be of order of the bound-state

current or even exceed it. We have found also an unusudl
enhancemer(rather than decreagef the total current by the
continuum contribution.

It was found in the paper by Wendin and Shumeiko tha
total Josephson current might result from almost completéCatt

cancellation of huge bound-state currents flowing in the op-
posite directions. The states supporting these giant currents
lie very close to each other, so it is hard to populate thenHere Q*=[E—H=ie] Y [E—Hy*i€] is the Mdler wave
differently and the giant currents are almost canceled. Weperator. Krein's theorefnclaims that for any two linear
found some structures which we believe can be built experioperatorsH,,H, (for example, for the free Particle Hamil-

mentally, where the level separation is of ordet\o&nd the
individual currents supported by these states exceed the

usual Josephson valleAD(E=0)/% tens or hundreds of

times. We still could not avoid the strong cancellation of
individual currents and the equilibrium current is of order of
its standard valuésee abovg and in our best structures it is

enhanced by a factor of 2—3. We expect that the current in The idea of the proof is simple: in the basis of eigenfunc-

such junctions can be much enhanced by appropriate popgions the operator takes the diagonal form, so
lation of individual bound state$or example, by microwave

pumping or by coupling to another electrodelowever, just

a large energy separation of Andreev states dmeguaran-
tee the lack of cancellation of their contributions.
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APPENDIX A: KREIN'S THEOREM

1ITG
p= ;mr,

S=0"T0"=G,'GGG; .

(A1)

here G is the retarded Green’'s functiot=(E—H
+ie)"1, H is considered to be a full Hamiltonian of the
system, including the scatterer contributitt=H,+V, and
Ho is an unperturbed one. In terms of these variables the
ering operator takes the form

(A2)

tonian and the perturbed Hamiltonjamolds:
T (H,—ED "= (H,—ED™1]

J
:—EInde((Hl—El)(Hz_E”flJ' (A3)

&Id H El—ald
En efH,— )—Ene

E,—E

El_E 0
0 E,—E

1
=—Tr(H,—E)~L (A4)

felation for H,. Note that it isnot required to diagonalize

both Hamiltonians simultaneously. From the definitions of
the DOS(A1) and the definition of the scattering matfik2)
one obtains

In this appendix we find the relationship between the con-
tinuum density of states to the scattering matrix. We use the

P PO o0 GE

d

—IndetS, (A5)
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wherep, is the free particle DOS ang is the DOS of the where Z=2mV,/(%2%kg). Corresponding normal reflection
scattering problem. We also used the unitarity of the scatterand transmission amplitudes for holes are just the complex
ing matrix. conjugated ones for electrons. Substituting these quantities to

The theorem is valid in both the normal and the superconEg. (B2) we obtain
ducting cases, in the latter case one has to treat the corre-

. I oo i(a*—a7)l
sponding Hamiltonians as BCS or Bogolubov Hamiltonians a= UoVo€ (B4)
and to use the superconductor-to-superconductor scattering u§+(u§—voe2‘(q+*qf)')22’
matrix. Noting thatp, is ¢ independentup to small meso- L
scopic correctionsone can calculate the continuum contri- (Ud—ve? (@ 9N (iz+27?) @5
i i b= - . = . B5
bution to the current using Eq&4) and (A5). u§+(u§—voe2'(q+*q 72
APPENDIX B: APPLICATIONS OF THE SPATIAL This intuitively clear two-step method allows to get the final
SEPARATION METHOD result more easily than by a direct solution of the matching
) problem (8x8 linear system Its advantage becomes even
1. Andreev reflection more pronounced in more complicated problems with larger

In this appendix we rederive the formulas for Andreeynumber of boqndaries. In the IimI_iHO our results tend to
reflection fromN'S boundary with a barrier using the spatial the ones obtained by Blonder, Tinkham, and Klapfir
separation method. Consider the reflection of a quasiparticleéflection fromN'S boundary with a barriet?
from a point “impurity” modeled by aé-function barrier,
separated by a distantdrom an idealNS boundary. More
precisely, we use the Bogolubov-de Gerlfiddamiltonian As an illustration of the previous results, consider the
with V(x) = +V,d(x) andA(x)=Aq,60(x+1) whered is the  well-investigated example @&NScontact(hereN indicates a
Heaviside step function. Taking into account multiple reflec-normal metal, S a superconductgr

2. SNSjunction

tions from the barrier and\ndrees reflections from ideal The SNSconstriction includes no barrier, it consists of a
(barrier freé NS boundar{!” we obtain for incoming elec- piece of a clean normal metal of lengthsandwiched be-
tronlike particle tween the superconductors. For this structure
tetpace! @ —a) r(E)=0; t(E)=€'l; t*(-E)=e @Y D=1
a= (BY) (B6)

1—rlrla.a,ed@ —a) _ . .
e’ h%ech Substituting these expressions to E40) and using the re-
| lation vq/uy=e"'2°°&/A we obtain the Kulik's result for

142 2i(q"—q")
Mtc@eane (B2 bound stateé:

b=re+

it =\ !
1-riria.a,e®@ —a)

n —
wherea,b are the total Andreev and normal reflection am- 2 arccosy” — (g — gy )L+ =2 (B7)
plitudes,re,te,rp,ty are the barrier reflection and transmis- . i
sion amplitudes for electron and hoke, ,a,, are analogous Trje momentaq”,q~ are very close tokg. Expanding
Andreev reflection amplitudes, prime corresponds to the leftd -4~ as a function of energy arouri¢ we obtain
going particle. Restricting our consideration to energies of E
order of Ay and neglecting allAy/u terms (Andreev ap- g ~kp*r=—, (B8)
proximation we have 2840
) where &,=u/(A)(1/kg) is the superconductor coherence
- —iz f=t'= 1 (B3 length. Using Eqs(34), (B6), and (B8) one can find the
e <h % e 140z %t 140z continuum contribution:
|

e . o EVEZ—AZsiNEL/A &) tanh(E/2kgT)dE
l.=——A Slnqpf .
mh A (E2— A2 co{[(ELIAEY) — @112} (E?— A2 coZ{[(EL/A &) + 0]/2))

An analogous equation was obtained by BagWeRelations(B7) and(B9) should not be treated too seriously in quantitative
aspect. The problem is that the steplike pair potential hypothesis fails; conveksehanges on scal&,.**

(B9)
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