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Novel disordering mechanism in ferromagnetic systems with competing inter actions
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We study the interplay between ferromagnetic and spinsglalsases in magnetic systems such as
LiHoxY1-xF4 theoretically, as well as using numerical simulations dfir@e¢-dimensional diluted long-range
dipolar Ising model with competing interactions in the jerese of a random field. Our results suggest the ex-
istence of a novel disordering mechanism of the ferromagmpétase due to the underlying spin-glass phase
when a random field is applied. We numerically compute the-remperature phase boundary between the
quasi-spin-glass and ferromagnetic phases as a functidre ¢fo concentration and random-field strength, and
explain the peculiar linear dependence of the critical terafure on the strength of the random field found in
recent experiments by Silevit@t al. [Nature448, 567 (2007)] on thé.iHox Y1 _xF4 compound.

PACS numbers: 75.50.Lk, 75.40.Mg, 05.50.+q, 64.60.-i

Introduction.— The random-field Ising model (RFIM) Mn;s—ac a strong suppression of the transition temperature
plays a central role in the study of disordered systems asd has a function of the magnetic field was fouhd [13]. However,
been applied to problems across disciplines ranging fr@am di in Mn;s —ac it is unclear if for small fields the behavior is lin-
ordered magnets to random pinning of polymers in two spacear as well and singular as a function of the transverse field.

dimensions, as well as water seepage in porous media. Both theLiHo, Y _F4 andMn;» —ac systems, with small

At and below the lower critical dimensiahy = 2, the fer-  applied transverse magnetic fields, are well modeled by the
romagnetic (FM) phase is unstable to an infinitesimal randonfRFIM. However, an important difference between the two sys-
field [1,[2]. At higher space dimensions the disordering oftems is that the random field in the former is a result of spatia
the ferromagnetic phase requires the random field strength dilution, dictating a broad distribution of the interactiterms
be of the order of the strength of the interaction between thé both magnitude and sign, whereas in the latter the random
spins. Yet, the effect of the random field on the phase tranfield is a consequence of small random tilts in the spin direc-
sition between the FM and paramagnetic (PM) phases—foion. Therefore, it is unclear which “physical ingredierdse
systems with both short range and dipolar interactions—hatequired such that the transition temperature dependarline
been source of vast experimental and theoretical scrutiay o on the random field strength, and, in particular, which under
the last two decades; see Ref$[[3-5] and references thereliing mechanism dictates this behavior.
Over the last three decades the RFIM has been studied exper-Here we study the interplay between FM and spin-glass
imentally via dilute antiferromagnets in a field [6], as btith (SG) phases in a dipolar Ising model with competing inter-
random-field Ising model and the diluted antiferromagneticactions in the presence of a random field. We find a novel
Ising model in a field share the same universality class neatisordering mechanism of the FM phase when a random field
criticality. More recently it has been shown thatin anieptc  is applied and the system is in close proximity (e.g., via-dil
dipolar magnets the RFIM can be realized in the FM phasetion) to an underlying SG phase. This disordering mechanism
By applying a transverse field to a dilute dipolar ferromag-lies somewhat between the Imry-Ma and standard disorder-
net, such a&.iHo,Y;_.Fy4, one transforms the spatial disor- ing mechanisms: The disordering of the FM phase occurs at
der to aneffectiverandom field in the longitudinal direction a finite field, which is considerably smaller than the typical
[7H9]. This new possibility to study the RFIM in the FM spin-spin interaction strength. At zero temperature welipte
phase opened the doors for advancing our understanding @ie existence of a FM—to—quasi-SG phase transition and nu-
the random field problen [10], as well as potential new ap-merically determine foLiHo, Y;_.F, the phase boundary as
plications, such as the advent of tunable domain-wall pigni  a function of the Ho concentratianand random field strength
[11] in magnetic materials. h. At finite temperature our theory is compatible with exper-

Indeed, Silevitchet al. recently studied the FM-to-PM iments at various Ho concentrations[12], suggesting tiat
phase transition in the presence of random fields in théndeed the existence of competing interactions and the-prox
LiHo.Y;_xF4 compound|[12]. In particular, they found a imity to the SG phase that dictate the peculiar dependence of
peculiar behavior of the susceptibility as a function ofadpe  the critical temperaturé. on the random field strength
plied transverse field: A singularity in the field dependeoice Theoretical analysis.—We first study the dilute
the critical temperature at zero field, as well abnear de-  LiHo,Y; . F4; system at zero temperature. For dilu-
pendence of the transition temperature on the effective rartionsz > x. the system is FM, whereas foy < = < z. the
dom field strength (which is linear in the applied field for system is a spin glass (SG). Below we show numerically that
small fields [[__17]33]). Similarly, in the molecular nanomagnetz,. ~ 0.3. To date, it is unclear if,; > 0 [@,]. Forx ~ x.
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we define the energy per spin of the lowest ferromagnetic
state of the system g&w (z); the lowest energy of the spin-
glass state agsa(z). Note thatfrn(x) is the ground-state
energy of the FM phase when> z. and fsg(x) represents 01|
the ground-state energy of the SG phaserfpox = < x.. At

x =z, frm(z.) = fsa(ze), and forz = z, to first order <
inz — x., fsa(z) — frm(z) = alz — x.) + .... Consider

the FM phase fox > x. and apply a random field of average
strengthh. For small random-field strength, the FM state in
three dimensions cannot gain energy from the field, because
domain flips are not energetically favorable. However, 0 .
for spin glasses the lower critical (Imry-Ma) dimension is 025 03 035 04 045 05 055 06 0.65 0.7 0.75
infinity [ (no order in a field). In particular, in three £

S_pa(?e dimens?ons the ehergy of th? Sy§tem can be lowered EYG. 1: (Color online) Comparison of the zero-temperatweer-
flipping domains, creating a quasi-spin-glass (QSG) phasgy) and analytical [EqL{2)] phase diagrams for the dilutiggblar

with a finite correlation length. Thus, farclose enough ta. Ising model [Eq.[(4)] in thé:-z plane. Using? ~ 0.2 [21] we obtain
the energy of the SG state will be lower than the energy of the..(z) ~ (z — z.)%*%*. The analytical prediction, Ec[](2), agrees

FM state at a finite random field, which is still considerably very well with the numerical data with’ the only fitting parameter.
smaller than the typical interaction strength between the
spins. More generally, any three-dimensional Ising system
with competing interactions having at zero random field a FMthe system consists of finite-size domains within which shor
ground state and a SG state in a somewhat higher energy, wittnge glassy order persists. The size of these domains de-
have a phase transition to the QSG phase as a function of ttgeases with increasing field, wherefat- J the system re-
random field strength. The disordering of the ferromagneticembles a simple paramagnet. As— z. the disordering
phase therefore occurs at a finite field whose magnitude ddield approaches zero. For large- x. andh ~ J there is a
pends on the proximity to the SG phase and, in particular, cagrossover to the standard behavior where the disorderiag is
be much smaller than the characteristic spin-spin intenact result of single-spin energy minimization, i.e., the intedi-
strength. Because in systems likido, Y;_,F, the effective ~ ate QSG regime disappears.
random fields are a result of quantum fluctuatidﬂslﬂ, 17], When bothT andz — x. are small but finite and the ran-
this phase transition is a particular case of a quantum phastom field strength increases, the system changes first frem th
transition where the quantum fluctuations of the individualFM phase to the QSG phase, where the system is still dynam-
spins are small involving only the spin’s ground and firstically frozen. Increasing the random field further, the QSG
excited states‘.__Li8], but where thellective effecof all spins  domain size decreases. The crossover to a disordered para-
is strong enough to drive the transition. magnet is indicated by a peak in the magnetic susceptibility
The value of the critical random field can be estimated uswhich is broad and of finite magnitude, its width dictated by
ing the following Hamiltonian that describes a short-rangethe typical domain size upon meItinB [7]. This scenario has
Edwards-Anderson Ising spin gla[19] in arandom field: been observed experimentally; see Fig. 2 of Ref. [12]. As the
temperature is increased, the crossover to the PM regime oc-
Hga ==Y JijSiS; + Y hiS;. (1) curs at smaller random fields, dictating larger typical dimsa
(i) i and a higher peak for the magnetic susceptibility [7, 22].

In Eq. @) J;; are nearest-neighbor Gaussian random bonds L€t us denote bysc the ordering temperature at zero ran-
between the spinS; with zero mean and standard deviatign ~dom field of the underlying SG phase. Fér> Tsc the
andh, are Gaussian random fields of average strehgﬂ@]. domain size at the crossover to the QSG phase is limited by
The SG ground state is unstable to an infinitesimal randorfirm o (T'— Tsa) ™", wherew is the critical exponent of the
field, creating domains of typical Siz(e,/h)l/(g/%e), with correlation length. When the crossover field is small enough
6 ~ 0.2 the stiffness exponent in three dimensidns [21]. Thefor &pv to be reached, further increase in temperature leads
energy reduction per spin resulting from the random field i@ @ smaller critical fielch.. However, the magnitude of the
thus of orderf(h) = h(J/h)(=3/2/(/2-0) One can show susceptibility peak saturates; see also Fig. 2 of Ref. [12].

that the total energy reduction per spin is of the same order, To quantify the above observations and analyze the depen-
because the energy cost to flip domains is much smaller. Théence of:. on the effective random field, let us denote the

SG

0.05 |

critical field . (z) can be computed frorfi(h = he) = fog— lowest free energies of the FM phase below the critical FM

frum = a(z — z.) to obtain temperaturdy; and a competing QSG phase, in which SG
correlations exist within domains of sizg as Fry (2, T)

he(z) = o/ (J)(z — $c)3g2:99 , (2) and Fgsc(z,T), respectively. Because the entropy of the

o a) QSG phase is dominated by the regions at the boundaries be-
whereo/(J) = o 5@ Js-0, see Figlll. Foh > h.(z) tween domains [16], the main effect of the random fields is




3

to lower the energy of the QSG phase. Thhggc(z,T) — and L < 8 with smallh # 0. Because the ground states
Feum(z,T) = —A(T — Ten) + B(w — 2.) — h/fé/sze- Here Of this model tend to be unique, we use the Binder ratio to
we used the fact that far = 0 Fosa (2, Te) = Fen (e, Tb). identify the phase boundary. The Binder ratio is defined by
We thus obtain g=1/2)3—[m*]_/ [mﬂi)’ wherem = (1/N) >, S;
1 (N = 4zL3 the number of spins) is the magnetization of
Te(h) = T.(0) = 1 [B(x —z)—h/€?| . (3) the system and -] represents an average over the disor-

der. The Binder ratio is a dimensionless function and scales
Equation [(B) assumes that the FM phase is disordered by g g ~ G[L!/” (x — x.)], allowing for the extraction of:.
QSG phase, in which domains of sigeexist. Thus, it gives andw for a fixed value of. Simulation parameters are listed
an upper bound for the value @f.(h). In fact, as we ex- in the supplementary material section, Tdble I.
pectT,(h) to be a monotonous function, we expect the above At finite temperatures we use the parallel tempering Monte

expression forT..(h) to be valid ath > h*, whereh* =  Carlo method[33]. Simulation parameters are listed in @abl
B(z—1.)¢%? is defined by the conditiofi, (h) = 7..(0). Our  [I] [ITand [VJin the supplementary material section. To dete
theoretical interpretation of the experimental data in. mine the finite-temperature transitions for a given valué of

is in good agreement with our numerical results presented beindz we measure the two-point correlation lendth [34]
low for the LiHo,Y;_,F4 system at different dilutions and
magnetic fields. Both our theoretical and numerical results
consistent withl. (k) being linear in a regime wheve < J, 1 [(m2(0))..] .
with deviation from linearity aé — 0. Note that in Ref.l_L_1|2] &L= 250 (Fmin/2) \| [(M2(Kumin)) ]
T.(h) is linear down to the lowest random fields studied if one ”
defines the critical temperature by the asymptotic behafior where

the susceptibility at high temperatures. Howevefl ifh) is N

defined by the peak position of the susceptibility, deviaio 1 kR

_11 (5)

from linearity are observed at low field_s__[23].
Numerical details.— Previous work showed that
LiHo,Y; «F4 at low temperatures and in the presence of arHere (- - -).. represents a thermal average, dgdis the spa-
external transverse magnetic field is described by an eféect tial location of the spinS;. kuin = (27/L,0,0) represents
Hamiltonian consisting of three terms @ 24]: a long rangethe smallest nonzero wave vector. Near the transijgft. is
term [dipolar, first term in Eq.[{4)], an antiferromagnetic dimensionless and expected to scal€asl ~ X [LY/*(T —
short range term [second term in Egl (4)], and a longitudinall.)]. Because at the transition temperatdres 7., the argu-
random field term [third term in Eq](4)]. We thus study ment of the scaling function is zero (up to scaling correwjo
and hence independent bf we expect lines of different sys-
H:Z ﬁeiejgigj + &Z €€;S:S; + Z hie;S; . (4)  temsizes to cross at this point [Fig. 2(a)]. If however thed
2 2 2 (.3) i do not meet, we know that no transition occurs in the stud-
ied temperature range [Figl 2(c)]. To determine the clitica
Heree; = {0, 1} is the occupation of the magnem?’“: ions  temperaturd’.(h) we perform a finite-size scaling analysis of
on a tetragonal lattice (lattice constants= b = 5.175A and  the data [see Fi§]2(b)]. Using a Levenberg-Marquardt mini-
¢ = 10.75A) with four ions per unit celll[25, 26]S; € {+1}  mization combined with a bootstrap analysis as described in
are Ising spinsh; represents the random fields drawn from aRef. [35] allows us to determine the optimal values of the cri
Gaussian distribution with zero mean and standard dewiatiojcal parameters with a statistical error bar, see Table V.
h, whereh is the strength of the applied field {tk]. The Figure [1 shows theh—-z phase diagram of the
magnetostatic dipolar coupling; between twdio®** ionsis  LiHo,Y;_«F4 system at zero temperature. We find
given by: J;; = D(rZ, — 322)/r};, wherer;; = |r; —r;|,r;  very good agreement with Ed.(2), usifig~ 0.2 [21], i.e
is the position of thé-th Ho*" ion andz;; = (r; — ;) - 2is  he(z) ~ (x — 2.)%*%, anda’ as a fitting parameter. Figure 3
the component parallel to the easy-axis. The dipolar cahsta shows finite-temperature data for different Ho-conceiutnat
is D/a® = 0.214K [ﬂ] and the antiferromagnetic nearest- . Pane[8(a) shows the critical temperatiifeas a function
neighbor exchange is set th, = 0.12K [@, ]. We use of the random fieldh for z = 0.32, i.e.,z — z. = 0.02
periodic boundary conditions. The long-range interactimre =~ small. Our results at finitd” corroborate our theoretical
taken into account via Ewald su[ 29]. At zero field andmodel where the FM phase disordershat~ 0.045(5), a
no dilution we find7,. = 1.5316(2)K, in excellent agreement value slightly larger than found with tHE = 0 simulations.
with experimental results whefe. = 1.530(5)K [@]. We also find thafl.(h) at low fields is well described by a
For the zero-temperature simulations [FId. 1] we useinear behavior with possible deviations from linearitywaty
(heuristic) jaded extremal optimizatioE[ 31,132).  For eachsmall fields, as suggested by our analytical considerations
run, we use exponents= 1.6, 1.8 and2 with an aging pa- above. Both the disordering of the FM phase at small fields
rameterl” = 0.05 for at least2?¢ steps. Empirically, ground and the linearity off.(h) seem to persists up to = 0.44
states are found with high confidence for< 10 andh = 0, [Fig.[B(b)], the dilution used in the experiments of Silehiet
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FIG. 2: (Color online) Finite-temperature data for the Bnsize correlation lengtf, /L as a function of temperatufE andz = 0.32. (a)
Data forh = 0. There is a clear crossing f@t. = 0.340(3) [28] for different system sizek. (b) Scaling analysis of the data far= 0. The
solid line corresponds to the optimal scaling function ypoimial approximation). (c) Data fér = 0.06. There is no sign of a transition.
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FIG. 3: (Color online) Critical temperatutg. [2€] as a function of the random field strengtHor different dilutionsz. (a)z = 0.32. The
critical temperature is linear ih. Moreover, abové: = 0.045(5) there is no sign of a phase transition. (b) Similar behavsdioaz = 0.32
is found forz = 0.44 (dilution used in the experiments of Ref. [12]). (€)= 0.65. At large dilutionsT. (k) is quadratic in.

al. [@]. Forx = 0.65, i.e., far from the SG phase, [Fid. 3(c)] actions and the induced effective random field that dictae t
the behavior off.(h) changes drastically to a clear quadratic behavior of thd.iHo, Y;_<F, ferromagnet at low concentra-
dependence, suggesting a standard FM-PM transition at thigons. It would be interesting to study the generality of the
concentration. Estimates of the critical parameters atedi  above arguments with other anisotropic dipolar systems.
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Supplementary Material: Andresen et al.

TABLE I: Simulation parameters foF = 0: System of sizd. = 6,
8, and 10, field h and dilutionz are studied. zmin [Zmax] is the
smallest [largest] concentration studied ahd is the step size be-
tween measurementdls, is the number of disorder realizations.

h ZTmin Tmax Az Nsa
0.000 0.280 0.350 0.010 5000
0.025 0.275 0.400 0.025 3000
0.050 0.300 0.400 0.025 3000
0.075 0.300 0.600 0.050 1500
0.100 0.400 0.800 0.100 1500

TABLE II: Simulation parameters at finite temperature and=
0.32 for different fieldsh and system sized.. The equilibra-
tion/measurement times a8 Monte Carlo sweepsTimin [Tmax]
is the lowest [highest] temperature used a¥id is the number of
temperaturesiNs, is the number of disorder realizations.

T h L b Tmin Tmin Nt Nga
0.32 0.000 6 15 0.100 0.500 25 2000
.32 0.000 8 17 0.100 0.500 25 2000
0.32 0.000 10 18 0.168 0.500 20 1000
0.32 0.000 12 18 0.240 0.500 15 1000
0.32 0.000 14 16 0.275 0.500 10 750
0.32 0.000 16 16 0.275 0.500 10 385
.32 0.005 6 12 0.280 0.550 20 2000
0.32 0.005 8 13 0.280 0.550 20 3500
0.32 0.005 10 15 0.280 0.550 20 2000
.32 0.005 12 17 0.280 0.550 20 1200
0.32 0.005 14 16 0.312 0.550 17 1200
0.32 0.010 6 15 0.050 0.500 30 1500
0.32 0.010 8 17 0.050 0.500 30 1100
0.32 0.010 10 18 0.230 0.500 15 1000
.32 0.010 12 19 0.245 0.500 15 850
0.010 14 17 0.265 0.500 15 750

0.32 0.020 6 15 0.050 0.500 30 1500
0.32 0.020 8 18 0.050 0.500 30 1000
0.32 0.020 10 16 0.245 0.500 15 1000
0.020 12 19 0.245 0.500 15 600

0.32 0.020 14 17 0.274 0.500 13 7500
0.32 0.030 6 14 0.226 0.450 14 3000
0.32 0.030 8 17 0.212 0.450 15 2000
0.32 0.030 10 17 0.226 0.450 14 2000
0.32 0.030 12 19 0.226 0.450 14 600
0.32 0.035 6 13 0.218 0.450 20 3000
0.32 0.035 8 14 0.218 0.450 20 2000
0.32 0.035 10 15 0.218 0.450 20 2000
0.32 0.035 12 18 0.218 0.450 20 650
0.32 0.040 6 14 0.218 0.450 20 3000
0.32 0.040 8 16 0.218 0.450 20 2800
0.32 0.040 10 17 0.218 0.450 20 2000
0.32 0.040 12 17 0.218 0.450 14 1000
0.050 6 13 0.100 0.650 35 4500

0.32 0.050 8 16 0.100 0.650 35 3000
0.32 0.050 10 18 0.100 0.650 35 1000
0.32 0.060 6 15 0.100 0.650 35 4000
0.32 0.060 8 16 0.150 0.500 20 1000
0.32 0.060 10 18 0.150 0.500 20 1000
0.32 0.060 12 17 0.150 0.500 20 1000




TABLE Ill: Simulation parameters at finite temperature and=

0.44. For details see Tabg Il.

TABLE V: Critical parameters estimated using a finite-sizal®g
technique: For each concentratioand field strengtth we compute

z D T b Tooin Tooin Nt N the critical temperatur&. and critical exponent.

0.44 0.000 6 10 0.500 1.000 30 1000 z h T. v

0.44 0.000 8 12 0.500 1.000 30 1300 0.32 0.000 0.340(3) 0.83(3)
0.44 0.000 10 13 0.500 1.000 30 2500 0.32 0.005 0.335(3) 0.89(3)
0.44 0.000 12 14 0.500 1.000 30 550 0.32 0.010 0.340(3) 0.81(3)
0.44 0.000 14 14 0.560 1.000 47 650 0.32 0.020 0.314(5) 1.04(7)
0.44 0.020 6 10 0.525 0.800 30 2000 0.32 0.030 0.281(13) 1.23(17)
0.44 0.020 8 12 0.525 0.800 30 2000 0.32 0.035 0.269(14) 1.31(19)
0.44 0.020 10 13 0.525 0.800 30 1000 0.32 0.040 0.247(14) 1.41(15)
0.44 0.020 12 14 0.525 0.800 30 1000 0.44 0.000 0.584(1) 0.75(1)
0.44 0.020 14 14 0.550 0.800 30 900 0.44 0.020 0.581(1) 0.70(1)
0.44 0.040 6 11 0.525 0.750 22 2000 0.44 0.040 0.563(3) 0.77(2)
0.44 0.040 8 12 0.525 0.750 22 2000 0.44 0.060 0.548(5) 0.86(3)
0.44 0.040 10 14 0.540 0.750 20 1000 0.44 0.080 0.522(5) 0.99(4)
0.44 0.040 12 15 0.550 0.750 20 1000 0.44 0.100 0.506(5) 1.01(4)
0.44 0.060 6 11 0.500 0.750 25 2000 0.44 0.120 0.466(9) 1.39(12)
0.44 0.060 8 13 0.500 0.750 25 2000 0.65 0.000 0.9597(8) 0.79(2)
0.44 0.060 10 13 0.519 0.730 19 2000 0.65 0.050 0.9531(10) 0.76(2)
0.44 0.060 12 14 0.519 0.730 19 1300 0.65 0.010 0.9264(14) 0.84(3)
0.44 0.080 6 12 0.475 0.725 20 2000 0.65 0.015 0.8832(21) 0.91(4)
0.44 0.080 8 13 0.475 0.725 20 2000 0.65 0.020 0.8312(41) 1.06(10)
0.44 0.080 10 13 0.500 0.725 20 1200 0.65 0.030 0.6905(113) 1.11(12)
0.44 0.080 12 14 0.509 0.725 19 1300

0.44 0.100 6 13 0.445 0.725 23 2000

0.44 0.100 8 14 0.445 0.725 23 2300

0.44 0.100 10 13 0.445 0.725 23 2200

0.44 0.100 12 15 0.475 0.725 20 880

0.44 0.120 6 11 0.445 0.725 23 2500

0.44 0.120 8 12 0.445 0.725 23 2200

0.44 0.120 10 13 0.445 0.725 25 1000

0.44 0.120 12 14 0.445 0.725 25 1000

TABLE IV: Simulation parameters at finite temperature and=

0.65. For details see Tab[g Il.

T h L b Tmin Tmin Nt Nsa
0.65 0.000 6 10 0.500 1.400 20 1000
0.65 0.000 8 12 0.500 1.400 20 500
0.65 0.000 10 12 0.500 1.400 20 450
0.65 0.000 12 11 0.500 1.400 20 500
0.65 0.000 14 10 0.850 1.400 15 490
0.65 0.000 16 11 0.850 1.400 15 470
0.65 0.050 6 8 0.697 1.400 15 1000
0.65 0.050 8 10 0.697 1.400 15 500
0.65 0.050 10 9 0.800 1.400 20 500
0.65 0.050 12 11 0.697 1.400 15 300
0.65 0.050 14 10 0.900 1.400 15 500
0.65 0.050 16 11 0.920 1.400 16 280
0.65 0.010 6 8 0.820 1.400 20 750
0.65 0.010 8 9 0.820 1.400 20 500
0.65 0.010 10 10 0.820 1.400 20 500
0.65 0.010 12 11 0.820 1.400 20 800
0.65 0.010 14 12 0.820 1.400 20 380
0.65 0.015 6 8 0.820 1.400 20 1000
0.65 0.015 8 10 0.820 1.400 20 500
0.65 0.015 10 11 0.820 1.400 20 500
0.65 0.015 12 12 0.820 1.400 20 500
0.65 0.015 14 13 0.820 1.400 20 500
0.65 0.020 6 10 0.661 1.400 15 500
0.65 0.020 8 11 0.661 1.400 15 400
0.65 0.020 10 14 0.756 1.400 13 1300
0.65 0.020 12 15 0.756 1.400 13 1000
0.65 0.020 14 16 0.756 1.400 13 990
0.65 0.030 6 10 0.600 1.400 20 750
0.65 0.030 8 15 0.600 1.400 20 1000
0.65 0.030 10 17 0.600 1.400 20 550
0.65 0.030 12 19 0.600 1.400 20 530




