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Abstract

Quantum point contacts (QPCs) are the ultimate building blocks for controlling nanoscale

electron transport. However, various observations highlight the importance of electron many-

body effects, not well understood, in the physics of QPCs. An example is the hotly debated

0.7 anomaly in the quantized conductance trace. A novel experiment by C. H. van der Wal

group in Groningen reports a setup that allows in-situ tuning of the QPC length, reveal-

ing signatures of both single- and two-impurity Kondo physics in transport around the 0.7

anomaly, which is in agreement with theory. Both the 0.7 anomaly and the Kondo signa-

tures show a periodic modulation as a function of QPC length, which can be explained by

a varying number of spontaneously localized states. We show using spin-density-functional

theory calculations that the number of spontaneously localized states increases as the QPC

becomes longer due to the larger number of Friedel oscillations enclosed within the QPC.

These changes in the parity of the localized states that are consistent with a periodic mod-

ulation between single-peak and double-peak. This can explain the experimental results in

terms of transport through single and paired Kondo states.

Since QPCs form naturally in the saddle-points of two dimensional disordered systems, we

want to see whether such localized states form in two-dimensional disordered system, and

how they affect the coherence time. From theory, one expects a power law dependence of

the dephasing rate on temperature, which was confirmed in experiments at that temperature

range. However, when decreasing the temperature further many experiments shows an ap-

parent saturation in the coherence time. Our numerical SDFT simulation show that Friedel

oscillations can develop into self-consistent localized states in an open two-dimensional sys-

tems. These states are formed at various saddle points of the disorder potential depending



on the electron bulk density, and can explain apparent saturation of the coherence time

observed in experimental studies through spin flip scattering.

Last we studied the effect of dephasing under strong magnetic field where experimental stud-

ies showed that the transition from the last quantum Hall plateau in the integer quantum

Hall effect terminates with a unique insulating phase. This phase is characterized by the di-

vergence of the longitudinal resistivity with decreasing temperature, while the Hall resistivity

remains quantized to its value in the last plateau. This is in contradiction to the predictions

of the non-interacting electron theory. Therefore, it was suggested that this quantum Hall

Insulator phase may be related to incoherent scattering events. We show that by including

rare incoherent scattering events into Chalker-Coddington network, the quantum Hall insu-

lator becomes a stable phase. The theory also predicts a non-monotonic dependence of the

Hall resistance on system size.

(The last subject was addressed in my M.Sc. thesis using real space renormalization group.

The report here is based on a full numerical solution of the network and includes only work

that I did during my Ph.D. studies)

Keywords: Quantum Point contact, 0.7 anomaly, Zero-Bias anomaly, Coherence time, Quan-

tum Hall insulator.
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Introduction

This thesis deals with three projects that I carried out in the field of mesoscopic physics. The

first deals with quantum point contact (QPC) which is a narrowing of the transport channel

in a two-dimensional electron gas(2DEG) heterostructure and is a basic nano-electronic

device. When the transport is ballistic, the conductance is quantized to 2e2/h ∗N [1] where

e is the electron charge, h is Planck’s constant, and N is the number of transverse modes

in the QPC, where the factor of two accounts for spin degeneracy. This can be understood

within the non-interacting picture; but, even in the cleanest samples, there are deviations

from this quantization due to electron-electron interaction [2, 3]. First, there is an additional

small plateau at the linear conductance trace at about 0.7 · (2e2/h) (0.7 anomaly). Second,

the nonlinear differential conductance typically shows a peak around zero bias (Zero-Bias

Anomaly, ZBA) at conductance levels between quantized plateaus. These two signatures are

reminiscent of the Kondo effect seen in quantum dots containing an odd number of electrons

[4, 5, 6, 7, 8, 9, 10], and they are quite surprising as QPC is an open system.

In order to address this problem a spin density functional theory (SDFT) calculation of a

QPC in a multi-channel wire in a hetro-structure was carried [11], revealing the formation of

self-consistent or emergent localized states (ELSs), each having one electron charge inside the

QPC. This theoretical work has developed the picture that the many-body effects in QPC

channels are intimately related to the occurrence of Friedel oscillations – oscillations in the

electron charge density that occur when electron waves are reflected in a partially open QPC
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channel, which is enhanced into an ELS with about one electron of charge due to Coulomb

repulsion and exchange interactions between electrons. The repulsion of electrons by the ELS

(a precursor of the Coulomb blockade) can thus reduce the conductance, thereby explaining

the observation of the 0.7 anomaly. In addition, transport through such a state can carry

signatures of the Kondo effect [12]. It also predicted that, depending on parameters, a pair of

such ELSs may emerge in the channel, resulting in a split peak ZBA, similar to that observed

in double quantum dots [13], due to the double-impurity Kondo effect [14, 15, 16, 17].

In a novel experiment a configuration of 6 gates voltage (as as opposed to regular QPC with

2 gates voltage) create a QPC that allows in-situ tuning of the QPC length [18]. This length

tunable QPC reveals signatures of both single- and two-impurity Kondo physics in transport

around the 0.7 anomaly. Both the 0.7 anomaly and the Kondo signatures show a periodic

modulation as a function of QPC length, which can be explained by a varying number

of spontaneously localized states. We show using SDFT calculations that the number of

spontaneously localized states increases as the QPC becomes longer due to the larger number

of Friedel oscillations enclosed within the QPC. The increasing in number of localized states

with QPC length is consistent with the periodic modulation between single-peak and double-

peak. This can explain the experimental results in terms of transport through single and

paired Kondo states.

The second project deals with coherence time - the time over which the phase of the wave

function is maintained - is one of the fundamental properties in quantum mechanics, and

is especially important for mesoscopic systems where the coherence length is of the order

of the sample size. From basic quantum mechanical arguments, one expects that as the

temperature goes down the external degrees of freedom freeze out, so that coherence time

will be infinite at zero temperature. For temperatures less than one Kelvin, the phonon’s

contribution to dephasing becomes negligible and the main processes of dephasing are due

to electron-electron interactions. The theory [19, 20] predict a power law dependence of the
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dephasing rate on temperature, which was confirmed in experiments. However, when the

temperature is decreased further, there is apparent saturation in the coherence time [21, 22,

23, 24, 25, 26, 27, 28, 29] which is in contradiction with the electron-electron interaction

picture, and possibly with the general quantum mechanical principle described above. One

possible explanation for this saturation is magnetic impurities: At temperatures higher than

the Kondo temperature, there is a finite probability for spin flip scattering that will cause

dephasing. Follow-up experiments [28] have demonstrated that a small amount of magnetic

impurities changes the temperature dependence of the phase coherence time τφ from a power

law to saturation at low temperatures as depicted in figure 2.2. However, the conductors of

the original experiments [26] claim that they checked and found that no magnetic impurities

exist in their system. Moreover, one does not expect any magnetic impurities in semi-

conductor systems, where the saturation in coherence time has also been seen [22, 23, 24, 27].

Since QPCs form naturally at the saddle-points of a two-dimensional disordered systems, one

can ask: Can these magnetic moments be formed in a two dimensional disordered systems?

And, if so, are they responsible for the saturation of the coherence time?

To address this question we extended our numerical SDFT simulation to an open two-

dimensional system with disorder potential, and show that Friedel oscillations can develop

into self-consistent localized states. These states are formed at various saddle points of

the disorder potential depending on the electron bulk density, and can explain apparent

saturation of the coherence time observed in experimental studies through spin flip scattering.

The last subject of the thesis considers the effect of dephasing under a strong magnetic field.

We deal with this problem in the semiclassical regime using the Chalker-Coddington (CC)

[30] scattering network with the addition of current conserving reservoirs [31] in front of

each scatterer. These current conserving reservoirs act as sources of dephasing – for every

electron that enters a reservoir, there is an electron that leaves it. However, the phase of

the outgoing electron has no correlation with the phase of the incoming electron, so that
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interference effects are impeded . The probability of the electron to enter the reservoir

is controlled by adding a scatterer in front of the reservoir, which allow us to control the

dephasing rate in the system.

One use for this kind of network is to study the quantum Hall insulator phase. Experimen-

tal studies showed that the transition from the last quantum Hall plateau in the integer

quantum Hall effect terminates with a unique insulating phase. This phase is characterized

by the divergence of the longitudinal resistivity with decreasing temperature, while the Hall

resistivity remains quantized to its value in the last plateau. This phase remains a puzzle

since the first studies from more than a decade ago [32, 33, 34, 35, 36, 37, 38, 39], as it

contradicts all theoretical studies based on microscopically coherent quantum calculations

[40, 41, 42, 43]. We demonstrate that these decoherence events stabilize the elusive quantum

Hall insulator phase, which, in agreement with experiments, becomes even more stable with

ans increasing temperature and voltage bias.
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Chapter 1

Emergent Localized States in Length

Tuned Quantum Point Contacts

As mentioned earlier quantum point contact (QPC) - a narrowing of the transport channel

in two-dimensional electron gas(2DEG) heterostructure - is a basic nano-electronic device.

When the transport is ballistic, the conductance is quantized to 2e2/h ∗N [1] where e is the

electron charge, h is Planck’s constant, and N is the number of transverse modes in the QPC

where the factor of two accounts for spin degeneracy. This can be understood within the

non-interacting picture; nevertheless, even in the cleanest samples, there are deviations from

this quantization due to electron-electron interactions[2, 3]. Despite extensive experimental

and theoretical studies, full understanding of these anomalies is still an open problem.

1.1 Many Body Physics in Quantum Point Contacts

There are two signatures of many-body physics that are observed in QPC. First, there is an

additional small plateau at the linear conductance trace at about 0.7 ·(2e2/h) (0.7 anomaly).

Second, the nonlinear differential conductance typically shows a peak around zero bias (Zero-
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Bias Anomaly, ZBA) at conductance levels between quantized plateaus. Figure 1.1(a) shows

linear conductance of QPC as a function of gate voltage for several temperatures. As the

temperature increases, the shoulder around 0.7·(2e2/h) becomes more visible, but the distinct

plateau is less visible due to thermal smearing. Figure 1.1(b) shows the conductance for

several in-plane magnetic fields. In a high magnetic field, the integer multiples are of e2/h as

the spin degeneracy is broken. Looking at the nonlinear differential conductance (Fig. 1.1),

one can see the plateaus in the linear conductance as accumulation traces around zero bias.

The similarity (lower region of Figs 1.1(e) and 1.1(f)) between the zero field at rather high

temperatures and the high field B = 8T nonlinear conductance data below 2e2/h, including

the wing shape of the extra plateau that extends out from the 0.7 shoulder at zero field,

suggests that this is a result of a splitting of spin bands, namely, a Zeeman splitting when

a magnetic field is present. The low temperature data (left panel) show a narrow peak in

the differential conductance around zero bias. This ZBA forms as the temperature decreases

and is closely linked to the disappearance of the 0.7 shoulder at low temperatures; basically

it raises the conductance toward the unitary limit 2e2/h.

These two signatures (Zero-Bias Anomaly and 0.7 anomaly) are reminiscent of the Kondo

effect seen in quantum dots containing an odd number of electrons [4, 5, 6, 7, 8, 9, 10].

Indeed the scaling of the temperature dependence of the conductance fits with one scaling

parameter designated as the Kondo temperature (Fig. 1.2). Moreover, this scaled curve is

well described by a modified expression for the Kondo conductance:

g = 2
e2

h
[

1

2f(T/Tk)
+

1

2
], (1.1)

where f(T/Tk) is a universal function for the Kondo conductance (normalized to f(0) = 1

well approximated by

f(T/Tk) ∼ [1 + (21/s − 1)(T/Tk)
2]−s (1.2)

with s=0.22 [6]. Equation 1.1 differs from the one that has been previously used for quantum
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dots [6] by the addition of constant e2/h, which sets the high temperature limit to e2/h, and

by the fixing of the prefactor of f(T/Tk) to 1/2.

Another feature of the Kondo regime (T < Tk) in quantum dots is that the zero bias peak

is split by 2g∗µBB with an in-plane magnetic field when g∗µBB >∼ TK . As can be seen

in figure 1.2 (d), near the 0.7 shoulder, there is a splitting consistent with 2g∗µBB up to

B ∼ 3T . At higher conductances, the two peaks merge since g∗µBB < TK . These similarities

between quantum dots and QPC are quite surprising as QPC is an open system. This raises

the question of from where does the Kondo physics in QPCs derive?

A SDFT calculation [44] of a single channel wire reveals the formation of a local moment

with a net of one electron spin in the vicinity of the point contact. Later an extensive

SDFT calculation [11] in a multi-channel wire in a hetro-structure revealed the formation of

self-consistent or emergent localized states (ELSs), each having one electron charge inside

the QPC. This theoretical work has led to the possibility that the many-body effects in

QPC channels are intimately related to the occurrence of Friedel oscillations – oscillations

in the electron charge density that occur when electron waves are reflected in a partially

open QPC channel, which is enhanced into an ELS with about one electron of charge due

to Coulomb repulsion and exchange interactions between electrons. The repulsion of elec-

trons by the ELS (a precursor of the Coulomb blockade) can thus reduce the conductance,

thereby explaining the observation of the 0.7 anomaly. In addition, transport through such

a state can carry signatures of the Kondo effect [12], the most evident being the ZBA that

emerges at temperatures below the Kondo temperature. At these temperatures which are,

as noted, below a typical Kondo temperature, the conductance is enhanced by the Kondo

effect, moving the 0.7 plateau towards (2e2/h), which is consistent with experiments. The

theoretical work [11] has also predicted that, depending on parameters, a pair of such ELSs

may emerge in the channel, resulting in a split peak ZBA, similar to that observed in double

quantum dots [13], due to the double-impurity Kondo effect [14, 15, 16, 17].

It should be noted that these ELSs do not decay over time as their energy is below the Fermi
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energy so that there are no unoccupied stated in the Fermi sea to decay to.

Figure 1.1: (a) Linear conductance (g = dI/dV , around Vsd ∼ 0) versus gate voltage, Vg, at B = 0 for

several temperatures. The extra plateau at ∼ 0.7 · (2e2/h) appears with increasing temperature while the

plateaus at multiples of 2e2/h become less visible due to thermal smearing. (b) Linear g versus Vg, for

in-plane field B from 0 to 8 T in 1 T steps, showing spin-resolved plateaus at odd multiples of e2/h at high

fields. (c) Micrograph of the device reported. (d) (f ) Nonlinear differential conductance g = dI/dV as a

function of dc source-drain bias voltage, Vsd, with each trace taken at a fixed gate voltage. Plateaus in g(Vg)

appear as accumulation of traces. (d) Nonlinear g at 80 mK, B = 0, at Vg intervals of 1.25 mV. Plateaus

at multiples of 2e2/h around Vsd ∼ 0 and half-plateaus at odd multiples of e2/h at high bias are visible. A

zero-bias anomaly (ZBA) is present only at low magnetic field and low temperatures. At high bias, an extra

plateau appears at g ∼ 0.8·(2e2/h). (e) Nonlinear g at 600mK, B = 0, at Vg intervals of 1.0mV. Note absence

of a ZBA and accumulation of traces at g ∼ 0.7 · (2e2/h) around Vsd ∼ 0 that merge with the high-bias

plateau at g ∼ 0.7 · (2e2/h). (f) Nonlinear g at 80mK, B = 8T , at Vg intervals of 1.2mV. Spin-resolved

plateaus at odd multiples of e2/h around Vsd ∼ 0 merge with high-bias plateaus at g ∼ 0.8 · (2e2/h), and

g ∼ 2.8 · (2e2/h). The high-bias feature at g ∼ 0.8 · (2e2/h) looks similar to that in the B = 0 data. Figure

taken from [3].
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Figure 1.2: (a) Temperature dependence of the zero-bias anomaly (ZBA) for different gate voltages, at

temperatures ranging between 80 and 670mK. (b) Linear g as a function of scaled temperature T/TK where

TK is the single fit parameter in Eqs. (1.1), (1.2). Symbols correspond to gate voltages shown in inset. Inset:

Linear conductance as a function of unscaled temperature, T , at several Vg . (c) TK (right axis) obtained

from the fits of g(T/TK , V g) to Eqs. (1.1), (1.2), along with the conductance (left axis) at temperatures of

80 mK (solid line), 210 mK (dotted), 560 mK (dashed), and 1.6 K (dot-dashed). (d) Evolution of the ZBA

with in-plane B, at Vg corresponding to high, intermediate, and low conductance. Splitting is clearly seen in

the intermediate conductance data. Data in (d) were measured with zero perpendicular field. Figure taken

from [3]

1.2 Experimental Results from Length-Tunable QPCs

Figure 1.3 presents novel 6-finger QPC6F devices developed by the C. H. van der Wal group

in Groningen [18], for which the channel length Leff can be tuned continuously from about

186nm to 608nm. These were operated with the gate voltage Vg1 being always more negative
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than Vg2 to avoid quantum dot formation. By making Vg1 less negative at fixed ratio Vg2/Vg1

QPC channels are opened. The effective length Leff is then set by Vg2/Vg1 (short for Vg2/Vg1

near 0, long for Vg2/Vg1 near 1). The van der Wal group conducted electrostatic simulations

(based on [45]) that show that the device operates in a regime where the gates induce a

smooth saddle-point potential (Fig. 1.3B). That is, the narrow gaps between the gate fingers

do not impose a significant structure on the potential.

Figure 1.3C presents linear conductance results for a QPC6F . All QPC6F showed clear

quantized conductance plateaus. In addition, the 0.7 anomaly appears in most traces as a

smaller plateau in the range 0.7 to 0.9(2e2/h), and shows a dependence on Leff for which

three periods of modulation can be observed for the range Leff = 186nm to 608nm. Nonlin-

ear conductance measurements from this same device are presented in Fig. 1.4. Figure 1.4A

shows how the ZBAs appear for Leff = 286nm. At fixed length, the ZBAs alternate be-

tween a single-peak and double-peak characters when opening the QPC. Figure 1.4B shows

that there is also a modulation between single- and double-peak characters when Leff is

increased at a fixed level for the conductance (as evaluated immediately next to the ZBA).

Figure 1.4C plots again the data of Fig. 1.3C, with colored symbols on the traces that mark

whether the ZBA at that point has single- or double peak character (in some cases, the ZBAs

are best described as triple-peak). The modulation (in Fig. 1.3C.) between single-peak and

double-peak ZBA as a function of Leff also shows for about three periods, and is clearly

correlated with the modulation of the 0.7 anomaly. Notably, the length increase of Leff

that induces one period of modulation (100nm to 150nm) has a value that matches with the

Fermi wavelength in the QPC channel.

1.3 Spin Density Functional Theory Results

We have conducted an extensive SDFT (for explanation of SDFT, see appendix A) simulation

to check the dependence of the number of ELSs on QPC length and gate voltage. These

10



Figure 1.3: Length-tunable quantum point contact. (A) Electron microscope image of a QPC with 6 gate

fingers (QPC6F ). It has a tunable effective length Leff that is set by its operation at a fixed ratioVg2/Vg1.

(B) Saddle-point potential that illustrates the electron potential energy U (without many-body interactions)

in the 2DEG plane in a QPC region. (C) Linear conductance G as a function of Vg1 (while co-sweeping

Vg2 at fixed Vg2/Vg1 ) measured on a QPC6F for Leff tuned from 186 nm to 608 nm (traces not offset).

Besides the quantized conductance plateau at 1 · (2e2/h), most traces show a smaller plateau in the range

0.7 to 0.9 ·(2e2/h) due to many-body effects. For this signature 3 periods of modulation can be observed in

its dependence on Vg2/Vg1 (i.e. Leff ).

simulations were carried out in a rectangular box (representing a piece of 2DEG), shown in

Fig. 1.5, with periodic boundary conditions along the x-axis (horizontal in Fig. 1.5). The

external potential is composed of a harmonic part 1
2
ω2
yy

2, which represents the wire, and the

QPC potential. The latter is calculated by placing two negatively-charged gate electrodes

11



Figure 1.4: Zero-bias anomalies in the nonlinear conductance of a QPC6F . (A) Nonlinear conductance

G as a function of source-drain voltage Vsd at various Vg1 settings, for operation at Leff = 286nm. The

ZBA appears alternatively with single- or double-peak character. (B) Evolution of the ZBA in the nonlinear

conductance at fixed conductance level of ∼ 0.7 · (2e2/h) as a function of Leff (traces offset). The ZBA has

alternatively single- or double-peak character. (C) The character of the ZBA (single-, double-, or triple-peak,

as labeled), mapped out on the linear conductance data of Fig. 1.3C.
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at height z0 = 100 nm above the 2DEG in the middle, using the Yukawa potential

v(x0,y0) =

∫
ρg
e−|r−r0|/γ

|r− r0|
dr (1.3)

where r0 =
√
x20 + y20 + z20 , γ = 110 nm and the integration is over the two-dimensional

electrodes. The charge density of the electrodes ρg, is a linear function of the gate voltage

on the electrodes ρg = CgVg where Cg is the capacitance of the gate. In our simulation we

set ρg, since Cg is unknown. The data is plotted vs the gate voltage Vg with arbitrary units.

Figure 1.5: (a) Schematic of the simulation box; the blue rectangles represent the gate

electrodes above the 2DEG. (b) Example of the external saddle-point and wire potential for

a QPC (blue is lowest, red is highest potential).

For the Hartree term, we use the appropriate two-dimensional system with one-dimensional

periodic boundary conditions [46]. In addition, we add a positive image charge plane at height

100 nm above the 2DEG as the contribution from the donor layer [44]. For the exchange

and correlation functionals, we use the local-density approximation; for the exchange, we use

the Slater exchange [47]; and the correlation functional is taken from quantum Monte-Carlo

simulations of uniform electron gas [48]. The total number of electrons is N = 108 and the

temperature is 300 mK (we have repeated some of the calculations with temperatures down
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to 60 mK, with very little change in the results). We used the Octopus code [49] for solving

the equations. For all the simulations, the electron effective mass m∗e = 0.067me and the

dialectic constant κ = 12.9. The actual 2DEG electron density is slightly lower than in the

experiments to keep the computational time of a simulation at a reasonable level, but we

work in a regime where we capture the relevant physics. As a result, the relevant length

scales (which are relative to the Fermi wavelength) are for the simulations also slightly longer

than the experimental values.

The simulation steps are as follows:

• Set an external potential for a given QPC gate length and given gate voltage of the

electrodes. In this simulation, opening the QPC is controlled with a single gate-voltage

parameter Vg (in arbitrary units).

• Find the unpolarized ground state of the system by solving self consistently the Kohn-

Sham equations.

• Polarize the solution by applying a magnetic field perpendicular to the sample (only

the Zeeman term) for a few iterations, turn it off and lett the system flow to its ground

state again (in this procedure we are basically giving an educated initial guess for the

density). In principle, the field can be applied in any direction as it yields degenerate

solutions.

• Repeat these steps for different QPC lengths and gate voltages.

Figure 1.6 shows two examples of the resulting densities; the left column is spin down density,

while the right column is spin up density. The first is of unpolarized solution, then the

spatially symmetric polarized solution, achieved by using a symmetric configuration of the

magnetic field, and finally the spatially antisymmetric polarized solution achieved by using

an antisymmetric configuration of the magnetic field.
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Spin down density Spin up density

Figure 1.6: Spin-down (left) and spin-up (right) densities. Top row: unpolarized solution. Middle row:

spatially symmetric polarized solution. Bottom row: spatially anti-symmetric polarized solution. The color

scale extends from zero (black) to 2 · 1014 m−2 (yellow).

The free energy difference between the polarized solutions relative to the unpolarized solution

is shown in figure 1.7. When there exists a polarized solution, it has a lower energy than

an unpolarized solution. Moreover, the spatially symmetric solution has a region V g =

−[6.5− 5.5] where it is the ground state of the system. In the following, we concentrate on

this region, which is below the first plateau. The length of the QPC is deduced from the

unpolarized solution by taking the length of the channel between the two points of density

80% of the maximum density as depicted in figure 1.7. As mentioned earlier, the emergent

localized states (ELSs) inside the QPC originate from Friedel oscillations and as the QPC

becomes longer, the Friedel oscillations have more periods inside the QPC channel. We use

two complementary procedures in order to determine the number of ELSs inside the QPC.

First, we look at the cross-section of the density across the middle of the sample (this is done

separately for spin up density and spin down density). The criteria for the definition of the

peaks is given by

nσ(rmax) ∗ P ≥ nσ(rmin), (1.4)

where nσ is the density of spin σ, and rmin is the closest minimum toward the outside of the

QPC. This procedure is shown in figure 1.8 for P = 0.32. As can be seen in the figure, this
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Figure 1.7: Right: Free energies of the symmetric and anti-symmetric polarized solutions relative to

the unpolarized solution as a function of gate voltage, for a QPC length of 680 nm. Left: QPC length

calculation.QPC length calculation. The blue line is a cross-section of the total density across the middle of

the QPC channel. Above is the total electron density zero (black) to 3.5 · 1014 m−2 (yellow). The red dots

mark the density at 80% of the maximum density.

procedure may be problematic when the solution is ferromagnetic, and the peaks overlap

significantly. In such cases, we use a second procedure: An example is given in Fig 1.9. The

total two-dimensional spin up density (B) can be fit to a sum of five Gaussians (only three

of them inside the QPC), each of the total unit weight, even though the cross-section reveals

only two peaks inside the QPC.

Our main result is summarized in figure 1.10B, where we show for each gate-voltage and

QPC length the number of ELSs in the ground state. In fig 1.10A we show how this number

increases with length for a fixed gate voltage, for each additional Fermi wave length inside

the QPC (150 nm in the bulk) there is additional ELS. This is in agreement with what

was shown above, that the change in the number of ELSs is driven by additional periods of

Friedel oscillations that form in the QPC as it gets longer. While the number of ELSs inside

the QPC may depend on how we define the extent of the QPC, its parity is independent
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Figure 1.8: Example for counting ELSs - first method. (A,B) Electron density and its cross-section for

spin up (A) and spin down (B) at Vg = −6 and for L = 540 nm. The red crosses mark the Friedel oscillations

that are counted as ELSs. Here we have a total of two ELSs in the QPC, each one with a density very close

to one electron. (C,D) Electron density and its cross-section of spin-up (C) and spin-down (D) densities at

Vg = −6 and for L = 830 nm. In this case, there are four ELSs, as can be seen from the cross-section.

of that choice. This parity defines the character of the Kondo effect, for example: taking a

longer QPC in Fig. 1.9 will add two ELSs – the cyan Gaussians – inside the QPC, and will

not change the parity.

The oscillations of the parity in the number of ELSs inside the QPC support the picture

we have presented above. When there is anodd number of ELSs we expect to see zero bias

17



−1000 −500 0 500 1000
0

0.5

1

1.5

2

X(nm)

D
e

n
s
it
y
(n

m
−

2
)x

1
0

−
4

 

 

A

0 0.5 1 1.5 2

−1000 −500 0 500 1000
0

0.5

1

1.5

2

X(nm)

D
e

n
s
it
y
(n

m
−

2
)x

1
0

−
4

 

 

B

0 0.5 1 1.5 2

C

Figure 1.9: Example for counting ELSs - method 2. A (B) Electron density and its cross-section of spin

up (down) at V g = −6 and Leff = 680nm; here the integration of the density inside the QPC gives a

total of three electrons, though there are only two peaks in the cross-section.The two-dimensional density

can be fitted to a sum of 5 unit weight Gaussians, three of which are in the QPC. (C) We show how the

five Gaussians give the corresponding SDFT density. From top to bottom: Center Gaussian (corresponds to

green dashed line in the cross-section), two nearest Gaussians (red dashed line), two next nearest Gaussians

(cyan dashed line), all five Gaussians together (purple line), SDFT density (blue line). Hence we conclude

that there are three localized ELSs inside the QPC.

peak in the differential conductance as observed in a single quantum dot. In the case of an

even number of ELSs we expect to see a split peak in the differential conductance as seen in

coupled double quantum dots [50, 13].
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Figure 1.10: A. Polarized electron density for spin up right panel (down left panel) at constant gate voltage

Vg = −6 for three different lengths (540nm, 680nm and 830nm), the number of ELSs inside the QPC is two,

three and four respectively. The number of ELSs increases by one for each additional Fermi wave length

(150nm in the bulk) inside the QPC. The color scale extended from zero (black) to 2 · 1014 m−2 (yellow).

B. Number of ELSs inside the QPC as a function of gate voltage and QPC length.

1.4 Conclusion

Our numerical SDFT modeling, which also accounts for Coulomb and exchange interactions,

showed that Friedel oscillations generically develop into ELSs whose number grows with the

QPC length, leading to alternating parity that is consistent with a periodic modulation be-

tween single-peak and double-peak ZBAs. In turn, with such localized states near a reservoir,

the Kondo effect will often play a role in the formation of the many-body state. Past research

on quantum has dots showed that, under these conditions, the Kondo effect is a very generic

phenomenon while the behavior of the ZBAs in QPCs show a strong correspondence with

transport through single and paired Kondo states. We showed that the periodic character

of both the ZBA and the 0.7 anomaly as a function of QPC length provides evidence that

the physics of Friedel oscillations is fundamental to these phenomena.
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Chapter 2

Dephasing in Two-Dimensional

Disordered Systems

Coherence time, the time over which the phase of the wave function is maintained, is

one of the fundamental properties in quantum mechanics, and is especially important for

mesoscopic systems where the coherence length is of the order of the sample size. From

basic quantum mechanical arguments one expects that as the temperature goes down, the

external degrees of freedom freeze out, so that the coherence time will be infinite at zero

temperature. For temperatures less than one Kelvin, the phonon’s contribution to dephas-

ing becomes negligible and the main processes of dephasing are due to electron-electron

interactions. From theory [19, 20], one expects a power law dependence of the dephasing

rate on the temperature, which was confirmed in experiments at that temperature range.

However, when the temperature is decreased further, there is apparent saturation in the

coherence time [21, 22, 23, 24, 25, 26, 27, 28, 29] (see, as an example figure, 2.1) which is

in contradiction with the electron-electron interaction picture, and possibly with the general

quantum mechanical principle described above. One possible explanation for this saturation

is magnetic impurities: At temperatures higher than the Kondo temperature, there is a fi-
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nite probability for spin flip scattering that will cause dephasing. Follow-up experiments [28]

have demonstrated that a small amount of magnetic impurities changes the temperature de-

pendence of the phase coherence time τφ from a power law to saturation at low temperatures

as depicted in figure 2.2. However, the conductors of the original experiments [26] claim that

they checked and found that no magnetic impurities exist in their system. Moreover, one

does not expect any magnetic impurities in semi-conductor systems, where the same effect

has also been seen [22, 23, 24, 27].

It has been shown in another context [44, 11] [and in chapter 1 of this thesis] that a mag-

netic moment forms at the saddle-point of a potential in single and multi-channel wires in

heterostructure. Since QPCs form naturally at the saddle-points of a two-dimensional dis-

ordered systems, one can ask: Can these magnetic moments be formed in a two dimensional

disordered systems? And, if so, are they responsible for the saturation of the coherence time?

2.1 Theoretical Models

Dephasing Processes

In the presence of several decoherence mechanisms, the phase coherence time τφ is expressed

by

1

τφ
=

1

τe−ph
+

1

τe−e
+

2

τmag

+ · · · . (2.1)

At relatively high temperatures, the leading contribution to dephasing is from electron-

phonon interactions. The temperature dependence of coherence time due to this inelastic

process is given by [51]

1

τe−ph
∼ T 3. (2.2)

For temperatures below 1 K, the phonons are suppressed and thus their contribution to

dephasing processes is diminished. At these temperatures, the main source of decoherence
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arises from small energy transfers between electrons due to electron-electron interactions [19]

(dubbed the AAK term)

1

τe−e
=

(
T

Dd/2νd~2

)2/(4−d)

; (2.3)

here d is the dimension, D is the diffusion coefficient and νd is the density of states. For the

quasi-1D disordered systems, we obtain

1

τ 1De−e
=

1

2

(
kBπ

wm∗

)2/3

D−1/3T 2/3, (2.4)

where kB is the Boltzmann constant, m∗ is the effective mass of the electron and w is the

width of the wire. For the 2D case, one obtains

1

τ 2De−e
' kBT

2m∗D
ln

(
2m∗D

~

)
. (2.5)

In the presence of magnetic impurities, the dephasing rate has an additional contribution

resulting from electrons that are scattered off these magnetic impurities. For temperatures

higher than the Kondo temperature T > TK , the temperature dependence of the coherence

time is given by the Nagaoka-Suhl (NS) expression [52] as

1

τmag

= A
π2S(S + 1)

π2S(S + 1) + ln2(T/TK)
cimp, (2.6)

where S is the spin of the impurity, A is the prefactor in units of 1/s, and cimp is the

magnetic impurities concentration. At the opposite limit (T � TK), Nozieres Fermi liquid

theory predicts a T 2 dependence of the inelastic scattering rate from an S = 1/2 impurity

when the screening is complete [53]. For a spin larger than one, the screening is incomplete

and the low temperature behavior is given by [54],

1

τmag

∼ S2 − 1/4

ln2(T/TK)
. (2.7)

Recently, Zarand et al. were able to obtain an exact solution for the inelastic scattering

time in Kondo metals using Wilson’s numerical Renormalization-Group(NRG) calculation,
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ranging from zero temperature to well above Kondo temperature [55]

1

τmag

= B
σ(w)inel
σ0

cimp, (2.8)

where σ(w)inel is the inelastic scattering cross-section at finite energy w, σ0 = 4π/k2f is the

elastic scattering cross-section at zero temperature, and B is a numerical constant.

Weak Localization

The quantum nature of electrons leads to constructive interference between time-reversed

paths, thus reducing the probability of an electron reaching the other end of the sample

and therefore increasing resistivity. The correction of the classical conductivity for diffusive

electrons due to interference is given by

δσ

σ
' −

∫ τφ

τ

vFλ
d−1
F

(Dt)d/2
dt (2.9)

where vF , λF are Fermi velocity and wave length, respectively and d is the dimension of the

system. The lower limit of the integration τ is the mean free time between elastic collisions,

and the upper limit τφ is the phase coherence time. For longer times, interference is no

longer relevant. Equation 2.9 depends on the phase coherence time τφ or, alternatively, on

the phase coherence length Lφ =
√
Dτφ. This correction to the conductivity depends on

the magnetic field, which destroys constructive interference between the time-reversed paths

due to the additional Aharonov-Bohm phase. In the experiment one measures the changes

in conductivity as a function of the magnetic field, fits the results to the theory and, from

that extracts the coherence time.

2.2 Experimental Evidence

Mohanty et al. [26] report an extensive set of experiments designed to understand the

temperature dependence of τφ as temperature decreases. They fabricated six quasi-1D pure
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gold wires with less than 1 ppm of magnetic impurities, in different lengths, widths and

thicknesses. Using a weak-localization measurement (WL) and fitting the results to the

standard 1D form [56], they deduced the phase coherence length Lφ. The coherence time

was then obtained by τφ = L2
φ/D, where D is the classical diffusion coefficient. Panel a in

figure 2.1 shows the temperature dependence of τφ from 11 mK to 7 K below 200 mK, the

temperature dependence of τφ is slower than expected from theory [19] and seems to saturate

below 40 mK. The effect of magnetic impurities on τφ was also studied by Fe ion implanting,

the dominant magnetic impurity in Au. Fig. 2.1b displays temperature dependence of τφ

for the same sample before and after the ion implanting. The effect of adding magnetic

impurities is to lower the magnitude of the phase coherence time, but not to cause saturation

in τφ, in accordance with previous experiments [57, 58]. Moreover, the saturation of τφ also

exists in semiconductor wires [22, 23, 24, 27], which are not supposed to contain magnetic

impurities. The conclusion of the authors of [26] is that the saturation of the coherence time

is not due to heating, magnetic impurities, or external environmental effects.

In a later study, Pierre et al. [28] again used WL measurement in order to find the coherence

time τφ in very clean copper (Cu), silver (Ag) and gold (Au) wires. Though some of the

samples have comparable resistances and geometries similar to those of some of the samples

used in [26], the low temperature behavior of τφ is different and so are the conclusions

of the authors. Panel a of figure 2.2 shows τφ as a function of temperature for samples

Ag(6N),Ag(5N),Au(6N) and Cu(6N), where 5N and 6N are samples of purity of 10 ppm and

1 ppm respectively. The samples Ag(6N)and Au(6N) have larger τφ and keep increasing,

which is according to the theory of electron-electron interactions, while Ag(5N) and Cu(6N)

samples show smaller τφ and saturation at low temperatures. The different behavior of

the two silver samples shows that τφ is related to the purity of the sample. The authors

suggest several possibilities for the source of dephasing, two of which are very dilute magnetic

impurities or dephasing from two-level systems associated with lattice defects. As for the

copper wires, there is always weak temperature dependence below 200 mK regardless of
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Figure 2.1: (a) Temperature dependence of τφ for four Au wires. Solid lines are fits to theory (Eq. 1 of

Ref. [26]). The inset is the EE contribution to ∆ρ compared to the theoretical prediction. (b) Temperature

dependence of τφ before (diamonds) and after (boxes) Fe implantation. The solid line is a fit to theory (Eq.

1 of Ref. [26]). The inset shows the dependence of ∆ρ due to magnetic impurities with a theoretical fit.

From Ref [26].

the purity of the sample. They attribute this to the surface oxide of copper, which can

cause dephasing [59]. In order to check whether spin flip scattering is responsible for the

saturation of τφ at low temperatures, Pierre et al. fabricated three silver samples of Ag(5N)

with very dilute manganese atoms (0.3 ppm and 1 ppm). The phase coherence times are

shown in Fig. 2.2b together with reference samples of Ag(6N) and Ag(5N). The samples

with the manganese impurities exhibit smaller τφ and weak temperature dependence at low

temperatures.

Given the NRG theoretical results [55], Bäuerle et al. [29], compared the temperature de-

pendence of τφ with this theory. First they looked at the coherence time of gold wires with

iron impurities with a concentration of 3.3 ppm and 45 ppm (shown in the left panel of figure

2.3). As one can see, the NRG calculation is a good fit with experimental data for the low

temperatures where the Nagaoka-Suhl expression (Eq. 2.6) is not valid. After establishing
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Figure 2.2: (a) Phase coherence time τφ versus temperature in wires made of copper Cu(6N) (�), gold

Au(6N) (∗), and silver Ag(6N) (•) and Ag(5N) (◦). The phase coherence time increases continuously with

decreasing temperature in wires fabricated using the purest (6N) silver and gold sources as illustrated re-

spectively with samples Ag(6N) and Au(6N). Continuous lines are fits of the measured phase coherence

time including inelastic collisions with electrons and phonons. The dashed line is the prediction of electron-

electron interactions only for sample Ag(6N). In contrast, the phase coherence time increases much more

slowly in samples made of copper (independently of the source material purity) and in samples made of silver

using a source of lower (5N) nominal purity. (b) Phase coherence time as function of temperature in several

silver wires. Sample Ag(6N)c (•) is made of the purest silver source. Samples Ag(5N) (◦), Ag(5N)Mn0.3

(�) and Ag(5N)Mn1 (�) were evaporated simultaneously using the 5N silver source. Afterward, 0.3 ppm and

1 ppm of manganese was added by ion implantation respectively in samples Ag(5N)Mn0.3 and Ag(5N)Mn1.

From Ref [28].

that the NRG theory describes rather well the temperature dependence of τφ, the authors

looked at the τφ of a very clean gold wire with less than 0.015 ppm of impurities at very

low temperatures (as low as 0.01 K). Surprisingly, at these low temperatures there is again
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saturation (or weak temperature dependence) of the coherence time, as shown in the right

panel of figure 2.3. To check whether this saturation can be explained by the presence of

very dilute magnetic impurities, a comparison with the NRG theory was made for different

impurity concentrations and Kondo temperatures. As can be seen in the right panel of the

figure, the best fit of the theory with experimental data is for impurities with a concentra-

tion of 0.015 ppm with Kondo temperature Tk = 5mK. A possible magnetic impurity with

Kondo temperature in this range is manganese (Tk ' 3mK). However, the dominant mag-

netic impurity in gold is iron, so one should expect, in addition to the manganese, at least

0.015 ppm of iron (Tk ' 500mK). Judging from the comparison with the NRG calculation

regarding these two impurities (dotted line), the fit is less satisfactory. This may suggest

that extrinsic magnetic impurities are not responsible for the apparent saturation of τφ at

low temperatures.

In a recent study of the disorder dependence of the phase coherence time of quasi one-

dimensional wires and two-dimensional 2D Hall bars fabricated from a high mobility het-

erostructure [60], it was found that the intrinsic disorder in the 2D electron gas can be

changed through the ion implantation technique. The Ga+ or Mn+ ions are implanted

50nm above the 2DEG in the desired concentration. In a diffusive regime, the phase co-

herence length follows a power law as a function of the diffusion coefficient (as expected

from Fermi-liquid theory see figure 2.4), without any sign of low-temperature saturation. In

a strongly localized regime, a diverging phase coherence time was found when the temper-

ature was decreased, although with a smaller exponent compared with a weakly localized

regime (see figure 2.5).

These observations motivated us to study the possible mechanism of spontaneous formation

of magnetic impurities due to disorder.
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Figure 2.3: Left: Phase coherence time as a function of temperature for two Au/Fe Kondo wires: � sample

with 3.3 ppm iron impurities , ◦ sample sample with 45 ppm iron impurities. The green dotted line (denoted

AAK) corresponds to the assumption that only electron-electron and electron-phonon interaction contribute

to dephasing. The black dashed-dotted lines (NS1 and NS2) take in addition account for the magnetic

scattering using the NS expression, whereas for the red (NRG1) and blue (NRG2) solid lines, the NRG

calculation has been employed for the contribution of the magnetic impurities. Right: Phase coherence time

as a function of temperature for sample Au1 (◦). The solid green line corresponds to the AAK prediction,

the black (a), red (b) and blue (c) solid lines correspond to the NRG calculation assuming TK = 40 mK,

TK = 10 mK, and TK = 5 mK, respectively. From Ref [29].
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Figure 2.4: Phase coherence length Lφ as a function of T at several different diffusion coefficients. The

phase coherence length follows a power law as a function of diffusion coefficient as expected in the Fermi-liquid

theory (solid line) . Taken from [60].

Figure 2.5: (d)-(f) Experimental data of R(T ) (red solid lines) and Lφ (blue open symbols) as a function

of T ; (d) weff = 1130, (e) 630 and (f) 320 nm. The solid lines for Lφ(T) are the best fits of Eq. (2.4). The

dashed-dotted lines, represent a change in the exponent of Lφ(T ) at the low temperature part from −1/3

(AAK) to −0.29 (weff = 1130 nm), −0.26 (weff = 630 nm) or −0.24 (weff = 320 nm) in order to get better

fitting precisions a lower temperatures. Taken from [60].
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2.3 Spin Density Functional Theory Results

Our SDFT simulation was carried out in a two-dimensional square box with periodic bound-

ary conditions. The disorder external potential was composed of point-like changes at differ-

ent distances above the sample plane that mimic remote impurities or defects in the lattice.

Their contribution to the external potential of the SDFT simulation is given by the Yukawa

potential

Figure 2.6: Scheme of the simulation box, the cyan dots represent point-like changes at different distances

above the sample plane

v(x0,y0) =
∑
i

Ci
e−|ri−r0|/γ

|ri − r0|
, (2.10)

where r0 =
√
x20 + y20, ri =

√
x2i + y2i + z2i , γ = 90nm, and Ci is the charge. For the

Hartree term, we use the appropriate two-dimensional system with two-dimensional periodic

boundary conditions [46]. For the exchange and correlation functionals, we use the local

density approximation. For the exchange we use the Slater exchange [47]. The correlation

functional is taken from quantum Monte-Carlo simulations of a uniform electron gas [48].

For all the simulations, the electron effective mass m∗e = 0.067me and the dialectic constant

κ = 12.9. We use the Octopus code [49] for solving the equations.

The simulation steps are as follows:

• Set an external potential for a given disorder.
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• Find the unpolarized ground state of the system by solving self-consistently the Khon-

Sham equations.

• Polarize the solution through the application of a magnetic field perpendicular to the

sample (only Zeeman term) for a few iterations. Turn it off and lett the system flow

to its ground state again.1 The magnetic field can be applied locally.

• Repeat these steps for different disorder configurations, densities and temperatures.

We start by studying the properties of a one saddle-point potential, created from two im-

purities of one electron charge at height 10nm above the 2DEG. Figure 2.7(a) shows the

external potential of such a configuration with a distance of 120nm between the impurities.

The spin up and down densities are shown in panel (c) and (d) respectively. Looking at

polarization, n↑[r]− n↓[r], shown in Fig 2.7(b), there is excess of spin up density, emergent

localized state (ELS), at the saddle-point of the external potential.

Figure 2.8(a) shows the magnitude of the ELS, M (see figure 2.7b), inside the saddle-point

as a function of d, the distance between the two impurities, at temperatures of 100, 150 and

200mK. The maximal magnitude of the ELS is at x = 108nm, Fig. 2.8(c) depict the temper-

ature dependence of M . We can see that the ELS magnitude increases as the temperature

decreases and saturates at 40mK. In all the cases the polarized solution free energy is lower

than the non-polarized solution (δE in Fig 2.8(c,d)).

Figure 2.9 shows the ELS magnitude as a function of strength of the external potential, (we

do so by changing the impurity charge), for different electron densities. As the density gets

higher, a stronger potential is needed to form an ELS.

1Basically, in this procedure we are giving an educated initial guess for the density.
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Figure 2.7: (a) One saddle-point potential, created from two impurities of one electron charge at height

10nm above the 2DEG, the distance between them is 120nm, with charge of one electron and γ = 90 (see

Eq. 2.10). (b) Polarization density n↑[r] − n↓[r]. In order to determine the magnitude of the ELS, M , we

integrate the polarization density over the region enclosed by dashed white ellipse, M = 0.6 in this example.

(c) Spin down density. (d) Spin up density.
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Figure 2.8: One ELS properties: (a) magnitude of the ELS as a function of d, the distance between the

two impurities that create the saddle point potential, for three different temperatures. (b) free energy of the

polarized state relative to the non-polarized solution, ∆E, as a function of d for three different temperatures.

(c) ELS magnitude, M , as a function of temperature for d=108nm. (d) ∆E as a function of temperature

for d=108nm, there is no data below 20mK due to convergence problems of the non-polarized solutions at

such low temperatures.
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Figure 2.9: One ELS properties: ESLs magnitude, M , as a function of strength of the external potential

for two densities, the length between the impurities is 108nm (a) and 128nm (b). At higher densities a

stronger external potential is needed to form ELS.

33



In order to see whether there is correlation between the ELSs we consider two saddle-points

potential as shown in figure 2.10(a). The free energy differences between the non-polarized

solution and the polarized solutions, of all possible configurations is studied:

• (a) ELS-1 with spin up (Fig. 2.11(a)).

• (b) ELS-2 with spin up (Fig. 2.11(b)).

• (c) ELS-1 with spin up and ELS-2 with spin up (Fig. 2.11(c)).

• (d) ELS-1 with spin up and ELS-2 with spin down (Fig. 2.11(d)).

Figure 2.10(b) shows, ∆E for these cases. The cases with one-ELS are degenerate while

the energy differences for the case with two-ELSs show that there is some small interaction

between them (point d is a bit higher in energy than point c). For closer ELSs we see

that there is larger interaction between them, similar to the interaction between magnetic

impurities through conduction electrons (RKKY interaction) [61, 62, 63]. The exact spatial

dependence of the interactions and comparison to RKKY interaction is left for future studies.
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Figure 2.10: (a) Two saddle-point potential. (b) ∆E for different polarization configurations: (a) ELS-1

with spin up, (b) ELS-2 with spin up, (c) ELS-1 with spin up and ELS-2 with spin up, and (d) ELS-1 with

spin up and ELS-2 with spin down.
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Figure 2.11: Two saddle-point polarization configurations: (a) ELS-1 with spin up, (b) ELS-2 with spin

up, (c) ELS-1 with spin up and ELS-2 with spin up, and (d) ELS-1 with spin up and ELS-2 with spin down.
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Having understood the properties of single and double ELSs, we can now create a random

potential and study the possible polarized solutions as a function of the density. In this

case we polarize the sample using a uniform magnetic field so that all the ELSs point in the

same direction. Figure 2.12 shows such a random potential and the polarization for different

electron densities. We can see that the ELSs form at various locations of the disorder

potential and change their location as the density changes. At high densities, relative to the

strength of the disorder potential, there is no longer a polarized solution.
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Figure 2.12: Random disorder potential, and the polarization for different densities. As the density

increases the ELSs changes their location, until they disappear at high density (relative to the external

potential strength).
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2.4 Conclusions

The apparent saturation, or the deviation from the expected electron-electron interaction

picture, of the coherence time at low temperatures is still a matter of debate. Our numerical

SDFT simulation showed that Friedel oscillations can develop into a self-consistent localized

state in an open two-dimensional systems. These states are formed at various saddle-points

of the disorder potential (depending on the electron density at the bulk) at low temperatures,

and can contribute to low-temperature dephasing through spin flip scattering above their

corresponding Kondo temperatures. The distribution of the Kondo temperatures will deter-

mine the low temperature dependence of the dephasing rate. This involves more elaborate

numerical calculation and will be left to future studies.
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Chapter 3

Low Temperature Dephasing and the

Quantized Hall Insulator

The quantum Hall transition [64] is one of the simplest and most studied quantum phase

transitions. Nevertheless, the experimental observation of a new phase in this regime, the

quantum Hall insulator, remains a puzzle since the first report more than a decade ago

[32, 33, 34, 35, 36, 37, 38, 39]. This is because it contradicts all theoretical studies based on

microscopically coherent quantum calculations [40, 41, 42, 43]. In this work, we introduce

into the coherent quantum theory a new ingredient – incoherent events – in a controlled

manner. Using direct numerical solutions, we demonstrate that these decoherence events

stabilize the elusive quantum Hall insulator phase, which becomes even more stable with

increasing temperatures and voltage bias, which is in agreement with experiments.

3.1 Integer Quantum Hall Effect

It is well known that under the influence of a magnetic field the transport properties of

conductors change significantly. The application of a magnetic field perpendicular to the
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direction of the current results in a potential drop along the transverse direction (V1 and V3

voltage probes shown in Fig.3.1), which is proportional to the magnetic field strength. In

addition, the sign of the potential difference depends on the direction of the magnetic field.

This voltage difference, termed the Hall voltage, give rise to the Hall (transverse) resistivity,

ρH = VH/I where I is the total current that passes through a sample.

L

W

S
o
u
rc
e

D
ra
inI

V1

V3

V2

V4

B

Figure 3.1: A scheme of Hall’s measurement: The longitudinal voltage is measured between voltage probe

V1 and V2, and the Hall voltage between V1 and V3.

The integer quantum Hall effect [64] has been a paradigm for two-dimensional quantum phase

transitions: a transition between the quantum Hall phase, characterized by a quantized Hall

resistance ρxy and a vanishing longitudinal resistance ρxx , and an insulator, characterized

by diverging ρxx and ρxy (see Fig.3.2).

For a clean two-dimensional system under a perpendicular magnetic field, the eigenstates

are the Landau levels (LL), and the eigenenergies are given by

EN = (n+
1

2
)~ωc, (3.1)

where ωc = |e|B/me and n is the LL number. An important parameter is the filling factor

ν, which is the ratio between the number of electrons to the number of flux quanta Φ0 = h/e

that penetrate the sample. Since the spatial spread of the eigenstates of the electron are of

the order of the magnetic length lc =
√

~/ |e|B, we can see that the flux that penetrates

each electron ”territory” is exactly one flux quantum, so that the filling factor also gives the
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Figure 3.2: Left: measurement of the Hall voltage UH , and the longitudinal voltage drop Upp as a function

of the gate voltage Vg at T = 1.5K. The magnetic field is B = 18T and the source drain current is 1µA. The

inset shows a top view of the device. Right: Hall resistance RH , and longitudinal resistance Rpp. Figures

taken from [64].

number of filled LLs

ν =
NΦ0

BS
=
neΦ0

B
, (3.2)

where N is the number of electrons, ne their density, and S is the area of the sample. In the

experiment, the filling factor can be altered by a change in the magnetic field B or in the

electron density ne.

To understand the role of electron localization, let us look at the semi-classical limit, which

is valid in the limits of a strong magnetic field, where the magnetic length, which basically

determines the electron wavelength, is much smaller than the typical length scale of the

disorder potential. In the presence of disorder (realized, e.g., by impurities in the lattice),

the electrons are localized along equipotential contours of the potential. For a random
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potential with zero average, when the Fermi energy is at the center of the LL energy (due to

the disorder, the LLs are broadened), the electron states become extended and can percolate

through the system, giving rise to a finite longitudinal resistance and a change in Hall

resistance. Thus, when the energy is scanned, each time the Fermi energy passes through

the center of an LL, the extended states contribute to the Hall conductance σxy a single

conductance quanta e2/h. In between the LL, all the states are localized and do not change

Hall conductivity so that,

σxy =
e2

h
× n, (3.3)

where n is the number of filled LLs. This semi-classical model explains both the plateaus

in Hall conductivity and the vanishing of longitudinal conductivity in terms of localized and

delocalized states. We should also note that when the filling factor is smaller than one (for a

large magnetic field, for example), there are no single-particle extended states in the system

and the non-interacting system behaves as an insulator where both ρxx and ρxy diverge.

3.2 Quantized Hall Insulator

As explained in the previous section, the QH system has only two phases: the insulating

phase where both ρxx and ρxy diverge, and the QH phase where ρxx = 0 and ρxy is quantized.

However, as discussed below, measurements have shown that under very strong magnetic

fields and at low temperatures the system exhibits a new phase, characterized by ρxx →∞,

while ρxy stays quantized to its value at the last plateau of the QH phase. In this section,

we will review the experimental evidence and a few theoretical studies regarding this new

phase (for a comprehensive review, see [65]).
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3.2.1 Experimental Evidence

In an experimental study done by Shahar et al [32], the longitudinal and Hall resistivities were

measured in a 2d hole system for a wide range of magnetic fields (B) and at low temperatures

(as low as 0.3K). An inspection of longitudinal resistivity as a function of temperature

reveals two critical magnetic fields. In those critical magnetic fields, longitudinal resistivity

is temperature-independent, as shown in Fig. 3.3. Between these two critical magnetic fields,

there is the regular QH phase, which is characterized by a quantized Hall resistivity and a ρxx

that decreases toward zero as the temperature goes down. In the higher field, the dependence

of ρxx on temperature is inverted and increases exponentially as the temperature decreases,

indicating an insulating behavior. This divergence of ρxx hinders the determination of ρxy due

to Hall contact misalignment, which causes mixing between the measured ρxx and ρxy. That

problem is dealt with through the anti-symmetrizing of the measurement, which is achieved

by measuring in an opposite magnetic field as well, and a taking of the antisymmetric part

in B, as shown in the inset of Fig. 3.3. Strikingly, Hall resistivity at a high B field, B > Bc,

stays almost quantized to the value h/e2 over a wide range of B extending up to 4T from

the critical field Bc (shown in Fig. 3.3). That measurement was not unique; this kind of

behavior has also been demonstrated in subsequent experiments [33, 34, 35, 36, 37, 38, 39]

and under higher magnetic fields.

This phase, coined the quantized Hall insulator (QHI), cannot be explained by the standard

theory that describes the QH phase. At the moment there is no complete theory that explains

this new phase.

3.2.2 Theoretical Models

The first work that suggested a unique behavior in a strong magnetic field limit was published

by Kivelson, Lee and Zhang [66]. Basing themselves on a set of laws of corresponding states,

they predicted that, in the insulating phase ρxy ∼ B/nec, while ρxx →∞ as the temperature
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Figure 3.3: The Hall and diagonal resistivity as a function of magnetic field. Left: The solid line is Hall

resistivity measured at T=300 mK and a current of I=200 nA, where the dotted line represents I=400 nA.

The dash-dotted lines are ρxx at T=1.2 K (the uppermost curve) and at T=4.2 K (the lower curve). VG=5.2

V, ρc = 1.65h/e2 and BC=6.06 T. The inset shows Hall resistances for +B and −B in dotted lines and the

anti-symmetric part of ρxy is represented by a solid line, from [34]. Right: Longitudinal (lower frame) and

Hall resistivity (upper frame). Hall resistivity obtained by an averaging of both field polarities is quantized

at h/e2 for T ≤ 1.2K. The letters a,b,....f indicate T = 0.38, 0.65, 1.2, 2.1, 2.9 and 4.2 K. Taken from [37]

drops to zero (they named this phase the Hall insulator). Note, however, that this phase

is a classical Hall insulator; in other words, Hall resistance is not expected to be quantized,

which is in disagreement with the-above mentioned experimental observations.

Using a renormalization group approach, Pruisken [67] calculated the flow of the magneto-

conductance tensor shown in Fig.3.4. From this flow diagram, we can see that there are fixed

points for σxx = 0 and σxy = e2

h
n. When n equals zero, we are again in the insulating phase,

in which both longitudinal and Hall resistivity diverge. When, n equals to an integer, the

system is in the QH plateau phase.

Entin-Wohlman et al. [40] investigated the transport properties of an electron in a phonon-

assisted hopping regime, that included coherent effects. In order to include the contribution

of the magnetic flux, a triangular cluster with three sites (each representing a wave function
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Figure 3.4: The RG flow diagram as obtained from the dilute instanton gas method. Figure taken from

[67].

localized at that site) was introduced. Transport from site 1 to site 2 involved interference

between the direct path from site 1 to site 2 and the indirect path through site 3 (1→ 3→ 2),

depending on the magnetic flux that penetrates the triangle. These researchers were thus

able to obtain the distribution of the conductivity tensor. Their calculation shows that

the results depend on whether one averages the conductivity or the resistivity and also on

whether the experiment is a DC or AC. They argue that, for an AC measurement, the

appropriate averaging procedure is to average the conductivity tensor, while the averaging

of the resistivity tensor is equivalent to a DC measurement. Thus, by using an averaging

procedure that is equivalent to an AC measurement, one can obtain the Hall insulator phase

(still with an arbitrary value of Hall resistance). However, when the averaging procedure is

used to receive a DC measurement, both ρxx and ρxy diverge as the temperature decreases,

with the relation ρxy ∼ ρ2xx. Using an RG procedure, Zulicke and Shimshoni [42], confirmed
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that both ρxx and ρxy diverge in the insulating regime. They also found that ρxy ∼ ρxxx deep

into the insulating phase, though with a different exponent (x ∼ 1/2).

These studies were confirmed by Pryadko and Auerbach [41], who solved a four-lead finite

Chalker-Coddington (CC) [30] network in a system of different sizes. In this network (shown

in Fig. 3.5), each tunneling junction between the puddles (the puddles are defined as regions

encircled by current-carrying channels, i.e., regions enclosed by equipotential contours) is

represented by an unitary scattering matrix which is a matrix, connecting the two incoming

and two outgoing channels (see Fig. 3.5b). Pryadko and Auerbach then went on to examine

what happens in a system with a finite phase length by arguing that the dephasing length

determines the finite size of the coherent system. Thus, the solution for different system

sizes is equivalent to different dephasing lengths1. Their results, presented in Fig.3.6, show

that again ρxy diverges exponentially, with increasing the phase coherence length.
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Figure 3.5: (a) Four-terminal L = 6 CC network. QH puddles are shaded. Edge currents with amplitudes

Aαp propagate along the arrows. (b) The incoming and outgoing amplitudes at the tunnel junction between

puddles p and q are related by the scattering matrix. Figure taken from [41]

Concentrating on the limit of L >> Lφ → 0, Shimshoni and Auerbach [68] investigated a

system in which the phase length is much smaller than the localization length. Their model

is a network of puddles of QH Phase in constant densities, i.e., the Hall conductance of each

1That allows one to empirically include dephasing in the system, though the intermediate regime, where

the system size and the dephasing length are of the same order, cannot be approached by this ad hoc

argument.
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Figure 3.6: QH to insulator transition in finite size scaling. Inset: The resulting inverse correlation lengths

are consistent with the critical exponent ν = 7/3. Figure taken from [41]

puddle is quantized to the same value (see Fig. 3.7 where each puddle, has a single edge

state). They assumed that there is no coherence between different puddles, and therefore

the puddle network properties can be given by classical Kirchoff laws. As opposed to the

prior models, this study suggests a robust quantization of ρxy. Since each puddle is in a QH

phase, its Hall resistivity is quantized to h/e2. Moreover, when connecting these puddles

classically, as shown in Fig. 3.7 the effective Hall resistivity does not change but remains

quantized. However, this model cannot account for the case of a large system with finite

phase lengths (L >> Lφ) which is the relevant physical regime.

3.3 Incoherent Scattering

We may conclude from all the theoretical works presented here is that in a coherent regime

interference effects localize the electrons and destroy the QHI phase. On the other hand,

when the coherent length is much shorter than the localization length, the system exhibits a
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Figure 3.7: Left side:(a) Typical puddle network, where dotted lines represent constrictions. (b) Corre-

sponding equivalent circuit. Right side: Single junction between puddles. Figure taken from [68]

robust quantization of Hall resistivity. In this work we will study the full crossover between

these two extreme regimes, so that we can observe the behavior of the resistivity tensor as

the system length becomes larger than the phase length. To do so one has to introduce

dephasing into the system using a first-principle approach.

Büttiker’s Approach to Dephasing

In order to introduce dephasing in these network models in a controlled manner so that

the full crossover between quantum behavior to classical behavior can be realized, we used

Büttiker’s approach to dephasing [31]. The principal idea is to place between two elastic bar-

riers a phase-randomizing scatterer, that destroys the interference effects that occur between

the barriers. This phase-randomizing is realized by a coupling of the system to a reser-

voir via current-conserving contacts, which guarantees that, for every electron that enters
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a reservoir, there is an electron that leaves it. However, the phase of the outgoing electron

has no correlation with the phase of the incoming electron, so that interference effects are

destroyed. The full crossover is reached by assigning each electron a finite probability to

enter the reservoir. When this probability is zero, the system is fully coherent. When it is

unity, the system is classical, with no coherent transport. Tuning this probability from zero

to unity allows us to probe the crossover between fully coherent to fully incoherent regimes.

3.4 Model and Results

In order to incorporate Büttiker’s method for dephasing with the CC model of 2d network

(for a full derivation of the general case, see appendix B), we used a scheme of the random

potential as shown in Fig.3.8a. The black lines represent equipotential lines and the wiggly

lines represent incoherent events. Since the incoherent events do not backscatter the chi-

raly moving electrons, we coupled each channel in the model (i.e., forward and backward

propagation) to separate current-conserving reservoirs. In Fig.3.8b we show our basic unit

and the way the coupling to the reservoirs is done. We also add a scattering matrix before

each reservoir to allow us to control the rate of the dephasing through its transmission am-

plitude ε. When ε = 0, the reservoirs are uncoupled and the transmissions and reflections

are coherent; when ε = 1, every electron enters into the reservoirs and the behavior is to-

tally incoherent. Scattering between different equipotential contours happens only at the

saddle points of the potential, which is represented by additional scattering matrices with

transmission amplitudes that control the scattering between the different puddles. These

transmission amplitudes depend on the strength of the magnetic field and on the height of

the potential barrier, as was shown by Fertig and Halperin [69]:

T =
1

1 + exp(−πz)
, (3.4)

z =
E − V0

l2c(UxUy)
1/2
,
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where E is the energy of the electron, V0 is the height of the saddle point, Ux, Uy are the

second derivatives of the potential, and lc =
√
~/ |e|B is the magnetic length; thus z can be

regarded as the dimensionless height of the saddle point. Close to the percolation threshold

E ≈ V0, we can expand the transmission and obtain the relation T ∝ 1/B ∝ ν.

Tε

µ
1

µ2

ε

(a) (b)

Figure 3.8: Schematic description of the model: (a) The potential landscape. In a strong magnetic field,

electrons follow equipotential lines (thick lines) and may undergo incoherent scattering events (wiggly lines).

Near saddle points an electron can tunnel from one equipotential line to another, with a corresponding

scattering matrix. Such a junction, including the possibility of quantum tunneling and of incoherent scatter-

ing, is represented by the elementary unit (b), characterized by transmission probability T and dephasing

parameter ε.

Each scatterer in the CC network is depicted as a blue dot in figure 3.9 and is replaced by this

basic unit cell. The result is a network with controlled dephasing. Tuning this probability ε

from zero to unity allows us to probe the crossover between fully coherent to fully incoherent

regimes.

We first solve numerically for ρxx and ρxy for a network of size L×L (Fig. 3.9), for different
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values of the average transmission though a saddle point T , and decoherence parameter ε.

ρxx ≡ (1−T )/T is determined by the effective transmission T through the whole system. As

in the experiment, ρxy is determined by VH , the anti-symmetric component of the difference

between the chemical potentials (Eq.B.10 in appendix B) at the upper and lower branches of

the structure with respect to the magnetic field, which is nonzero due to the chiral nature of

the problem: ρxy ≡ VH/I, where I is the current. Since both ρxx and ρxy are exponentially

distributed, we have used a logarithmic average [42] to calculate the effective renormalized

values. The values of the saddle-point transmission probabilities T are taken from a wide dis-

tribution, with a predefined average, while the coupling to the current-conserving reservoirs

ε is taken from a delta distribution.

Figure 3.9: CC network of size 3× 3; each blue dot represents a basic unit cell with one scatterer and two

current-conserving reservoirs with entering probability ε.

In Fig. 3.10, we plot ρxx (a) and ρxy (b) as a function of the size of the system, for different

values of the dephasing parameter ε. In the insulating phase (T < Tc), and in the absence of

decoherence events (ε → 0), consistent with previous studies [41] both ρxx and ρxy increase

exponentially. In the presence of decoherence, ρxx first increases with system size (for L <

Lφ), and then saturates, as one would expect in a classical system. Surprisingly, while ρxy also

initially increases, for L < Lφ, it reaches a maximum and then decreases. For samples with

larger ε (smaller Lφ), ρxy decreases all the way to unity (all resistance values are expressed
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in units of h/e2, where h is the Planck constant and e the electron charge). Although, for

samples with smaller ε, ρxy does not reach the asymptotic regime, L� Lφ, we demonstrate,

in Fig. 3.10c, that all the curves collapse when plotted as ρxy− 1 vs L. This indeed confirms

that, independent of ε (or Lφ), ρxy scales as ρxy = 1 + cεf (L/Lφ), with f(x) ∼ 1/
√
x for

large x. This phase, where ρxy is quantized to unity and ρxx could be exponentially large, is

the elusive quantum Hall insulator phase.
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Figure 3.10: ρxx (a) and ρxy (b) from the network model as a function of network size for several

values of the dephasing parameter ε (values depicted in (b)), and average transmission of a single scatterer

< T >= 0.13. While ρxx saturates at L� Lφ, ρxy exhibits a nonmonotonic behavior. (c) Same data as in

(b), plotted as ρxy − 1, multiplied by a constant, as a function of size on a double-log scale. At large sizes,

all curves collapse onto a single curve, confirming that, for large sizes, ρxy → 1.
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While the decrease of ρxy towards unity, as the system size increases, seems surprising a priori,

one can show that it is a direct consequence of the rules of connecting resistors in series and

in parallel. To demonstrate this point, we have calculated Rxx and Rxy (the longitudinal and

Hall resistances for non-square systems) for a stack of coherent ordered squares, each of size

L0×L0, where the only decoherence scatterers are at the corners of these elementary squares

(see inset of Fig. 3.11), connected either in series (Fig. 3.11a) or in parallel (Fig. 3.11b). For

the series connection, we find that as expected Rxx increases linearly with system length L

and Rxy saturates, while, for the parallel connection, both Rxx and Rxy decrease as 1/W ,

where W is the width of the sample, with the former toward zero, again as expected, and the

latter toward unity. This same behavior is also observed for rectangular disordered network-

model systems (not shown). Both these behaviors ofRxy can be readily understood as follows.

We note that since I = TV , where V is the voltage difference between source and drain, and

Rxx = (1 − T )/T , one can write Rxy = (VH/V )(Rxx + 1). For the series connection, when

L � Lφ, one can think of the system as consisting of L/Lφ coherent segments, connected

incoherently. Thus, the voltage drop in each segment is V Lφ/L. Since the Hall voltage of

each segment is linearly dependent on the voltage drop across that segment, it scales like

1/L, and, as Rxx grows linearly with L, Rxy remains constant. On the other hand, as the

system width W increases, for constant length, Rxx decreases as 1/W , and, thus, the above

relation dictates that Rxy also decreases (because VH is bound from above by V ).

In fact, in this limit, the upper chemical potential becomes dominated by the source chemi-

cal potential, while the lower chemical potential becomes dominated by the drain chemical

potential. Thus VH/V approaches unity as the width increases. Consequently, as Rxx ap-

proaches zero with increasing width, Rxy approaches unity. (This is in contrast with the

analysis of Ref. [41], which claims that Rxy remains constant as the width increases, while

Rxx decreases toward zero, violating the above relation between Rxx and Rxy.) Thus, ρxy for

a large square of size L× L can be obtained by first making the system longer, of length L,

such that its Rxy stops changing, and then increasing its width to L, so that Hall resistance
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decreases toward unity. This observation is also consistent with the two-phase approach [70].

Figure 3.11: (a) ρxy and ρxx for ordered system (same phase and transmission value for all the scatterers)

as a function of length for system of fixed width W = 4; the green color is for T = 0.05 and the blue is

for T = 0.1. Here dephasing occurs only at the corners of the elementary squares (4 × 4 networks, plotted

as empty dots) for which ε = 1. ρxx grows linearly with the length while ρxy saturates. (b) For a system

of fixed length, as the system becomes wider, ρxy goes to unity (Cxy equals 43 and 17.6 for T = 0.05 and

T = 0.1 respectively). ρxx goes to zero as expected, with Cxx equaling 3500 and 718 for T = 0.05 and

T = 0.1 respectively.

We also compare our results in Fig. 3.12 to the experimental data. Panels (a) depict our

calculation and the experimental data [32] (inset of (a)). ρxx and ρxy are plotted as a func-

tion of the distance from the critical point (T − Tc in the theoretical curves, B − Bc in the

experimental curve). Several theoretical curves, for a system of fixed L, but of different ε (or

Lφ), are plotted, demonstrating that the quantization of ρxy in the quantum Hall insulator

phase becomes more exact as the level of decoherence increases (larger ε, smaller Lφ). Inter-

estingly, the experimental curves exhibit better quantization with increasing temperature,

which we attribute to increased decoherence.

Enhanced decoherence also explains the better quantization of ρxy for higher currents [34].

For even higher temperatures, approaching the energy gap in the quantum Hall regime,
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one observes a breakdown of the quantization in both phases – in the quantum Hall phase

and in the quantum Hall insulator phase [34, 35, 36, 39]. Another striking feature of the

experimental data [32] was the symmetry of ρxx on the two sides of the critical point,

ρxx(∆ν) = 1/ρxx(−∆ν), where ν is the filling factor, the number of electrons in the sys-

tem per available states in a Landau level (inset of Fig. 3.12b). This symmetry is also

manifested in our results (Fig. 3.12b ). In the coherent case, it can be traced to the sym-

metry of the disorder potential, which leads to Tc = 1 − Tc = 1/2. In that case, it is easy

to see [43] that since, by definition, in the fully coherent case ρxx(T ) = T /(1 − T ), then

clearly ρxx(Tc + ∆T ) = (Tc + ∆T )/(1 − Tc − ∆T ) = 1/ρxx(Tc − ∆T ). In the presence

of incoherent scattering, ρxx is given, as discussed above, by the coherent ρxx on a scale

of Lφ. The experimental deviations from this symmetry (inset of Fig. 3.12b) thus make it

possible to investigate the dependence of the decoherence length on the magnetic field and

density, providing a deeper understanding of the nature of incoherent processes at such low

temperatures.
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Figure 3.12: Theoretical (a) and experimental [32] (inset of (a)) results for longitudinal and Hall resistivity

plotted as a function of the deviation from the critical point for systems with different phase lengths (theory)

or temperatures (experiments). The quantization of Hall resistance on the insulating side improves with

increasing decoherence (theory) or temperature (experiment). Symmetry between the quantum Hall phase

and the insulating phase. ρxx on the insulating side and 1/ρxx on the quantum Hall side, experiment [32]

(inset of (b)) and theory (b). Theoretical results are for a system with finite phase length. The data is

plotted with the axis for 1/ρxx inverted (top axis), for two different temperatures (experiment) and phase

lengths (theory), demonstrating the symmetry between the two phases. The inset demonstrates that this

symmetry is obeyed in the theory for many orders of magnitude.
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3.5 Conclusion

The existence of incoherent scattering at milli-kelvin temperatures, imperative, as shown

here, for explaining the quantum Hall insulator phase, is also supported by the fact that ρxx

is still temperature-dependent, indicating that the system size is larger than Lφ. Incoherent

scattering should be explored in the context of other quantum phase transitions as well.

In particular, it may also explain other puzzling two-dimensional phenomena, such as the

apparent metal-insulator transition [71, 72] or the intermediate metallic phases observed in

the superconductor-insulator transition in disordered thin films [73] and in the quantum Hall

to insulator transition [74]. The present calculation allows quantitative determination of the

incoherence length, which is important for any possible application of mesoscopic devices.
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Conclusion

In this work we dealt with several aspects of many-body interactions in the field of mesoscopic

physics. We started with an SDFT model of a length tunable QPC. We showed that Friedel

oscillations generically develop into ELSs whose number grows with the QPC length, leading

to alternating parity in the ELS that is consistent with a periodic modulation between single-

peak and double-peak ZBAs that observed in the experiment. We showed that the periodic

character of both the ZBA and the 0.7 anomaly as a function of QPC length provides

evidence that the physics of Friedel oscillations is fundamental to these phenomena. Next

we showed that these localized states can also form in an open two-dimensional system at

the saddle points of the disorder potential. These states can contribute to low-temperature

dephasing through spin flip scattering above their corresponding Kondo temperature and

may explain the apparent saturation in coherence time observed in experiments. Last, using

the semi-classical model of a CC network with current conserving reservoirs we considered the

effect of incoherent scattering under a strong magnetic field, where we were able to control

the coherence length of the system. We showed that when taking into account incoherent

scattering the quantum Hall insulator phase becomes a stable phase.
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Appendix A

Spin Density Functional Theory

Kohn-Sham spin-density functional theory [75] is one of the most widely used methods of

electronic structure calculation in condensed-matter physics, owing to its simplicity and rela-

tively low computational complexity. The main idea is to replace the many-body Schrödinger

equation by a one-electron Schrödinger equation with an effective potential that is a func-

tional of the electron density,

(
1

2
∇2 + v(r) + u([n]; r) + vσxc([n↑, n↓]; r))ψασ(r) = εασψασ(r), (A.1)

nσ(r) =
∑
α

f(µ− εασ) |ψασ(r)|2 , (A.2)

where the σ is spin index and α stands for the set of remaining quantum numbers. f(µ −
εασ) is the Fermi distribution function. The effective potential includes a classical Hartree

potential

u([n]; r) =

∫
d3r′

n(r′)

|r − r′| , (A.3)

and vσxc is the exchange-correlation potential. In principle, this method is exact for the

calculation of the spin-density of the ground state but only an approximation for vσxc is

available. Given the best approximate in two-dimensions [48], Equations A.1 and A.2, are

solved self-consistently until the energy converges.

59



A.1 Hohenberg Kohn Theorems

Following Hohenberg and Kohn [76], we consider a collection of an arbitrary number of

spinless interacting electrons in a large box under the influence of an external potential v(r).

The Hamiltonian has the form

H = T + V + U (A.4)

where

T =
1

2

∫
∇ψ†(r)∇ψ(r)dr, (A.5)

V =

∫
v(r)ψ†(r)ψ(r)dr, (A.6)

U =
1

2

∫
1

|r− r′|ψ
†(r)ψ†(r′)ψ(r′)ψ(r)drdr′. (A.7)

For simplicity we deal only with a nondegenerate ground state. The electronic density in

the ground state Ψ is:

n(r) =
〈
Ψ|ψ†(r)ψ(r)|Ψ

〉
, (A.8)

which is a functional of the external potential. In order to show that v(r) is a functional of

n(r), we use reductio ad absurdum. Let us assume that another potential v′(r) that satisfies

v(r)− v′(r) 6= const, with ground state Ψ′ gives rise to the same density n(r). The ground

state energy will then satisfy

E ′ = 〈Ψ′|H ′|Ψ′〉 < 〈Ψ|H ′|Ψ〉 = 〈Ψ|H + V ′ − V |Ψ〉 , (A.9)

so that

E ′ < E +

∫
(v′(r)− v(r))n(r)dr. (A.10)
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Interchanging the primed and unprimed, we obtain

E < E ′ +

∫
(v(r)− v′(r))n(r)dr. (A.11)

Addition of A.10 and A.11 gives:

E + E ′ < E ′ + E (A.12)

so there cannot be two different potentials that give the same ground state density.

Next we define the energy functional for a given v(r) as

Ev[n] =

∫
v(r)n(r)dr + F [n], (A.13)

where F [n] is a universal functional for the kinetic and interaction energy

F [n] = 〈Ψ|T + U |Ψ〉 . (A.14)

For the correct density, Ev[n] gives the ground state energy. We will now show that it is also

the minimum value of Ev[n], with the condition

N [n] ≡
∫
n(r)dr = N. (A.15)

We know that the energy functional of Ψ′

Ev[Ψ
′] = 〈Ψ′|V |Ψ′〉+ 〈Ψ′|T + U |Ψ′〉 (A.16)

has a minimum at the ground state Ψ. Let Ψ′ be the ground state associated with a different

external potential v′(r). Then with equations A.16 and A.14, we obtain

Ev[Ψ
′] =

∫
v(r)n′(r)dr + F [n′] >

∫
v(r)n(r)dr + F [n] = Ev[Ψ]. (A.17)

Hence, Ev[n] is minimal relative to all other densities associated with other external potential.
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A.2 Kohn-Sham Scheme

Following [75] we consider a nondegenerate ground state. We start with an auxiliary system

of N non-interacting particles described by the Hamiltonian

Hs = Ts + Vs (A.18)

According to the Hohenberg and Kohn Theorem, there exists an energy functional

Es[n] = Ts[n] +

∫
vs(r)n(r)dr, (A.19)

whose minimization gives the ground state density ns(r). The main argument of Kohn and

Sham is that there is single particle potential vs such that the ground state energy of the

interacting system n(r) equals the ground state of the single particle auxiliary system

n(r) = ns(r). (A.20)

Thus, the equation one has to solve is

(
1

2
∇2 + vs(r))ψi(r) = εiψi(r), (A.21)

while the density is given by

n(r) =
N∑
i

|ψi(r)|2 . (A.22)

Now we need to define vs. We first define Exc as

Exc[n] = F [n]− 1

2

∫
n(r)n(r′)

|r− r′| drdr
′ − Ts[n], (A.23)

so that the energy of the interacting system Ev[n] will be given by

Ev[n] = Ts[n] +

∫
v(r)n(r)dr +

1

2

∫
n(r)n(r′)

|r− r′| drdr
′ + Exc[n]. (A.24)

According to the Hohenberg Kohn Theorem, the ground state density of the interacting

system minimizes Ev[n]; thus

δEv[n]

δn

∣∣∣∣
n0

= 0 (A.25)
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δEv[n]

δn
=
δTs[n]

δn
+ v(r) +

∫
n(r′)

|r− r′|dr
′ +

δExc[n]

δn
(A.26)

which define the effective potential

veff [n] = v(r) +

∫
n(r′)

|r− r′|dr
′ +

δExc[n]

δn
. (A.27)

If we solve self-consistently equation A.21 and A.22 with veff instead of vs, we will obtain

the exact ground state density of the interacting system. The ground state energy will be

given by

Ev[n] =
N∑
i

εi −
1

2

∫
n(r)n(r′)

|r− r′| drdr
′ + Exc[n]−

∫
vxc(r)n(r)dr, (A.28)

where

vxc =
δExc[n]

δn
(A.29)

is the exchange correlation potential.
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Appendix B

Detailed Calculation for a Chalker

and Coddington Network with

Dephasing

Here we present in detail the calculation of the chemical potentials and the currents for a

general system following [77]. First we start by writing the scattering equations for each

basic unit (Fig B.1) as follows:

Figure B.1: Basic unit
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 l1

r3

 = ST

 r2

l2

 (B.1)

 r2

a1

 = Sε

 r1

a2

 (B.2)

 l2

b2

 = Sε

 l3

b1

 (B.3)

ST =

 √1− t2 it

it −
√

1− t2

 eiφ, (B.4)

where t is the transmission amplitude and φ is a random phase.

Sε =

 √1− ε2 iε

iε −
√

1− ε2

 , (B.5)

where ε2 is the probability of entering the reservoir. Solving of these sets of linear equations

gives us the transmission probabilities for all the leads in the network (for the leads that act

as a current-conserving reservoir, we set the current at zero). The currents are calculated

using the Landauer-Büttiker approach. The system has a source (drain) in the left (right)

contact with chemical potential µL (µR) and N current-conserving reservoirs with chemical

potentials µi. The current into each reservoir is given by

Ii = (1−Rii)µi −
∑
j 6=i

Tijµj − TiLµL − TiRµR = 0, (B.6)

with the use of the unitarity of the s-matrix TiR = 1−Rii−
∑

j 6=i Tij − TiL substituting into

Eq.B.6; we thus obtain

Ii = (1−Rii)(µi − µR)−
∑
j 6=i

Tij(µj − µR)− TiL(µL − µR) = 0. (B.7)
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If we write all the equations in a matrix we obtain:
1−R11 −T12 · · · −T1N
−T21 1−R22 · · · −T2N

...
. . .

...

−TN1 · · · 1−RNN




µ1 − µR
µ2 − µR

...

µN − µR

 =


T1L

T2L
...

TNL

 (µL − µR). (B.8)

The left-hand matrix is conductance matrix G. Multiplying Eq.B.8 by G−1, we obtain
µ1 − µR
µ2 − µR

...

µN − µR

 = G−1


T1L

T2L
...

TNL

 (µL − µR). (B.9)

Hence the chemical potentials µi are

µi =
N∑
j=1

G−1ij TjL(µL − µR) + µR. (B.10)

The current through the sample is

I = −(1−RRR)µR + TRLµL +
N∑
i=1

TRiµi = [TRL +
N∑
i=1

TRi

N∑
j=1

G−1ij TjL](µL − µR).(B.11)

Now we can define Tco ≡ TRL and Tin ≡
∑N

i=1 TRi
∑N

j=1G
−1
ij TjL.
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[42] U. Zülicke and E. Shimshoni, “Quantum breakdown of the quantized hall insulator,”

Phys. Rev. B, vol. 63, p. 241301, May 2001.
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