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Spectrum and thermodynamic currents in one-dimensional Josephson elements

A. Krichevsky,* M. Schechter, Y. Imry, and Y. Levinson
Weizmann Institute of Science, 76100 Rehovot, Israel

~Received 28 January 1999!

The dc Josephson effect is considered from the thermodynamic point of view. Universal thermodynamic
equations, relating both bound and continuum contributions to the Josephson current with the normal electron
scattering amplitudes are derived for the single mode case. To derive these equations we use and further
develop the method of spatial separation between the superconducting and normal parts of the junction. We
also use this method to find the Andreev bound states in structures containing superconducting components.
The general thermodynamic formulas are applied to the calculation of the current in various Josephson-type
structures. In particular, the crucial role of the continuum contribution is demonstrated, even for short junctions
~where it is usually neglected!. We also find structures where the bound states supporting the giant currents are
well separated; thus they can, hopefully, be populated nonuniformly and such current can be measured.
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I. INTRODUCTION

Numerous theoretical investigations of Josephson ju
tions show that the equilibrium nondecaying current can
expressed in terms of a quasiparticle description based
Bogolubov-de Gennes~BdG! equations. There are two con
tributions to the current: one is supported by discrete st
lying within the superconductor gap~so-called ‘‘bound’’ cur-
rent!; and the other, carried by continuum of propagati
modes outside the gap~‘‘continuum’’ current!. Most authors
find the bound contribution from the thermodynamic relati

I 5
2e

\

dF

dw
, ~1!

whereF is the free energy of the system andw is the super-
conductor phase difference across the junction, while
continuum one is found from a Landauer-type considera
which yields a current resulting from imbalance of left-goi
and right-going quasiparticle fluxes~it is nonzero in the su-
perconductors!.

A more general method, allowing us to obtain both d
crete and continuum contributions from the thermodynam
approach was suggested by Beenakker.1 He derived the fol-
lowing expression for the free energy:

F522kBT (
En.0

lnF2 cosh
En

2kBTG1const, ~2!

where ‘‘const’’ represents thew-independent term, cancelin
the divergence of the first term at high energies. The o
significant approximation made in the derivation of this fo
mula is the steplike pair-potential shape:

D~x!5H D0e2 iw/2 if x,2L/2

0 if uxu,L/2

D0eiw/2 if x.L/2

, ~3!

where L is the junction length. The applicability of thi
model was discussed previously.1–3 The important condi-
tions for applicability of this model are:~i! Existence of a
high barrier on the boundary of the superconducting and n
PRB 610163-1829/2000/61~5!/3723~11!/$15.00
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mal media.~ii ! Low current, such as\ers /(mJQ) ~whereJQ
is the current density andrs is the superconducting density!
to be much greater than all characteristic lengths such
coherence length, junction width, etc. The superconduc
semiconductor-superconductor and superconduc
insulator-superconductor junctions usually belong to this c
egory.

The expression for the Josephson current follows dire
from Eqs.~1! and ~2!:

I J[I b1I c52
2e

\ (
0,En,D

tanh
En

2kBT

dEn

dw

2
2e

\
2kBTE

D

`

dE lnF2 cosh
E

2kBTG dr

dw
, ~4!

wherer is the continuum density of states.1 The first term of
Eq. ~4! is the well-known bound state current4–6 while the
second term represents the continuum contribution. It
quires the knowledge of the dependence of the continu
density of states~DOS! on w. An important tool, providing
this information is Krein’s theorem7 ~see Appendix A!, that
connects the change in the DOS induced by any scatt
with the corresponding scattering matrix.

Using this theorem, Beenakker1 expressed the continuum
contribution via the scattering matrix of the normal electro
in the multichannel case. We are going to specialize t
approach to the one-dimension~1D! case developing the
simplified expressions for this special case. Below we c
sider a general junction, consisting of an arbitrary on
dimensional~1D! nonsuperconducting constriction~barrier!
sandwiched between two superconductors. The relevant s
tering matrix has the dimensions 434 and it can be ex-
pressed in terms of the energy-dependent normal electroS
matrix and the scattering amplitudes on theNS boundaries.

II. SPATIAL SEPARATION OF THE SUPERCONDUCTORS
FROM THE BARRIER

In the next sections we express the bound spectrum
the Josephson current in a superconductor/general nons
conducting constriction/superconductor~SCS! junction via
3723 ©2000 The American Physical Society
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3724 PRB 61KRICHEVSKY, SCHECHTER, IMRY, AND LEVINSON
the scattering matrix of normal electrons. To do so we ins
a fictitious ideal clean normal leads of lengthl between the
superconductors and the constriction1 @Fig. 1~a!#. The propa-
gation of electrons in the ‘‘normal’’ medium is described b
the model Hamiltonian

H052
\2

2m
¹22m1V. ~5!

Below we consider the limitl→0. Beenakker,1 when insert-
ing the fictitious normal metal, demanded that its size
smaller than all lengths in the system except the Fermi wa
length, since in this case, he claimed, the normal-metal
sertion does not affect the results. This is true in the z
order inD/m ~Andreev approximation!. Some of our calcu-
lations are done beyond the Andreev approximation, an
this case one must take the length of the normal metal to
shorter than the Fermi wavelength. This would appear me
ingless from the physical point of view. However, we ado
the formal point of view, and consider the ‘‘normal meta
as a domain in the BdG equation in which the external
tential and the order parameter are both zero. We then
take this domain to be shorter the Fermi wave length. On
other hand, the scattering formulation is still valid even wh
the normal-metal length is infinitesimally small because
one dimension the outgoing wave function takes
asymptotic form}eikx at any distance from the barrier, how
ever small it is, since there are no evanescent modes in
1D case.

Below we demonstrate that our results for the ene
spectrum, persistent currents~when exist!, reflection ampli-
tudes, etc., for arbitrary structures with fictitious normal la
ers agree with the corresponding results for analogous s
tures without these layers obtained previously using differ
methods6,8,9 both under Andreev approximation~Appendix
B! and beyond it~Sec. III!. This is to be expected, since th
insertion of the fictitious normal metal corresponds to a n
singular perturbation and it does not influence the result
the limit l→0.

FIG. 1. ~a! GeneralS-barrier-S and~b! I-impurity-I -S structures.
~1! Geometric outline of the real problem.~2! Our model problem.
~3! The energy diagram in the latter case. Thick line represents
potentialV(x), thin line: the pair potential, dashed line: the ele
trochemical potential.
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Where the Andreev approximation is used, it is conv
nient to set the Fermi momentum in the normal and sup
conducting leads to be equal. In this case one can neglec
normal reflection at theNS boundaries.8

III. BOUND STATES IN THE INIS JUNCTION

To illustrate the spatial separation method we consider
formation of the bound states in the insulatin
superconducting structure containing an ‘‘impurity’’ embe
ded in the insulating region. By impurity we mean a qua
bound state of energyE0 and widthG that would be formed
in analogous system where the superconductor is replace
a normal metal. Such a situation takes place, for instance
the INIS junction @Fig. 1~b!#. An analogous problem ha
been considered by Laikhtman in terms of the tunnel
Hamiltonian approximation.10 It was found that there exists
single bound state in this system, whose energy can be fo
from the equation

E0
21G22E25

2GE2

AD22E2
. ~6!

In the limit G→0 the energyE of this state tends toE0 if
2D,E0,D. On the other hand, using more exact wav
function matching method it was shown6 that there exists a
bound state of energy close toD at anIS boundary without
impurity.

We consider the following problem: An impurity with
energyE0 , 2D,E0,D located at a distanceL from the
superconductor. Using the spatial separation method we
two energy levels: one close toE0 and one close toD for the
case of largeL ~small G). The level close toD cannot be
obtained using the tunneling Hamiltonian method.

In order to find the bound states in this structure we ins
a fictitious infinitesimally short normal layer between th
superconductor~S! and the rest of the structure (R). Con-
sider the motion of the quasiparticle in the normal layer. T
quasiparticle can be either normal or Andreev reflected at
NS boundary and only normal reflected at theRN boundary
~see Fig. 2!.

From the uniqueness of the wave function one obtains
eigenenergy equation:

detF S be ah

ae bh
D S r e8 0

0 r h8
D 21G50. ~7!

e

FIG. 2. Formation of a bound state onRSboundary. Solid and
dashed arrows represent the electron and the hole propagation
respondingly. Amplitudesae(h) ,be(h) illustrate the Andreev and
normal reflection amplitudes for electrons~holes! on NS boundary;
r e(h)8 : the normal reflection onRS boundary~prime indicates that
the reflected particle moved initially to the left!, numbers enumerate
the scattering channels.
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PRB 61 3725SPECTRUM AND THERMODYNAMIC CURRENTS IN ONE- . . .
In the case thatR contains an impurity we assume that th
reflection amplitude of electrons~holes! at energies close to
the bare impurity level take the form

r e~E!5r 0~E!
E2E02 iG

E2E01 iG
;r h~E!5r e* ~2E! ~8!

that contains both a Breit-Wigner-type resonance and a s
energy dependencer 0(E) as in Eq. ~9! below. Note, that
ur eu51 since there are no propagating modes within the
sulator. Substituting these reflection amplitudes to Eq.~7!,
neglecting the energy dependence ofr 0 and using the An-
dreev approximation which providesbe5bh50; ae5ah
5v0 /u0 @where andu0 ,v0 are the BCS coherence factors
u0

25(11A12D2/E2)/2, v0
25(12A12D2/E2)/2#, one ob-

tains Eq.~6! which has only one positive energy solution
Taking into account the energy dependentr 0(E) is crucial
for obtaining the second level.

The numerical solution of Eq.~7! for the case m
5100D, V5130D, E050.5D @see Fig. 1~b!# and the reflec-
tion amplitudes defined in Eqs.~8! and~9! ~below! is shown
in Fig. 3. The exact calculations forINIS structure~rather
than Breit-Wigner-type approximation~8! give analogous re-
sults. The Breit-Wigner-type approximation is used here ju
for a clear definition of the resonance widthG and for direct
comparison with the tunneling Hamiltonian method.

For smallG there are two bound states: the upper lev
lies close to the gap edge~its wave function is localized
around the interface — mostly in the superconductor6! while
the lower state is localized at the impurity and has an ene
close toE0. As the coupling between the impurity and su
perconductor increases, so does the overlap between
bound-state wave functions causing the repulsion of the l
els. The upper level soon disappears in the continuum. T
energy of the lower level first decreases, but then starts
increase and tends toD asymptotically.

For the upper~surface! level one can rederive, using ou
formalism the result obtained by Wendin and Shumeiko6 for
IS boundary~they used the matching of the decaying wav
functions on the boundary! by taking the limitG→0. In this

FIG. 3. Typical behavior of discrete levels as a function of th
resonance width for the Breit-Wigner-type reflection amplitude
The higher level disappears in the continuum at very smallG, so
the upper left part of the graph is shown in the inset.
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case, according to Eq.~8! r (E)→r 0(E) as for pure IS
boundary withE2E0@G. We model the insulator by a po
tential step of heightV, then the reflection amplitudes~see
Fig. 2! are

r e52
k11 iq1

k12 iq1
[r 0~E!, ~9!

r h52
k22 iq2

k21 iq2
5r 0* ~2E!, ~10!

where

q65A2m~m6E!/\; k65A2m~V2m7E!/\ ~11!

~‘‘ 1 ’’ corresponds to electrons, ‘‘2 ’’ to holes!. Substituting
these values ofr e ,r h and the Andreev reflection amplitude
calculated in the next section to Eq.~7! and then expanding
up to first order inD/m one finds the energy of the interfac
level:

D2E5
mD3

2V2~V2m!
. ~12!

Note that expansion up to zero order inD/m leads to a wrong
result$D2E5D3/@2m(V2m)#%. This indicates that the An-
dreev approximation is to be used with care.

Taking into account the energy dependence ofr 0 in Eq.
~8! is crucial in order to obtain the edge bound state. N
glecting the energy dependence ofr 0 results in obtaining just
one ~impurity! level, exactly coinciding with the level ob
tained using the tunneling Hamiltonian method.

The existence of such bound states helps to unders
the discrete spectrum of Josephson elements. TheSIS junc-
tion can be considered as two coupledIS boundaries6 and
the bound spectrum consists either of a pair of levels ly
close to the gap edge@the levels determined by Eq.~12! split
by coupling analogously to the levels in a double-w
problem11# or of a single level when the coupling is stron
enough for pushing the upper level to the continuum. Ana
gously, if the junction barrier has a transmission resona
within the gap~for instance, aSINISjunction or an element
including the impurity!, one can consider it as an ‘‘IS bound-
ary with a resonance’’ coupled to the ‘‘pureIS boundary’’
and expect at mostthree discrete levels: one clos
to the resonance and two levels close to the gap edge if
coupling is weak; two or one level for stronger coupling. F
N resonances within the gap there are possi
N12,N11,N••• levels, depending on coupling strength.

All these levels can be slightly modified by changing t
phase difference between the superconductors, giving ris
the bound state contribution to the Josephson current.
though the edge states often lie almost indistinguisha
close toD, their contribution to the current can be major.6

IV. S MATRIX

In this section we obtain the scattering matrix of a gene
nonsuperconducting constriction sandwiched between
superconductors. The knowledge of the scattering matrix
Krein’s theorem, which relates the change in the continu

.
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3726 PRB 61KRICHEVSKY, SCHECHTER, IMRY, AND LEVINSON
density of states to theS matrix, allow us to calculate the
Josephson current of the continuum~next section!. A simple
way to obtain theS matrix is to reduce the whole scatterin
process to the scattering of normal electrons on the cons
tion and to the processes on pureSNboundaries.

To simplify the discussion we divide the scattering pr
cess into several steps~Fig. 4!:

First step: An incoming waveu in& hits theSNboundaries
from the outside. A part of it penetrates into the normal lea
forming the new ‘‘incoming wave’’u in1& and the rest is re-
flected asuout1&:

uout1&5âsu in&; u in1&5 ĉSNu in&. ~13!

Second step:u in1& scatters on the barrier and converts
uout2&:

uout2&5ŜNu in1& ~14!

ŜN5S r e te 0 0

te r e8 0 0

0 0 r h th

0 0 th r h8

D 5S s0~E! B

B s0* ~2E!
D . ~15!

Here we used the symmetryŜN providing t85t and also the
time-reversal symmetry of Schro¨dinger equation, assuring

r h~E!5r e* ~2E!; th~E!5te* ~2E!. ~16!

Third step: uout2& reaches theNS boundaries from inside
Partially it penetrates into the superconducting electro
forming the outgoing waveuout3& and partially it is reflected
back to the normal region asu in3&:

u in3&5ŜAuout2&; uout3&5 ĉNSuout2&, ~17!

where the matricesŜA ,ĉNS are the Andreev reflection an
transmission matrices analogous toâs ,ĉSN.

Fourth step: Continue steps 2 and 3 up to infinity.
The total output can be found from Eqs.~13!, ~14!, and

~17! by summing up the geometric series:

FIG. 4. Simple illustration of scattering processes. Solid arro
represent electronlike waves, dashed arrows: holelike ones. N
bers enumerate the scattering channels.
ic-

-

s

s

uout&5uout1&1uout3&1uout5&1•••

5@ âs1 ĉNS~ I 2ŜNŜA!21ŜNĉSN#u in&[Ŝu in& ~18!

or Ŝ5âs1 ĉNS~ I 2ŜNŜA!21ŜNĉSN. ~19!

The matrix ŜN is given by Eq.~15! and the matrices
âs ,ĉSN,ĉNS,ŜA are constructed from Andreev and norm
reflection and transmission amplitudes onSN boundaries
which we obtain below.

In their pioneering work Blonder, Tinkham, an
Klapwijk8 considered the following scattering process~see
Fig. 5!: the electron, propagating from left to right in th
normal metal, is scattered by theNS boundary. It can be
reflected back to the normal medium or transmitted to
superconductor either as an electron or as a hole. We fo
their treatment, but use a different normalization of the wa
functions to assure unitarity of the scattering matrix. T
incoming, reflected and transmitted waves forNS boundary
are given by

c inc5
1

Aq1 S 1

0D eiq1x,

c re f l5a
1

Aq2 S 0

1D eiq2x1b
1

Aq1 S 1

0D e2 iq1x,

c trans5c
1

Ak1Au0
22v0

2
S u0

v0
D eik1x

1d
1

Ak2Au0
22v0

2
S v0

u0
D e2 ik2x,

s
m-

FIG. 5. The illustration of the scattering processes. LettersN,S
correspond to the normal and superconducting media, the o
parameter on both sides is shown. Solid arrows show the elect
like wave propagation, dashed ones show holelike ones. The in
e means that the incoming particle is electronlike, subscriptNS
means that it comes from the normal part (SN: from the supercon-
ductor; prime indicates that the particle comes from the right. T
scattering processes for holes are completely analogous, one
just to replace the indexe by h and solid arrows by dashed one
~and vice versa!.
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where

k65A2m~m6AE22D2!/\. ~20!

Our normalization differs from the one used by Blond
Tinkham, and Klapwijk by prespinor factor
1/Aq6,1/(Ak6Au0

22v0
2).

The amplitudesa,b,c,d have been found by matching th
wave functions and their derivatives on the boundary.
define the scattering amplitudes analogously for the p
cesses on bothNS boundaries of the model Josephson jun
tion ~Fig. 4! when the phase differencew is maintained be-
tween the superconductors, considering electronlike
holelike projectiles coming from the normal medium to t
superconductor~corresponding amplitudes are indicated
NSbelow! and vice versa~indexSN!—see Fig. 5. In contras
with the work of Blonder, Tinkham, and Klapwijk we do no
initially neglect the deviations of projectiles momenta fro
kF .

In terms of these amplitudes the scattering matrices h
the following form:

âs5F beSN
0 ahSN

0

0 beSN
8 0 ahSN

8

aeSN
0 bhSN

0

0 aeSN
8 0 bhSN

8

G ,

ŜA5F beNS
8 0 ahNS

8 0

0 beNS
0 ahNS

aeNS
8 0 bhNS

8 0

0 aeNS
0 bhNS

G , ~21!

ĉSN5F ceSN
0 dhSN

0

0 ceSN
8 0 dhSN

8

deSN
0 chSN

0

0 deSN
8 0 chSN

8

G ,

ĉNS5F ceNS
8 0 dhNS

8 0

0 ceNS
0 dhNS

deNS
8 0 chNS

8 0

0 deNS
0 chNS

G . ~22!

The scattering amplitudes are again found from the so
tion of the matching problem on the boundaries. Here we
them in explicit form:

aeSN
522Ak2k1~q11q2!u0v0 /D, ~23!

beSN
52@u0

2~q12k1!~q21k2!

2v0
2~q12k2!~q21k1!#/D, ~24!
,

e
-

-

d

ve

-
t

ceSN
52Ak1q1~q21k2!u0Au0

22v0
2e2 iw/4/D, ~25!

deSN
52Ak1q2~k22q1!v0Au0

22v0
2eiw/4/D, ~26!

aeNS
52Aq2q1~k11k2!u0v0e2 iw/2/D, ~27!

beNS
5@u0

2~q12k1!~q21k2!2v0
2~q22k1!~q11k2!#/D,

~28!

ceNS
52Ak1q1~q21k2!u0Au0

22v0
2e2 iw/4/D, ~29!

deNS
52Ak2q1~k12q2!v0Au0

22v0
2e2 iw/4/D, ~30!

where

D5u0
2~q11k1!~q21k2!2v0

2~q12k2!~q22k1!.
~31!

Note, that the nonprimed amplitudes correspond to
processes where the projectile comes from the left, so
above valuesaeSN

,beSN
••• are calculated on the leftSN

boundary ~the phase of the order parameter is equal
2w/2), while the amplitudesaeNS

,beNS
••• are on the right

boundary~the phase of the order parameterw/2).
To obtain the expressions for hole scattering amplitu

~such asahSN
) one has to replace in the above formul

k6,q6 by k7,q7 correspondingly and also to replacew by
2w. All primed amplitudes are equal to the correspondi
nonprimed ones taken at2w. Inserting these matrices an
Ŝn ~15! into Eq. ~19! we obtain theS matrix for a general
SCS junction.

V. JOSEPHSON CURRENTS

Knowing the explicit form of the scattering matrix on
can find thew dependence of the continuum density of sta
using Krein’s theorem:

]r

]w
5

1

2p i

]2

]w]E
ln detS. ~32!

The idea of the proof is given in Appendix A.
Now we have all the required tools to find the Josephs

current. The continuum contribution can be expressed
terms of the scattering matrix using Eqs.~4! and ~32!:1,12

I c5
e

p i\ED

`

dE tanh
E

2kBT

]

]w
ln detŜ. ~33!

This result can be simplified by using the Andreev a
proximation ~that is, neglecting the deviations ofk6,q6

from kF):
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I c52
e

p\
D2 sinwE

D

`

3

EAE22D2D̃ sinb tanh
E

2kBT
dE

$E22D2 cos2@~b2g!/2#%$E22D2cos2@~b1g!/2#%
,

~34!

where

D̃5ut~E!t~2E!u; b5argt~E!2argt~2E!; ~35!

R̃5ur ~E!r ~2E!u; e5argr ~E!2argr ~2E!2b;
~36!

cosg5R̃ cose1D̃ cosw ~37!

~we follow the definitions of Wendin and Shumeiko5!.
Equation~34!, which is one of the central results of ou

work, embraces a wide class of Josephson junctions. In
ticular, Eq.~34! describes arbitrarily long junctions, a prob
lem often avoided. Equation~34! is convenient for qualita-
tive estimations of the continuum contribution to the curre
For instance, consider a cleanSNSjunction. In this caseb
5EL/(Dj0) wherej05m/(DkF) is the superconductor co
herence length~for more details see Appendix B!. For a short
junction (L!j0) I c is small and it is roughly proportional to
the junction’s length. In the opposite case of a very lo
junction (L@j0) the continuum contribution is small again
but for a different reason: the integrand is now a produc
the oscillating$sin@EL/(Dj0)#% and decaying ('1/E2) func-
tions of energy and the integration over energy results
strong cancellation. However, in some junctions one can
pect a significant continuum current:~i! If b,g are small~as
in the case of someSIS junctions6! or, more general, ifb
6g is close topn — the denominator in Eq.~34! is small at
E.D. ~ii ! If the junction transmissionD̃ is large or if it has
a sharp maximum atE.D ~as in the case of resonant stru
tures likeSINIS, SININIS, etc.! and thus the numerator ca
also be large.

If the scattering amplitudes of the constriction depe
weakly on energy,D̃,R̃ are approximately equal to the tran
mission and reflection coefficients of the barrier correspo
ingly and the anglesb,e are small. In this case, the integr
in Eq. ~34! can easily be done at zero temperature:

I c'2
eDD̃ sinw

2\

sinb

usin@~b2g!/2#u1usin@~b1g!/2#u
. ~38!

The spatial separation method can also be used to red
the known results for the bound-state energies and curr
The eigenenergiesEn correspond to the singular points o
energy-dependent scattering matrix. From Eq.~19! we
obtain:1

det@ I 2ŜN~En!ŜA~En!#50. ~39!

Using the definitions ofŜN ,ŜA @Eqs.~15! and~21!#, Andreev
approximation, properties~16! of ŜN and the parameter
r-

t.

g

f

n
x-

d

-

ive
nt.

R̃,D̃,b,e,g @Eqs.~35!–~37!# one obtains the following equa
tions for the eigenenergies of the bound states in two equ
lent forms:

ReF v0
2

u0
2

t~E!t* ~2E!G5Re@r ~E!r * ~2E!t* ~E!t~2E!#

1D̃2 cosw, ~40!

2
1

D2
AE2D22E4 sinb5R̃ cose1D̃ cosw. ~41!

Equation~41! can be solved with respect toE by squaring
and some other algebraic manipulations. The result is

E25D2cos2
b6g

2
, if sin~b6g!>0. ~42!

The condition sin(b6g)>0 in Eq. ~42! is essential, becaus
squaring can produce a redundant solution.13

Although the formulas~41! and ~42! look like explicit
equations for the energy, there might be hidden energy
pendence of the scattering amplitudes and consequentl
the anglesb,g,e. Thus Eqs.~41! and ~42! are to be solved
self-consistently.

Knowing the scattering properties of the barrier one c
calculate thew-dependent current using Eq.~34! and one of
Eqs. ~40!, ~41!, and ~42!. Below we consider several appl
cations of these formulas.

VI. SINIS JUNCTIONS

For the structures containing twoIS boundaries~like SIS,
SINIS, etc.! one can safely use the steplike pair potent
approximation,2,14 and consequently Eqs.~34!, ~40!, ~41!,
and ~42! for quantitative calculations. TheSINISjunction is
the simplest example of the resonant structure. We solv
analytically using the Breit-Wigner-like formulas for tran
mission and reflection amplitudes. More precise calculatio
taking the exact amplitudest,r instead of the Breit-Wigner
approximation were performed numerically.

Consider the symmetricalSINIS junction. Denote the
N-part length byL and the single-barrier transmission coe
ficient by D. The Breit-Wigner near-resonance transmiss
and reflection amplitudes are

t5
G

E2E01 iG
eiw t; r 5

E2E0

E2E01 iG
eiwr, ~43!

where E0 is the bare resonance level,G5\DvF /L and
w t ,w r are some weak~on the scale ofG) energy dependen
phases which cancel in further calculations.

Substituting the Breit-Wigner amplitudes from Eq.~43! to
Eq. ~40! we obtain

E2~E0
21G21D2!12GE2AD22E2

5E41E0
2D21D2G2 cos2

w

2
. ~44!

This equation has only one positive energy solution and t
it misses the edge states as a result of inadequate accura
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FIG. 6. Exact numerical calcu
lations for the symmetricalSINIS
junction, G'0.04D. Dashed line
represents the low-energy sta
current, dash-dotted shows th
edge state current, ‘‘1’’: the total
bound-state contribution; ‘‘x’’:
the continuum contribution, solid
line: the total Josephson current.
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the Breit-Wigner approximation. Equation~44! is accurate
enough only in the neighborhood of the resonance, but
on the scale ofD. In order to obtain the edge states in Se
III we have introduced the slow energy dependence ofr 0.
Now assume that the resonance is sharp,G!D. One can see
@for example, from the graphic solution of Eq.~44!# that
when the bare resonance level lies within the gap, the bo
state is close touE0u. In particular, for E0!D Eq. ~44!
simplifies5 to

E5AE0
21G2 cos

w

2
. ~45!

From Eq.~45! it follows that the amplitude of thew de-
pendence of such levels is of order ofG2/E0 when E0@G
and of order ofG for E0!G. If the system allows to tune th
bare resonance position one can observe the enhancem
the current wheneverE0 crosses the Fermi level.5,15 In the
latter caseE5G cosw/2.

In Sec. III we saw that for structures containing a sing
superconductor there exist bound states on the resonan
well as on pureIS boundary. ForSINIS junction one could
expect an existence ofthree bound states: one close to th
uE0u and two others close toD. Exact numerical calculation
not using Breit-Wigner approximation but exact amplitud
t,r for SINIS junction confirm this expectation. The contr
bution of the ‘‘edge’’ states is, as in theSIScase, propor-
tional to off-resonant transmission, that is toG2. Therefore
these levels cannot be found using the Breit-Wigner appr
mation. Sometimes one of the ‘‘interface’’ levels~or both of
them! is pushed to the continuum. As for the continuu
contribution, it is proportional to the junction transparen
~34! which is of the order ofG2.

The numerical solution for the case of a very low-lyin
resonance (E0!G) is shown in Fig. 6. It is in a good agree
ment with the Breit-Wigner model discussed above. Ho
ever, neither the edge state nor the continuum contribu
can be neglected whenE0.G. In the example shown in Fig
7 one edge level is pushed to the continuum~as in the pre-
ot
.

nd

t of

as

s

i-

-
n

vious case!, but the other one contributes and together w
the continuum reduces the total current byan order of mag-
nitude. A similar reduction was observed by H. Takayana
~private communication!.

VII. SININIS JUNCTIONS

TheSININISjunction represents two coupled normal la
ers. For a short symmetrical junction without resonances
can find ‘‘giant currents’’ similar to the ones inSNINS.5

These are the contributions proportional to the square roo
the junction transmission rather than to the transmission
self. However, the current-carrying levels are close to e
other and thus they are almost equally populated in equ
rium and the ‘‘giant’’ currents strongly compensate ea
other. This results in a total current which is approximate
equal to

I J
standard5

eDD̃~E50!

\
, ~46!

a well-known Josephson result. It is interesting to find
structure where the current exceeds this ‘‘standard’’ valu

In this section we present the numerical results for t
structures with resonances.

The first one is the short symmetricalSININISwith twin
resonances. We have chosen the constriction with one
twin peeks placed within the continuum~Fig. 8!. Interesting,
that the continuum current exceeds the total bound-state
rent and that both discrete and continuum contributions h
the samesign ~they often have opposite signs!.

The second example~Fig. 9! is the long ~about 3 j0)
nonsymmetrical junction. One can see again the strong c
pensation of individual levels, but the total current excee
the standard valueeDD̃(0)/\ by about a factor of 2. More
important, the individual level currents exceed theI J

standard

hundredsof times and the levels, supporting these curre
are split significantly (E1'0.75D,E2'0.89D,E3'0.95D).
Thus it may be possible to populate the bound states non
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FIG. 7. Symmetrical SINIS.
The resonance width and all lin
types are the same as in the prev
ous figure, but the resonance itse
is not close to the middle of the
superconductor gap. The total cu
rent is reduced by an order o
magnitude compared to the prev
ous case.
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formly ~for example by resonant electromagnetic pumping
by coupling to the additional electrode6! and to enhance the
Josephson current by order~s! of magnitude.

VIII. CONCLUSIONS

In the present work the dc Josephson effect was inve
gated and explicit formulas for Josephson current were
tained in 1D case. We used the approach suggested by
Kulik4 based on the solution of Bogolubov-de Gennes eq
tions. This technique treats the contributions of discrete
continuum energy states separately. Unlike the us
way,4,6,16 we have not used the Landauer-type considera
to find the continuum current, but Beenakker’s approach
lowing to derive both discrete and continuum contributio
from the most general thermodynamic relations. We h
also specified the Beenakker’s idea of spatial separatio
r

ti-
b-
O.
a-
d

al
n
l-
s
e
of

the superconductors from the barrier for 1D case and de
oped it for infinitesimally thin separating layers~they do not
have to be long compared to the Fermi wavelengthlF).
Such insertion of fictitious normal layers should be treated
a mathematical trick only, reducing quite complicated J
sephson problem to Andreev reflection10,17 and relatively
simple scattering problem ofnormalelectrons on the barrier

Our results are applicable to a wide class of 1D eleme
The only approximations we used are:~i! Andreev approxi-
mation,D!m. ~ii ! Existence of a large barrier on the boun
ary of the superconductor.~iii ! Low current, \ers /(mJQ)
~whereJQ is the current density andrs is the superconduct
ing density! to be much greater than all characteristic leng
such as coherence length, junction width, etc. The last
conditions are required to justify the steplike pair potent
approximation~3!.

Applying our formulas to different junctions we have a
-
e

FIG. 8. The ‘‘twin resonance’’
structure. The bound and the con
tinuum currents have the sam
sign.
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FIG. 9. Currents in a long
('3j0) nonsymmetricalSININIS
junction. In this case there ar
three bound states and, corre
spondingly three bound current
(I1,I2,I3). Although each one of
them exceeds the ‘‘standard’
value for Josephson current man
times, the total current is just two
times greater than that.
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preciated the crucial role of the continuum contribution ev
in cases where this was not expected. The continuum cur
is often neglected in short~compared to the coherenc
length! junctions,4,5 but in some short structures we foun
that the continuum current can be of order of the bound-s
current or even exceed it. We have found also an unu
enhancement~rather than decrease! of the total current by the
continuum contribution.

It was found in the paper by Wendin and Shumeiko t
total Josephson current might result from almost comp
cancellation of huge bound-state currents flowing in the
posite directions. The states supporting these giant curr
lie very close to each other, so it is hard to populate th
differently and the giant currents are almost canceled.
found some structures which we believe can be built exp
mentally, where the level separation is of order ofD and the
individual currents supported by these states exceed
usual Josephson valueeDD̃(E50)/\ tens or hundreds o
times. We still could not avoid the strong cancellation
individual currents and the equilibrium current is of order
its standard value~see above!, and in our best structures it i
enhanced by a factor of 2–3. We expect that the curren
such junctions can be much enhanced by appropriate p
lation of individual bound states~for example, by microwave
pumping or by coupling to another electrode!. However, just
a large energy separation of Andreev states doesnot guaran-
tee the lack of cancellation of their contributions.
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APPENDIX A: KREIN’S THEOREM

In this appendix we find the relationship between the c
tinuum density of states to the scattering matrix. We use
n
nt

te
al

t
te
-
ts

e
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f
f

in
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l
n

-
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definition of the density of states for the continuum

r52
1

p
Im Tr G, ~A1!

where G is the retarded Green’s functionG5(E2H
1 i e)21, H is considered to be a full Hamiltonian of th
system, including the scatterer contribution:H5H01V, and
H0 is an unperturbed one. In terms of these variables
scattering operator takes the form

S5V2†V1[G0
21GGG0

21 . ~A2!

Here V65@E2H6 i e#21@E2H06 i e# is the Möller wave
operator. Krein’s theorem7 claims that for any two linear
operatorsH1 ,H2 ~for example, for the free Particle Hamil
tonian and the perturbed Hamiltonian! holds:

Tr@~H12EI !212~H22EI !21#

52
]

]E
ln det@~H12EI !~H22EI !21#. ~A3!

The idea of the proof is simple: in the basis of eigenfun
tions the operator takes the diagonal form, so

]

]E
ln det~H12EI !5

]

]E
ln detS E12E 0 . . .

0 E22E

A �

D
52(

n

1

En2E
52Tr~H12EI !21. ~A4!

The theorem stated follows from Eq.~A4! and the analogous
relation for H2. Note that it isnot required to diagonalize
both Hamiltonians simultaneously. From the definitions
the DOS~A1! and the definition of the scattering matrix~A2!
one obtains

r2r05
1

2p i

]

]E
ln detS, ~A5!
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wherer0 is the free particle DOS andr is the DOS of the
scattering problem. We also used the unitarity of the scat
ing matrix.

The theorem is valid in both the normal and the superc
ducting cases, in the latter case one has to treat the c
sponding Hamiltonians as BCS or Bogolubov Hamiltonia
and to use the superconductor-to-superconductor scatte
matrix. Noting thatr0 is w independent~up to small meso-
scopic corrections! one can calculate the continuum cont
bution to the current using Eqs.~4! and ~A5!.

APPENDIX B: APPLICATIONS OF THE SPATIAL
SEPARATION METHOD

1. Andreev reflection

In this appendix we rederive the formulas for Andre
reflection fromNS boundary with a barrier using the spati
separation method. Consider the reflection of a quasipar
from a point ‘‘impurity’’ modeled by ad-function barrier,
separated by a distancel from an idealNS boundary. More
precisely, we use the Bogolubov-de Gennes14 Hamiltonian
with V(x)51V0d(x) andD(x)5D0u(x1 l ) whereu is the
Heaviside step function. Taking into account multiple refle
tions from the barrier andAndreev reflections from ideal
~barrier free! NS boundary8,17 we obtain for incoming elec-
tronlike particle

a5
tethaee

i (q12q2) l

12r e8r h8aeahe2i (q12q2) l
, ~B1!

b5r e1
r h8te

2aeahe2i (q12q2) l

12r e8r h8aeahe2i (q12q2) l
, ~B2!

wherea,b are the total Andreev and normal reflection a
plitudes,r e ,te ,r h ,th are the barrier reflection and transmi
sion amplitudes for electron and hole,ae ,ah are analogous
Andreev reflection amplitudes, prime corresponds to the l
going particle. Restricting our consideration to energies
order of D0 and neglecting allD0 /m terms ~Andreev ap-
proximation! we have

ae5ah5
v0

u0
, r e5r e85

2 iZ

11 iZ
, te5te85

1

11 iZ
, ~B3!
ad

s
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f

where Z52mV0 /(\2kF). Corresponding normal reflectio
and transmission amplitudes for holes are just the comp
conjugated ones for electrons. Substituting these quantitie
Eq. ~B2! we obtain

a5
u0v0ei (q12q2) l

u0
21~u0

22v0e2i (q12q2) l !Z2
, ~B4!

b52
~u0

22v0e2i (q12q2) l !~ iZ1Z2!

u0
21~u0

22v0e2i (q12q2) l !Z2
. ~B5!

This intuitively clear two-step method allows to get the fin
result more easily than by a direct solution of the match
problem (838 linear system!. Its advantage becomes eve
more pronounced in more complicated problems with lar
number of boundaries. In the limitl→0 our results tend to
the ones obtained by Blonder, Tinkham, and Klapwijk8 for
reflection fromNS boundary with a barrier.18

2. SNS junction

As an illustration of the previous results, consider t
well-investigated example ofSNScontact~hereN indicates a
normal metal,S a superconductor!.

The SNSconstriction includes no barrier, it consists of
piece of a clean normal metal of lengthL sandwiched be-
tween the superconductors. For this structure

r ~E!50; t~E!5eiq1L; t* ~2E!5e2 iq2L; D̃51.
~B6!

Substituting these expressions to Eq.~40! and using the re-
lation v0 /u05e2 iarccosE/D we obtain the Kulik’s result for
bound states:4

2 arccos
En

D
2~qn

12qn
2!L6w52pn. ~B7!

The momentaq1,q2 are very close tokF . Expanding
q1,q2 as a function of energy aroundkF we obtain

q6'kF6
E

2Dj0
, ~B8!

where j05m/(D)(1/kF) is the superconductor coherenc
length. Using Eqs.~34!, ~B6!, and ~B8! one can find the
continuum contribution:
ve
I c52
e

p\
D2 sinwE

D

` EAE22D2 sin~EL/Dj0!tanh~E/2kBT!dE

„E22D2 cos2$@~EL/Dj0!2w#/2%…„E22D2 cos2$@~EL/Dj0!1w#/2%…
. ~B9!

An analogous equation was obtained by Bagwell.16 Relations~B7! and~B9! should not be treated too seriously in quantitati
aspect. The problem is that the steplike pair potential hypothesis fails; conversely,D changes on scalej0.14
B
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