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Novel disordering mechanism in ferromagnetic systems with competing interactions
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We study the interplay between ferromagnetic and spin-glass phases in magnetic systems such as
LiHoxY1−xF4 theoretically, as well as using numerical simulations of a three-dimensional diluted long-range
dipolar Ising model with competing interactions in the presence of a random field. Our results suggest the ex-
istence of a novel disordering mechanism of the ferromagnetic phase due to the underlying spin-glass phase
when a random field is applied. We numerically compute the zero-temperature phase boundary between the
quasi-spin-glass and ferromagnetic phases as a function ofthe Ho concentration and random-field strength, and
explain the peculiar linear dependence of the critical temperature on the strength of the random field found in
recent experiments by Silevitchet al. [Nature448, 567 (2007)] on theLiHoxY1−xF4 compound.

PACS numbers: 75.50.Lk, 75.40.Mg, 05.50.+q, 64.60.-i

Introduction.— The random-field Ising model (RFIM)
plays a central role in the study of disordered systems and has
been applied to problems across disciplines ranging from dis-
ordered magnets to random pinning of polymers in two space
dimensions, as well as water seepage in porous media.

At and below the lower critical dimensiondℓ = 2, the fer-
romagnetic (FM) phase is unstable to an infinitesimal random
field [1, 2]. At higher space dimensions the disordering of
the ferromagnetic phase requires the random field strength to
be of the order of the strength of the interaction between the
spins. Yet, the effect of the random field on the phase tran-
sition between the FM and paramagnetic (PM) phases—for
systems with both short range and dipolar interactions—has
been source of vast experimental and theoretical scrutiny over
the last two decades; see Refs. [3–5] and references therein.
Over the last three decades the RFIM has been studied exper-
imentally via dilute antiferromagnets in a field [6], as boththe
random-field Ising model and the diluted antiferromagnetic
Ising model in a field share the same universality class near
criticality. More recently it has been shown that in anisotropic
dipolar magnets the RFIM can be realized in the FM phase:
By applying a transverse field to a dilute dipolar ferromag-
net, such asLiHoxY1−xF4, one transforms the spatial disor-
der to aneffectiverandom field in the longitudinal direction
[7–9]. This new possibility to study the RFIM in the FM
phase opened the doors for advancing our understanding of
the random field problem [10], as well as potential new ap-
plications, such as the advent of tunable domain-wall pinning
[11] in magnetic materials.

Indeed, Silevitchet al. recently studied the FM-to-PM
phase transition in the presence of random fields in the
LiHoxY1−xF4 compound [12]. In particular, they found a
peculiar behavior of the susceptibility as a function of theap-
plied transverse field: A singularity in the field dependenceof
the critical temperature at zero field, as well as alinear de-
pendence of the transition temperature on the effective ran-
dom field strength (which is linear in the applied field for
small fields [7, 9]). Similarly, in the molecular nanomagnet

Mn12−ac a strong suppression of the transition temperature
as a function of the magnetic field was found [13]. However,
in Mn12−ac it is unclear if for small fields the behavior is lin-
ear as well and singular as a function of the transverse field.

Both theLiHoxY1−xF4 andMn12−ac systems, with small
applied transverse magnetic fields, are well modeled by the
RFIM. However, an important difference between the two sys-
tems is that the random field in the former is a result of spatial
dilution, dictating a broad distribution of the interaction terms
in both magnitude and sign, whereas in the latter the random
field is a consequence of small random tilts in the spin direc-
tion. Therefore, it is unclear which “physical ingredients” are
required such that the transition temperature depends linearly
on the random field strength, and, in particular, which under-
lying mechanism dictates this behavior.

Here we study the interplay between FM and spin-glass
(SG) phases in a dipolar Ising model with competing inter-
actions in the presence of a random field. We find a novel
disordering mechanism of the FM phase when a random field
is applied and the system is in close proximity (e.g., via dilu-
tion) to an underlying SG phase. This disordering mechanism
lies somewhat between the Imry-Ma and standard disorder-
ing mechanisms: The disordering of the FM phase occurs at
a finite field, which is considerably smaller than the typical
spin-spin interaction strength. At zero temperature we predict
the existence of a FM–to–quasi-SG phase transition and nu-
merically determine forLiHoxY1−xF4 the phase boundary as
a function of the Ho concentrationx and random field strength
h. At finite temperature our theory is compatible with exper-
iments at various Ho concentrations [12], suggesting that it is
indeed the existence of competing interactions and the prox-
imity to the SG phase that dictate the peculiar dependence of
the critical temperatureTc on the random field strengthh.

Theoretical analysis.— We first study the dilute
LiHoxY1−xF4 system at zero temperature. For dilu-
tionsx > xc the system is FM, whereas forx0 < x < xc the
system is a spin glass (SG). Below we show numerically that
xc ≈ 0.3. To date, it is unclear ifx0 > 0 [14, 15]. Forx ≈ xc
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we define the energy per spin of the lowest ferromagnetic
state of the system asfFM(x); the lowest energy of the spin-
glass state asfSG(x). Note thatfFM(x) is the ground-state
energy of the FM phase whenx > xc andfSG(x) represents
the ground-state energy of the SG phase forx0 < x < xc. At
x = xc fFM(xc) = fSG(xc), and forx ≈ xc, to first order
in x − xc, fSG(x) − fFM(x) = α(x − xc) + . . .. Consider
the FM phase forx > xc and apply a random field of average
strengthh. For small random-field strength, the FM state in
three dimensions cannot gain energy from the field, because
domain flips are not energetically favorable. However,
for spin glasses the lower critical (Imry-Ma) dimension is
infinity [16] (no order in a field). In particular, in three
space dimensions the energy of the system can be lowered by
flipping domains, creating a quasi-spin-glass (QSG) phase
with a finite correlation length. Thus, forx close enough toxc

the energy of the SG state will be lower than the energy of the
FM state at a finite random field, which is still considerably
smaller than the typical interaction strength between the
spins. More generally, any three-dimensional Ising system
with competing interactions having at zero random field a FM
ground state and a SG state in a somewhat higher energy, will
have a phase transition to the QSG phase as a function of the
random field strength. The disordering of the ferromagnetic
phase therefore occurs at a finite field whose magnitude de-
pends on the proximity to the SG phase and, in particular, can
be much smaller than the characteristic spin-spin interaction
strength. Because in systems likeLiHoxY1−xF4 the effective
random fields are a result of quantum fluctuations [7, 17],
this phase transition is a particular case of a quantum phase
transition where the quantum fluctuations of the individual
spins are small involving only the spin’s ground and first
excited states [18], but where thecollective effectof all spins
is strong enough to drive the transition.

The value of the critical random field can be estimated us-
ing the following Hamiltonian that describes a short-range
Edwards-Anderson Ising spin glass [19] in a random field:

HEA = −
∑

〈ij〉

JijSiSj +
∑

i

hiSi. (1)

In Eq. (1) Jij are nearest-neighbor Gaussian random bonds
between the spinsSi with zero mean and standard deviationJ ,
andhi are Gaussian random fields of average strengthh [20].
The SG ground state is unstable to an infinitesimal random
field, creating domains of typical size(J/h)1/(3/2−θ), with
θ ≈ 0.2 the stiffness exponent in three dimensions [21]. The
energy reduction per spin resulting from the random field is
thus of orderf(h) = h(J/h)(−3/2)/(3/2−θ). One can show
that the total energy reduction per spin is of the same order,
because the energy cost to flip domains is much smaller. The
critical fieldhc(x) can be computed fromf(h = hc) = fSG−
fFM = α(x − xc) to obtain

hc(x) = α′(J)(x − xc)
3/2−θ
3−θ , (2)

whereα′(J) = α
3/2−θ
3−θ J

3/2
3−θ , see Fig. 1. Forh > hc(x)
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FIG. 1: (Color online) Comparison of the zero-temperature numer-
ical and analytical [Eq. (2)] phase diagrams for the diluteddipolar
Ising model [Eq. (4)] in theh-x plane. Usingθ ≈ 0.2 [21] we obtain
hc(x) ∼ (x − xc)

0.464. The analytical prediction, Eq. (2), agrees
very well with the numerical data withα′ the only fitting parameter.

the system consists of finite-size domains within which short-
range glassy order persists. The size of these domains de-
creases with increasing field, where ath ≈ J the system re-
sembles a simple paramagnet. Asx → xc the disordering
field approaches zero. For largex − xc andh ≈ J there is a
crossover to the standard behavior where the disordering isa
result of single-spin energy minimization, i.e., the intermedi-
ate QSG regime disappears.

When bothT andx − xc are small but finite and the ran-
dom field strength increases, the system changes first from the
FM phase to the QSG phase, where the system is still dynam-
ically frozen. Increasing the random field further, the QSG
domain size decreases. The crossover to a disordered para-
magnet is indicated by a peak in the magnetic susceptibility,
which is broad and of finite magnitude, its width dictated by
the typical domain size upon melting [7]. This scenario has
been observed experimentally; see Fig. 2 of Ref. [12]. As the
temperature is increased, the crossover to the PM regime oc-
curs at smaller random fields, dictating larger typical domains
and a higher peak for the magnetic susceptibility [7, 22].

Let us denote byTSG the ordering temperature at zero ran-
dom field of the underlying SG phase. ForT > TSG the
domain size at the crossover to the QSG phase is limited by
ξFM ∝ (T − TSG)

−ν , whereν is the critical exponent of the
correlation length. When the crossover field is small enough
for ξFM to be reached, further increase in temperature leads
to a smaller critical fieldhc. However, the magnitude of the
susceptibility peak saturates; see also Fig. 2 of Ref. [12].

To quantify the above observations and analyze the depen-
dence ofTc on the effective random field, let us denote the
lowest free energies of the FM phase below the critical FM
temperatureTFM and a competing QSG phase, in which SG
correlations exist within domains of sizeξ, as FFM(x, T )
andFQSG(x, T ), respectively. Because the entropy of the
QSG phase is dominated by the regions at the boundaries be-
tween domains [16], the main effect of the random fields is
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to lower the energy of the QSG phase. Thus,FQSG(x, T ) −

FFM(x, T ) = −A(T − TFM) + B(x − xc) − h/ξ
3/2
QSG. Here

we used the fact that forh = 0 FQSG(xc, Tc) = FFM(xc, Tc).
We thus obtain

Tc(h)− Tc(0) =
1

A

[

B(x− xc)− h/ξ3/2
]

, (3)

Equation (3) assumes that the FM phase is disordered by a
QSG phase, in which domains of sizeξ exist. Thus, it gives
an upper bound for the value ofTc(h). In fact, as we ex-
pectTc(h) to be a monotonous function, we expect the above
expression forTc(h) to be valid ath > h∗, whereh∗ =
B(x−xc)ξ

3/2 is defined by the conditionTc(h) = Tc(0). Our
theoretical interpretation of the experimental data in Ref. [12]
is in good agreement with our numerical results presented be-
low for theLiHoxY1−xF4 system at different dilutions and
magnetic fields. Both our theoretical and numerical resultsare
consistent withTc(h) being linear in a regime whereh ≪ J ,
with deviation from linearity ash → 0. Note that in Ref. [12]
Tc(h) is linear down to the lowest random fields studied if one
defines the critical temperature by the asymptotic behaviorof
the susceptibility at high temperatures. However, ifTc(h) is
defined by the peak position of the susceptibility, deviations
from linearity are observed at low fields [23].

Numerical details.— Previous work showed that
LiHoxY1−xF4 at low temperatures and in the presence of an
external transverse magnetic field is described by an effective
Hamiltonian consisting of three terms [9, 24]: a long range
term [dipolar, first term in Eq. (4)], an antiferromagnetic
short range term [second term in Eq. (4)], and a longitudinal
random field term [third term in Eq. (4)]. We thus study

H=
∑

i6=j

Jij
2
ǫiǫjSiSj +

Jex
2

∑

〈i,j〉

ǫiǫjSiSj +
∑

i

hiǫiSi . (4)

Hereǫi = {0, 1} is the occupation of the magneticHo3+ ions
on a tetragonal lattice (lattice constantsa = b = 5.175Å and
c = 10.75Å) with four ions per unit cell [25, 26].Si ∈ {±1}
are Ising spins,hi represents the random fields drawn from a
Gaussian distribution with zero mean and standard deviation
h, whereh is the strength of the applied field in[K]. The
magnetostatic dipolar couplingJij between twoHo3+ ions is
given by:Jij = D(r2ij − 3z2ij)/r

5
ij , whererij = |ri − rj |, ri

is the position of thei-th Ho3+ ion andzij = (ri − rj) · ẑ is
the component parallel to the easy-axis. The dipolar constant
is D/a3 = 0.214K [27] and the antiferromagnetic nearest-
neighbor exchange is set toJex = 0.12K [25, 28]. We use
periodic boundary conditions. The long-range interactions are
taken into account via Ewald sums [26, 29]. At zero field and
no dilution we findTc = 1.5316(2)K, in excellent agreement
with experimental results whereTc = 1.530(5)K [30].

For the zero-temperature simulations [Fig. 1] we use
(heuristic) jaded extremal optimization [31, 32]. For each
run, we use exponentsτ = 1.6, 1.8 and2 with an aging pa-
rameterΓ = 0.05 for at least226 steps. Empirically, ground
states are found with high confidence forL ≤ 10 andh = 0,

andL ≤ 8 with small h 6= 0. Because the ground states
of this model tend to be unique, we use the Binder ratio to
identify the phase boundary. The Binder ratio is defined by
g = (1/2)(3 −

[

m4
]

av
/
[

m2
]2

av
), wherem = (1/N)

∑

i Si

(N = 4xL3 the number of spins) is the magnetization of
the system and[· · ·]

av
represents an average over the disor-

der. The Binder ratio is a dimensionless function and scales
asg ∼ G̃[L1/ν (x− xc)], allowing for the extraction ofxc

andν for a fixed value ofh. Simulation parameters are listed
in the supplementary material section, Table I.

At finite temperatures we use the parallel tempering Monte
Carlo method [33]. Simulation parameters are listed in Tables
II, III and IV in the supplementary material section. To deter-
mine the finite-temperature transitions for a given value ofh
andx we measure the two-point correlation length [34]

ξL =
1

2 sin(kmin/2)

√

[〈m2(0)〉
T
]
av

[〈m2(kmin)〉T]av
− 1 , (5)

where

m(k) =
1

N

N
∑

i=1

Sie
ik·Ri . (6)

Here〈· · ·〉
T

represents a thermal average, andRi is the spa-
tial location of the spinSi. kmin = (2π/L, 0, 0) represents
the smallest nonzero wave vector. Near the transitionξL/L is
dimensionless and expected to scale asξL/L ∼ X̃ [L1/ν(T −
Tc)]. Because at the transition temperature,T = Tc, the argu-
ment of the scaling function is zero (up to scaling corrections)
and hence independent ofL, we expect lines of different sys-
tem sizes to cross at this point [Fig. 2(a)]. If however the lines
do not meet, we know that no transition occurs in the stud-
ied temperature range [Fig. 2(c)]. To determine the critical
temperatureTc(h) we perform a finite-size scaling analysis of
the data [see Fig. 2(b)]. Using a Levenberg-Marquardt mini-
mization combined with a bootstrap analysis as described in
Ref. [35] allows us to determine the optimal values of the crit-
ical parameters with a statistical error bar, see Table V.

Figure 1 shows theh–x phase diagram of the
LiHoxY1−xF4 system at zero temperature. We find
very good agreement with Eq. (2), usingθ ≈ 0.2 [21], i.e
hc(x) ∼ (x− xc)

0.464, andα′ as a fitting parameter. Figure 3
shows finite-temperature data for different Ho-concentrations
x. Panel 3(a) shows the critical temperatureTc as a function
of the random fieldh for x = 0.32, i.e., x − xc = 0.02
small. Our results at finiteT corroborate our theoretical
model where the FM phase disorders ath ≈ 0.045(5), a
value slightly larger than found with theT = 0 simulations.
We also find thatTc(h) at low fields is well described by a
linear behavior with possible deviations from linearity atvery
small fields, as suggested by our analytical considerations
above. Both the disordering of the FM phase at small fields
and the linearity ofTc(h) seem to persists up tox = 0.44
[Fig. 3(b)], the dilution used in the experiments of Silevitchet
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FIG. 2: (Color online) Finite-temperature data for the finite-size correlation lengthξL/L as a function of temperatureT andx = 0.32. (a)
Data forh = 0. There is a clear crossing forTc = 0.340(3) [28] for different system sizesL. (b) Scaling analysis of the data forh = 0. The
solid line corresponds to the optimal scaling function (polynomial approximation). (c) Data forh = 0.06. There is no sign of a transition.
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FIG. 3: (Color online) Critical temperatureTc [28] as a function of the random field strengthh for different dilutionsx. (a)x = 0.32. The
critical temperature is linear inh. Moreover, aboveh ≈ 0.045(5) there is no sign of a phase transition. (b) Similar behavior as forx = 0.32
is found forx = 0.44 (dilution used in the experiments of Ref. [12]). (c)x = 0.65. At large dilutionsTc(h) is quadratic inh.

al. [12]. Forx = 0.65, i.e., far from the SG phase, [Fig. 3(c)]
the behavior ofTc(h) changes drastically to a clear quadratic
dependence, suggesting a standard FM-PM transition at this
concentration. Estimates of the critical parameters are listed
in the supplementary material, Table V.

Note that our zero and finite-temperature analyses for zero
random field suggest a temperature-independent critical con-
centration separating the FM and SG phases, i.e., the phase
diagram for theLiHoxY1−xF4 system as a function of con-
centration and temperature does not contain a reentrant SG
phase at zero field, in contrast to previous suggestions in the
literature [36]. At the same time, our results at finite random
fields at zero and finite temperatures forx = 0.44 and0.65
suggest that there is a range of random fields where the sys-
tem shows reentrance to a SG phase at low temperatures, a
common effect found in glassy spin systems [37].

Conclusions.— We propose a novel disordering mecha-
nism for three-dimensional ferromagnets with competing in-
teractions and an underlying spin-glass phase. Furthermore,
we explain various aspects of the experimental results of Sile-
vitch et al. [12], including the peculiar linear dependence of
the critical temperature on the applied transverse field. We
further find that at smaller concentrations (x = 0.32, close
to the spin-glass phase) the reduction ofTc with the random
field becomes more pronounced. Our results strongly support
the notion that it is the interplay between the competing inter-

actions and the induced effective random field that dictate the
behavior of theLiHoxY1−xF4 ferromagnet at low concentra-
tions. It would be interesting to study the generality of the
above arguments with other anisotropic dipolar systems.
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smallest [largest] concentration studied and∆x is the step size be-
tween measurements.Nsa is the number of disorder realizations.
h xmin xmax ∆x Nsa

0.000 0.280 0.350 0.010 5000
0.025 0.275 0.400 0.025 3000
0.050 0.300 0.400 0.025 3000
0.075 0.300 0.600 0.050 1500
0.100 0.400 0.800 0.100 1500

TABLE II: Simulation parameters at finite temperature andx =
0.32 for different fieldsh and system sizesL. The equilibra-
tion/measurement times are2b Monte Carlo sweeps.Tmin [Tmax]
is the lowest [highest] temperature used andNT is the number of
temperatures.Nsa is the number of disorder realizations.

x h L b Tmin Tmin NT Nsa

0.32 0.000 6 15 0.100 0.500 25 2000
0.32 0.000 8 17 0.100 0.500 25 2000
0.32 0.000 10 18 0.168 0.500 20 1000
0.32 0.000 12 18 0.240 0.500 15 1000
0.32 0.000 14 16 0.275 0.500 10 750
0.32 0.000 16 16 0.275 0.500 10 385
0.32 0.005 6 12 0.280 0.550 20 2000
0.32 0.005 8 13 0.280 0.550 20 3500
0.32 0.005 10 15 0.280 0.550 20 2000
0.32 0.005 12 17 0.280 0.550 20 1200
0.32 0.005 14 16 0.312 0.550 17 1200
0.32 0.010 6 15 0.050 0.500 30 1500
0.32 0.010 8 17 0.050 0.500 30 1100
0.32 0.010 10 18 0.230 0.500 15 1000
0.32 0.010 12 19 0.245 0.500 15 850
0.32 0.010 14 17 0.265 0.500 15 750
0.32 0.020 6 15 0.050 0.500 30 1500
0.32 0.020 8 18 0.050 0.500 30 1000
0.32 0.020 10 16 0.245 0.500 15 1000
0.32 0.020 12 19 0.245 0.500 15 600
0.32 0.020 14 17 0.274 0.500 13 7500
0.32 0.030 6 14 0.226 0.450 14 3000
0.32 0.030 8 17 0.212 0.450 15 2000
0.32 0.030 10 17 0.226 0.450 14 2000
0.32 0.030 12 19 0.226 0.450 14 600
0.32 0.035 6 13 0.218 0.450 20 3000
0.32 0.035 8 14 0.218 0.450 20 2000
0.32 0.035 10 15 0.218 0.450 20 2000
0.32 0.035 12 18 0.218 0.450 20 650
0.32 0.040 6 14 0.218 0.450 20 3000
0.32 0.040 8 16 0.218 0.450 20 2800
0.32 0.040 10 17 0.218 0.450 20 2000
0.32 0.040 12 17 0.218 0.450 14 1000
0.32 0.050 6 13 0.100 0.650 35 4500
0.32 0.050 8 16 0.100 0.650 35 3000
0.32 0.050 10 18 0.100 0.650 35 1000
0.32 0.060 6 15 0.100 0.650 35 4000
0.32 0.060 8 16 0.150 0.500 20 1000
0.32 0.060 10 18 0.150 0.500 20 1000
0.32 0.060 12 17 0.150 0.500 20 1000
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TABLE III: Simulation parameters at finite temperature andx =
0.44. For details see Table II.
x h L b Tmin Tmin NT Nsa

0.44 0.000 6 10 0.500 1.000 30 1000
0.44 0.000 8 12 0.500 1.000 30 1300
0.44 0.000 10 13 0.500 1.000 30 2500
0.44 0.000 12 14 0.500 1.000 30 550
0.44 0.000 14 14 0.560 1.000 47 650
0.44 0.020 6 10 0.525 0.800 30 2000
0.44 0.020 8 12 0.525 0.800 30 2000
0.44 0.020 10 13 0.525 0.800 30 1000
0.44 0.020 12 14 0.525 0.800 30 1000
0.44 0.020 14 14 0.550 0.800 30 900
0.44 0.040 6 11 0.525 0.750 22 2000
0.44 0.040 8 12 0.525 0.750 22 2000
0.44 0.040 10 14 0.540 0.750 20 1000
0.44 0.040 12 15 0.550 0.750 20 1000
0.44 0.060 6 11 0.500 0.750 25 2000
0.44 0.060 8 13 0.500 0.750 25 2000
0.44 0.060 10 13 0.519 0.730 19 2000
0.44 0.060 12 14 0.519 0.730 19 1300
0.44 0.080 6 12 0.475 0.725 20 2000
0.44 0.080 8 13 0.475 0.725 20 2000
0.44 0.080 10 13 0.500 0.725 20 1200
0.44 0.080 12 14 0.509 0.725 19 1300
0.44 0.100 6 13 0.445 0.725 23 2000
0.44 0.100 8 14 0.445 0.725 23 2300
0.44 0.100 10 13 0.445 0.725 23 2200
0.44 0.100 12 15 0.475 0.725 20 880
0.44 0.120 6 11 0.445 0.725 23 2500
0.44 0.120 8 12 0.445 0.725 23 2200
0.44 0.120 10 13 0.445 0.725 25 1000
0.44 0.120 12 14 0.445 0.725 25 1000

TABLE IV: Simulation parameters at finite temperature andx =
0.65. For details see Table II.
x h L b Tmin Tmin NT Nsa

0.65 0.000 6 10 0.500 1.400 20 1000
0.65 0.000 8 12 0.500 1.400 20 500
0.65 0.000 10 12 0.500 1.400 20 450
0.65 0.000 12 11 0.500 1.400 20 500
0.65 0.000 14 10 0.850 1.400 15 490
0.65 0.000 16 11 0.850 1.400 15 470
0.65 0.050 6 8 0.697 1.400 15 1000
0.65 0.050 8 10 0.697 1.400 15 500
0.65 0.050 10 9 0.800 1.400 20 500
0.65 0.050 12 11 0.697 1.400 15 300
0.65 0.050 14 10 0.900 1.400 15 500
0.65 0.050 16 11 0.920 1.400 16 280
0.65 0.010 6 8 0.820 1.400 20 750
0.65 0.010 8 9 0.820 1.400 20 500
0.65 0.010 10 10 0.820 1.400 20 500
0.65 0.010 12 11 0.820 1.400 20 800
0.65 0.010 14 12 0.820 1.400 20 380
0.65 0.015 6 8 0.820 1.400 20 1000
0.65 0.015 8 10 0.820 1.400 20 500
0.65 0.015 10 11 0.820 1.400 20 500
0.65 0.015 12 12 0.820 1.400 20 500
0.65 0.015 14 13 0.820 1.400 20 500
0.65 0.020 6 10 0.661 1.400 15 500
0.65 0.020 8 11 0.661 1.400 15 400
0.65 0.020 10 14 0.756 1.400 13 1300
0.65 0.020 12 15 0.756 1.400 13 1000
0.65 0.020 14 16 0.756 1.400 13 990
0.65 0.030 6 10 0.600 1.400 20 750
0.65 0.030 8 15 0.600 1.400 20 1000
0.65 0.030 10 17 0.600 1.400 20 550
0.65 0.030 12 19 0.600 1.400 20 530

TABLE V: Critical parameters estimated using a finite-size scaling
technique: For each concentrationx and field strengthh we compute
the critical temperatureTc and critical exponentν.

x h Tc ν
0.32 0.000 0.340(3) 0.83(3)
0.32 0.005 0.335(3) 0.89(3)
0.32 0.010 0.340(3) 0.81(3)
0.32 0.020 0.314(5) 1.04(7)
0.32 0.030 0.281(13) 1.23(17)
0.32 0.035 0.269(14) 1.31(19)
0.32 0.040 0.247(14) 1.41(15)
0.44 0.000 0.584(1) 0.75(1)
0.44 0.020 0.581(1) 0.70(1)
0.44 0.040 0.563(3) 0.77(2)
0.44 0.060 0.548(5) 0.86(3)
0.44 0.080 0.522(5) 0.99(4)
0.44 0.100 0.506(5) 1.01(4)
0.44 0.120 0.466(9) 1.39(12)
0.65 0.000 0.9597(8) 0.79(2)
0.65 0.050 0.9531(10) 0.76(2)
0.65 0.010 0.9264(14) 0.84(3)
0.65 0.015 0.8832(21) 0.91(4)
0.65 0.020 0.8312(41) 1.06(10)
0.65 0.030 0.6905(113) 1.11(12)


