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The statistics of quasienergies are analyzed for periodically driven chaotic systems and found to be similar to those of truly 
random models. These differ from the results that were obtained so far, for chaotic systems with time-independent 
Hamiltonians. The separations of the quasienergies and the A3-statistic are calculated numerically for chaotic, as well as for 
truly random models. Local statistical measures are introduced in order to investigate the repulsion of quasienergies. The 
results provide further evidence for Anderson localization in chaotic systems with Hamiltonians that are periodic in time. 

1. Introduction 

The theory of statistics of random matrices that 
was developed by Wigner, Dyson and their succes- 
sors [1] was applied extensively to the analysis of 
spectra of complicated systems. Wigner argued 
that statistical properties of spectra of com- 
plicated Hamiltonians are similar to those of 
random ones. Therefore, for such systems the 
Hamiltonian matrices can be taken from an en- 
semble of random matrices with symmetries simi- 
lar to those of the exact Hamiltonian. In such a 
description we ignore many details of a particular 
system such as the detailed interactions. We ob- 
tain a simple statistical description of general 
properties or large families of systems. In some 
sense it is similar to the general framework of 
statistical mechanics. Random matrix theory was 
very successful for the description of the spectra 
of many complicated systems such as nuclei [2], 
atoms [3] and molecules [4]. For Hamiltonians 
with no additional symmetries the random 
matrices belong to the Gaussian unitary ensemble 
(GUE). The elements of these Hermitian matrices 
satisfy a Gaussian distribution and are statistically 
independent with the requirement that their 
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probability distribution is invariant under unitary 
transformations. If the Hamiltonian satisfies time 
reversal symmetry and is therefore a real symmet- 
ric matrix, it belongs to the Gaussian orthogonal 
ensemble (GOE). Within this ensemble the prob- 
ability distribution is invariant under orthogonal 
transformations. A statistical property that is ex- 
tensively studied is the distribution P(s) of the 
neighboring level separations. For the GOE one 
finds the Wigner distribution [1, 2] 

[ (:.I) exp - 4D2 j, 

where D is the mean level spacing. The main 
feature of this distribution is the Wigner repul- 
sion, namely the fact that the probability density 
P(s), to find two neighboring levels with the spac- 
ing s vanishes for small s. For the GOE it vanishes 
linearly in s while for GUE it behaves as s 2 for 
small s. If the various eigenvalues of a matrix are 
totally uncorrelated the separations satisfy a Pois- 
son distribution, namely, 

1 e_,/o.  (1.2) e ( s )  = 

The levels do not repel, and for small separations 
between neighboring levels (s) their probability 
density approaches the constant value 1/D. This 
is the Poissonian ensemble (PE). Another statisti- 
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cal measure that is extensively used is the A 3-sta- 
tistic [5, 2, 1] 

( 1 f o 2 L [ N ( E ) _ A E _ B ] 2 d E )  A3(r  ) = min ~-~ 
A,B 

(1.31 

where r = 2L/D is approximately the mean num- 
ber of energies, the brackets ( ) denote the en- 
semble average of energies, while N(E) is the 
integrated density of states, namely, 

N ( E )  = E O ( E  - E,) .  (1.4) 
i 

Therefore, A 3 measures the fluctuations in the 
density of states. For the GOE 

1 
A 3 ( r )  = ~ [ In r - 0.0687], (1.5) 

while for the PE 

= r/15. ( 1 . 6 )  

For classical systems very complicated motion 
may be generated by simple equations of motion 
[6, 7]. For Hamiltonian systems it is interesting to 
investigate how the classical chaotic nature is re- 
flected in the behavior of the corresponding 
quantum-mechanical systems [8, 9]. It was predict- 
ed [10-12] that for chaotic systems with time- 
independent Hamiltonians Wigner repulsion takes 
place. These predictions were confirmed by 
numerical solutions for a variety of systems 
[13-14]. In particular the energy statistics satisfy 
(1.1) and (1.5). It was also established that the 
elements of the Hamiltonian matrix [15] and the 
wave functions are randomly distributed [16] for 
some model systems. For generic integrable sys- 
tems it is expected [12] and found that there is no 
level repulsion and the levels satisfy a Poisson 
distribution. The level repulsion increases with the 
stochasticity parameter, namely, the parameter 
that controls what fraction of phase space is 
chaotic [14]. A crossover between Wigner and 
Poisson statistics in such systems is found. The 

resulting distribution can be obtained in the semi- 
classical limit from a superposition of contribu- 
tions from chaotic and regular regions in phase 
space [17]. For systems with time-independent 
Hamiltonians these statistical characterizations are 
valid only in the semiclassical regime. A given 
sequence of energies will exhibit deviations from 
the ideal statistical distribution due to the finite 
value of Planck's constant h. In particular for the 
level separations of the rectangular well [18] one 
finds deviations from (1.2). It is found also that 
A3(r ) satisfies (1.6) only for r<r* while it 
saturates at a constant value for large r. It was 
pointed out by one of us [19] that when the energy 
increases and one approaches the semiclassical 
limit, the deviations of the distribution of the level 
separations from (1.2) decrease and r* increases. 
In a very instructive paper Berry [20] proved that 
r* is determined by the shortest classical orbits. 
The crossover point r* is proportional to h -(n-l) 
for integrable systems with ~ degrees of freedom, 
and to In h-1 for chaotic systems. 

In this paper we will analyze a similar problem 
for chaotic systems with time-dependent Hamilto- 
nians. In particular for periodically driven systems 
the quasienergies, rather than the energies are the 
good quantum numbers. In this work their statis- 
tics will be studied. The analysis will be performed 
in the framework of the kicked rotor model that is 
defined by the Hamiltonian 

h 2 
.,*'= 2 +  v(o) E a ( t -  ,,), (1.7) 

t l  

where p = - i  3/30 is the angular momentum op- 
erator and I is the moment of inertia. The most 
natural choice of the driving potential is 

V(O) = cos 0. (1.8) 

With this choice (1.7) generates the classical 
standard map that exhibits chaotic behavior [7, 
21]. The stochasticity parameter is proportional to 
k. The size of chaotic regions in phase space 
increases with /~ and diffusion starts at some 
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critical value. The quantum mechanical behavior 
generated by (1.7) and (1.8) is found to be very 
different from the classical one [22-25]. In particu- 
lax the diffusion in phase space is suppressed and 
the motion is quasiperiodic [23, 24]. It was shown 
[25] that the mechanism of this suppression is 
similar to Anderson localization [26]. Conse- 
quently the quasienergy states are exponentially 
localized in the same way electronic states are 
localized in disordered solids. 

In an earlier paper [27] we analyzed the distri- 
bution of separations of quasienergies of the kicked 
rotor that is defined by (1.7) and (1.8). We con- 
eluded that this distribution is Poissonian, namely 
(1.2). It is similar to the corresponding distribu- 
tion of the energies of localized electronic states in 
disordered solids [28], and supports the correspon- 
dence between these problems [25]. This distribu- 
tion is very different from the one obtained for 
time independent chaotic systems [10-14]. We 
found that quasienergy states that are localized on 
momentum states with separations that are smaller 
than the localization length repel and satisfy a 
distribution similar to (1.1). Recently Izrailev [29] 
studied a model, that is similar to some extent to 
the kicked rotor [(1.7)-(1.8)] for strongly overlap- 
ping quasienergies. These results are consistent 
with ours. In his work he studied the effect of 
changes in the symmetry on the nature of repul- 
sion, namely on the power of the probability 
density for small separations. 

In the present paper the anaTysis of the quasien- 
ergy separations will be extended to another pseu- 
dorandom model and to the corresponding truly 
random models. The statistic A 3 will be calculated 
for all these models. The main purpose of the 
paper is to compare various statistical properties 
of the quasienergies of classically chaotic or pseu- 
dorandom models defined by (1.7) with those of 
the corresponding truly random models. The out- 
line of the paper is as follows: in section 2 the 
various models will be defined, the various distri- 
butions of separations will be analyzed in section 
3 and the statistic A 3 will be calculated in section 
4. The conclusions are summarized in section 5. 

2. Models 

The models that will be investigated in this 
work are generated by the Hamiltonian (1.7) that 
describes a periodically kicked rotor. The wave- 
function ~ just before the (n + 1)th kick is related 
to the one before the nth kick via 

+ ( 0 , .  + 1) = (2.1) 

The evolution operator is 

T = e x p [ - i ' r p 2 / 2 l e x p [ - i k V ( O ) ] ,  (2.2) 

where ~" = h /1  and k = Ic/h. The form (2.2) is 
obtained by formal integration of the Schr/Sdinger 
equation with the Hamiltonian (1.7). The quasien- 
ergy states are the eigenstates of T, namely, 

T ~ , (  O, t) = A,otpo,( O, t), (2.3) 

where A~ = e -i°~ and o~ is the quasienergy. Since 
T is unitary ~ is real. The eigenstates take the 
form 

~p~,( O, t ) = e-i'~tu~( O, t ). (2.4) 

It was shown [25] that the quasienergies satisfy the 
equation 

rmum + E W, um+, = E , , ,  (2.5) 
r 

1 + + with u,, = ~(u,, + uT,), where u~, and u,, are the 
projections of u~ on the angular momentum state 
m, just before and after a kick respectively. The 
W, are the Fourier components of 

[ k  V(0)] (2.6) W ( 0 ) = - t a n  ~- , 

with the definition E = - W 0, while 

Tm= tan ½(a~- ½¢m2). (2.7) 

It was argued that if ~" is an irrational multiple of 
1r the sequence {T,, } can be considered pseudo- 
random. If  (T,,} is random (2.5) is just a one- 
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dimensional Anderson model for localization with 
diagonal disorder. If the hopping matrix elements 
Wr fall off sufficiently fast with r, all the states are 
exponentially localized. 

For  the most natural driving V(O)= cos 0 (eq. 
1.8) the W r fall off exponentially only for k < 7r. 
Numerical calculations indicate, however, that the 
quasienergy states are localized also for k > ~r. 
Recently Shepelyansky [30] reformulated (2.5) so 
that the hopping is of short range, namely, 

}-~.J~(k/2)sin½(t0- ½rm2-~rr)fim+r = 0, (2.8) 
r 

where fi, are the Fourier components of fi,~(0) = 
u-(O) exp [ - ½k cos 0] and Jr are the Bessel func- 
tions of the first kind. Even if all phases ½rm 2 can 
be considered random (2.8) is an unexplored 
Anderson model with correlations between diago- 
nal and off-diagonal randomness. In what follows 
this type of kicked rotor, defined by (1.7) and (1.8) 
will be called model C [since V(O) = cos 0]. 

For  a transparent comparison with localization 
theory it is useful [25] to define a model, that will 
be called model A, in what follows, 

2 arctan (k cos 0 - E ). v ( o )  = - (2.9) 

In all the calculations we will take E = 0. The 
resulting hopping in the corresponding Anderson 
model (2.5) is to nearest neighbors only, namely, 

W r = ½kSrrl, 1. (2.10) 

Moreover, if the argument of the tangent in (2.7) 
can be considered random this is just the Lloyd 
model for localization [31] where the localization 
length ~ is known analytically [32, 33] and satisfies 

2k coshy = [ ( E -  k)2 + 111/2 

+[(E+k)2+l] 1/2, (2.11) 

where 3' = 1/~. It was confirmed that model A has 
the same localiTation length as the corresponding 
random model [25]. 

Since the quasienergies are localized on angular 
momentum states there is a preferred represen- 
tation of T. The matrix dements of the evolution 
operator T of (2.2) for model C in the angular 
momentum representation are 

• ~lm--rl, lk)"  r £  = exp ( - , )  Jfm-r   

(2.12) 

For  model A with E = 0 these are, 

T~r = exp ( - irmZ/2) 

l+d;V ( 1- + × 
k / - ~ , "  " 

(2.13) 

The model (2.5) is an Anderson model for lo- 
calization if the argument of the tangent in (2.7) is 
replaced by a random variable uniformly distrib- 
uted in the interval (0, 2~r). We define a random 
model AR, corresponding to A by replacing arm 2 
in (2.7) and (2.13) by a sequence of random num- 
bers uniformly distributed in the interval (0, 2~r). 
In this case (2.5) is exactly the Lloyd model. In a 
similar way the model CR is defined as the ran- 
dom model corresponding to C. In what follows 
the statistics of the quasienergies of the models A 
and C will be compared with those of the corre- 
sponding random models AR and CR respec- 
tively. A property of the evolution operator T that 
is common for all models defined in this section is 
that it is a band matrix in the angular momentum 
representation. A band matrix is a matrix where 
all the large elements lie in a band around its 
diagonal. The matrix elements T~r fall off ex- 
ponentially with Im-r I, the distance from the 
diagonal (see (2.13)) and those of TmCr fall off even 
faster (2.12). This property distinguishes the 
chaotic systems with time dependent Hamiltoni- 
ans defined by (1.7) from chaotic systems with 
time-independent Hamiltonians where all matrix 
dements  can be of the same order of magnitude 
[10] and therefore the statistics of their energy 
levels are similar to those predicted by random 
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Fig. 1. The amplitude of two quasienergy states of model C as a function of angular momentum for k = 5 and ~- = 2. The mean 
exponential decay of each state is displayed by a heavy line. The average decay for a sample of states is displayed by the dashed line. 

matrix theory [10-15]. In this theory it is assumed 
that the matrix elements satisfy a Gaussian distri- 
bution, with the only constraint that it has the 
same symmetries as the Hamiltonian [1]. 

The quasienergy states of all these models are 
exponentially localized in angular momentum i.e. 

u m -  e x p [ - 3 , 1 m - m , [ ] .  In fig. 1 two states of 
model C are presented for k = 5. The best fit of 
the averaged localization length ~ = 1/~,, is ~ = 
9.59 + 0.12. The error results from the fact that 
the average was performed over a finite number of 
eigenstates. These eigenstates have different local- 
ization lengths and even somewhat different shapes 
as is obvious from fig. 1. The resulting standard 
deviation of the localization length is o~ = 5.44. 
Note  that the states are localized although k > ~r. 
For  the corresponding random model CR we find 
for k = 5, ~ = 7.48 + 0.08 and ot = 4.09. Although 
for both models the states are localized the local- 
ization lengths are different [34]. In what follows 
we will be interested to compare between various 
results of models C and A with comparable local- 
ization lengths. For model A we find for k = 9, 

= 8.91 + 0.26 and o~ = 6.44. This is equal, within 
the numerical error, to the averaged localization 
length of the model AR for k = 9, that is found 
from (2.11) to be ~ = 9.02. The averaged localiza- 

tion length of model A is equal to the one of AR 
(that is equal to the one of the Lloyd model) also 
for other values of k [25]. Note also that the 
fluctuation in ~ is of the same order of magnitude 
as ~ itself. (See also ref. 30.) 

3. The distribution of quasienergy separations 

The evolution operator T is represented by an 
infinite matrix in the angular momentum represen- 
tation. The matrix elements are given explicitly in 
section 2 for the various models studied in this 
work (see (2.12) and (2.13)). In order to diagonal- 
ize numerically the matrix it was divided into 
200 × 200 non-overlapping blocks having a com- 
mon diagonal with T. These blocks were diagonal- 
ized separately. The matrix T is a band matrix 
and its eigenstates are exponentially localized. 
Consequently states that are localized far away 
from edges of the blocks compared with the local- 
ization length are calculated accurately. Only such 
states are selected for the statistics described in 
this work. The numerical details of this selection 
will be described at the end of this section. In fig. 
2 we present the distribution of quasienergy sep- 
arations within such a block. It is approximately a 
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Poisson distribution for all models defined in sec- 
tion 2 as expected from localization theory. One 
can see however that as k increases the deviations 
from the Poisson distribution increase. This re- 
suits from the finiteness of the block. As k 
increases the localization length grows and conse- 
quently a larger fraction of the quasienergies repel 
each other, since they are localized at momentum 
states that are separated by distances of the order 
of the localization length or smaller. In the infinite 
matrix T this fraction vanishes and one expects to 
obtain a Poisson distribution. 

Since the quasienergy spectrum is dense one is 
forced to study a local spectrum of some type. The 
quasienergies of finite blocks form a local spec- 
trum determined by the truncation to the 'block 
size. In earlier work [27] a local spectrum was 
obtained for families of quasienergies. The analy- 
sis that was performed there for the model C 
kicked rotor will be extended to all the other 
models that were defined in section 2. Families 
F ~  are formed from quasienergy states that are 
localized in an interval of length N in angular 
momentum space, on m states with equal spacing 
N/m.  For this purpose we define a quasienergy 
state to be localized on a certain angular momen- 
tum state if its wave function is maximal for that 
angular momentum. This is obviously an ap- 
proximate concept due to strong fluctuations of 
the wavefunctions as it can be seen in fig. 1. 
Therefore, on some momenta two quasienergy 
states or more are localized while on some no such 
state is localized. Consequently following their 
definition the families F ~  can contain a variable 
number  of states. In our previous work families 
with m, m - 1 or m + 1 states were used for the 
analysis of the separations in model C. Each family 
Fff was ordered in quasienergy to and the sep- 
arations between the adjacent quasienergies were 
calculated. The results that were obtained for vari- 
ous families were accumulated, leading to the dis- 
tribution of the quasienergy separations. It was 
found that the repulsion of quasienergies increases 
with k, and a dip at zero in the distribution of the 
separations develops. This was interpreted as a 

result of the general increase of the localization 
length with k. For  fixed N as ~ increases a larger 
fraction of quasienergies is strongly coupled and 
therefore repelled. A similar tendency was found 
also for all the other models that were introduced 
in this work. In fig. 3 we display the distribution 
of the quasienergy separations /3(s) for various 
models introduced in the present work. We take 
m = 7 and keep k, and therefore ~ fixed, for each 
model. All these models share the common feature 
that the repulsion decreases with N. The reason is 
that for fixed ~ the fraction of quasienergies with 
large overlap among themselves decreases with N 
(for model C it was reported in ref. 27). In particu- 
lar we find that for models C and A the behavior 
of /3(s) is qualitatively similar. Moreover, it is 
similar to the behavior of their random counter- 
parts CR and AR. This similarity is expected if it 
is assumed that Anderson localization takes place 
for all these models. For models C and CR (figs. 
3a and 3b) the strength of the driving is k = 3 
while for A and AR (figs. 3c and 3d) it is k = 4.5. 
For  all these models the localization length is 
approximately equal and takes the value ~ = 4.5. 
This enables one to compare /~(s) found for the 
various models. It depends mainly on the localiza- 
tion length. When N >> ~ one expects to find 
nearly no repulsion and indeed for N = 91, where 
N/2~ = 10 it is found that /3(s) is very close to a 
Poisson distribution. The deviations of the calcu- 
lated distribution /3(s) from the Poisson distribu- 
tion with the same mean spacing D are much 
larger than expected from purely statistical 

fluctuations (as in ref. 18). For the sake of a 
quantitative comparison we define X 2 = X 2 / X 2  , 

where X 2 is the weighted square deviation of P(s) 
from the Poisson distribution, and X~ z is the mean 
value that X 2 would take if the deviations would 
result only from statistical fluctuations. The weight 
of each bin in the calculation of ×2 and ×~ is the 
inverse of the variance of the number of sep- 
arations in this bin, if the fluctuations were purely 
statistical. Therefore Xs 2 + 1 is equal to the num- 
ber of bins, namely 15, in our calculation. We 
found that ~ =  16.69 and ;~2= 13.97 for the 
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pseudorandom models C and A while X~R = 6.54 
and ~2  R = 2.58 for the corresponding random 
models. It is clear that for the pseudorandom 
models the deviation o f / ; ( s )  from the Poissonian 
distribution is considerably larger (for most values 
of s) than for the corresponding random models. 
Consequent ly/5(s)  that was found for the random 
models CR and AR is smoother than that of the 
pseudorandom ones (C, A), as is obvious from 
fig. 3. 

The repulsion depends on the number of levels 
that are localized on m sites. In the analysis 
presented in fig. 3 only families consisting of 
exactly m states were taken into account. For 
families containing m' quasienergies, with m' that 
is not necessarily equal to m it is expected that the 
repulsion increases with m'. In fig. 4 the distribu- 
tion of separations/3(s)  is plotted for the model C 
with k = 3 ,  N = 4 2 ,  m = 7  and m ' = m + l ,  m 
and m - 1 and indeed such a trend is found. For 
the other models a similar behavior was found in 
agreement with expectations. Because of the sys- 
tematic dependence o f /5 ( s )  on m' we have taken 

into account only families with m ' =  m in the 
analysis presented in fig. 3. 

We conclude this section with some details of 
the numerical calculations. As was mentioned, the 
matrix T was truncated into 200 × 200 blocks 
around the diagonal. Due to localization one ex- 
pects that the states localized inside each block 
will be calculated accurately and numerical errors 
will occur for states localized on the edges of the 
blocks. The matrix T is unitary, therefore the 
absolute value of all its eigenvalues A~ should 
satisfy I A,~[ = 1. At the edges, the unitarity is 
destroyed and consequently the calculated IA ~1 
differ from unity. Therefore an eigenvalue A~ of a 
block is identified as an incorrect one if 
[IA~,I 2 _  11 > e. We checked for some cases that 
indeed these eigenvalues correspond to states that 
are localized on the edges of the blocks. The 
diagonalization of the blocks was performed using 
the IMSL routine EIGCC. In order to check the 
routine, Tm 2 was replaced by rm in the matrix T 
(eq. (2.12)) of model C. This becomes an exactly 
solvable incommensurate model [35]. We found 
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indeed good agreement with the exact solution of 
eigenvectors corresponding to eigenvalues satisfy- 
ing I[A ~l 2 - 1[< e. Throughout the calculations of 
this section the allowed error in the quasienergies 
was e = 0.0083 which is approximately half the 
smallest bin in the insert of figs. 3 and 4. The size 
of this bin is 1/50 of the mean separation. The 
results do not change qualitatively with small vari- 
ations in e. The differences involving wrong eigen- 
values are eliminated after the assignment of the 
eigenvalues to the families F~. This avoids intro- 
duction of a bias in the statistics by the elimina- 
tion. The quasienergy separations are calculated 
rood 2~r namely as angles on a circle. The statistics 
are such that each of the histograms in fig. 3 
contains 3900 differences, while each of the histo- 
grams of fig. 4 contains 2900 differences. The size 
of each bin in the histograms is D/5 where D is 
mean quasienergy spacing. The distribution within 
the first bin is displayed in the inserts with the bin 
size of D/50. We set z = 2 in all the numerical 
calculations for models C and A. The distributions 
P(s) and /5 ( s )  are normalized to be the probabili- 
ties to find a separation in the bin that includes s. 

4. The A 3 - s t a t i s t i e  

The A3-statistic measures the departure of the 
spectrum from uniformity. From its definition (1.3) 
it follows that it is a two-point function and 
therefore it is expected to serve as a useful mea- 
sure of correlations in the spectrum. In this sec- 
tion it will be evaluated for the models that were 
defined in section 2. Performing the minimization 
in (1.3) yields 

1 
A3(r)  = ~-~ 

2L 
+12( rD)3  f ° E)EdE 

X foZLN(E)dE). (4.1) 

Using the definition (4.1) it can be transformed by 

8-  

6- 

4- 

2- 

(A) / (b) 
. . . .  (AR) / 

k=2, 

40 80 120 160 O I 0 0 40 80 120 160 

Fig. 5. The statistic A3(r ) for a) models C and CR; b) models A and AR. The heavy lines are the Poisson (1.6) and GOE (1.5) 
values. 
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straightforward algebra into a form convenient for 

numerical calculations, namely, 

A3(r  ) = 
1 R 2R R 

- r--D ~-" ( 2 i - 1 ) E i + - r - D  EEl  
i=1 i=1 

4 [ R ] 2 3 [" R 2 ]2 
(tO) 2 i~=l gi (rO)4[ i~=lEi ] 

6 Ei 2 • E i . (4.2) 
+ ~ - ~  i i 

The brackets denote the average over an ensemble 
of sequences of R levels (Ei}/a=l (R may differ 
for various sequences). The mean spacing of the 
levels is D and r is approximately the average 
number  of levels in a sequence, defined as r = 
2 L / D .  

The A3-statistic was computed for the various 
models defined in section 2 using (4.2). The matrix 
is divided into blocks and each block is diagonal- 

ized separately as described in section 3. The sums 
in this formula are taken over the sequence of 
quasienergies in a single block. The ensemble 
average is performed by averaging the results over 

various blocks. The resulting values of A3(r ) are 
presented in fig. 5, for an ensemble of 110 blocks. 
The values obtained for the pseudorandom models 
C and A are very close to those of the correspond- 
ing random models CR and AR. This is an ad- 

ditional similarity between the random (CR, AR) 
and the pseudorandom (C, A) models. The values 

of A 3 differ from those of a pure Poisson distri- 
but ion and the deviation increases with r as is 
obvious f rom fig. 5. This deviation will be investi- 
gated in some detail in what follows. In the calcu- 
lation of A 3 we used e = 0.1 rather than the much 
smaller value that was used in the previous sec- 
tion. The reason is that A 3 is not so sensitive as 
/3 (s)  to the values of the individual eigenvalues. In 
this way the fraction of eigenvalues that were 
eliminated was reduced. The plot in fig. 5 
terminates at r = 80 for models A and AR for 
k = 9 due to elimination of eigenvalues with in- 
sufficient accuracy. Because of computer time 

limitations A 3 was not calculated for k = 1 for A 
and A R  models. The deviation of A 3 from the 
behavior  of a Poisson distribution is common for 
all the models that are analyzed in this work and 
is of a similar nature. It  is rigorously established 
[28] that the energy (E)  spectra of models like 
(2.5) exhibit Poisson distributions. The reason is 
that  energies of states that are exponentially local- 
ized far away do not repel each other. This argu- 
ment  should hold also for the quasienergies of the 
model AR. We found however that its A 3 deviates 
significantly from the A 3 of the Poisson distribu- 
tion, and its deviations are similar to those of the 
other models. This deviation increases with r. For 
large k, A 3 tends to saturate at a constant value 
rather than increasing linearly as for a Poisson 

distribution. This behavior of A 3 is understood in 
the f ramework of the localization picture. For 

small r the contributions to A 3 arise from quasi- 
energies with small separations. Such quasien- 
ergies are not repelled and therefore they belong 
to states that are localized on momenta  that are 
separated by distances that are large in compari- 
son with the localization length. Such states are to 
a good approximation statistically independent 
and consequently satisfy a Poisson distribution. 
Therefore for small r the statistic A 3 is close to its 
Poissonian value. When r is increased there is a 
considerable contribution from states that are re- 
pelled. Such states are localized on nearby 
momenta ,  namely those that are in an interval of 
the order of the localization length and therefore 
these are correlated. For any given quasienergy 
the fraction of quasienergies it repels vanishes for 
the infinite matrix, but is finite for any finite 
block. Since the size of blocks that we can di- 
agonalize is limited we introduced a simulation 
model that demonstrates this effect and displays 
the gross features exhibited by A 3 of the models 
that were investigated in this work. 

The simulation model (SM) consists of N quasi- 
energies divided into M =  ]V/~ families. Each 
family consists of (quasienergies with equal spac- 
ing D = 2~r/(. The various M families are totally 
uncorrelated. The family size ( is a parameter of 
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Fig. 6. The statistic ~3( r )  for the simulation model--(continuous lines), decoupled (k = 0) model C (dashed line) and Poisson 
distribution (heavy line). The number of quasienergies is a) /¢ = 200, b) N = 400. The arrow marks r*. 

the model and simulates the localization length. 
The A 3 of this model for 37 = 200 is displayed in 
fig. 6a for various values of ( that are approxi- 
mately equal to values of ~ for which the other 
models were analyzed. In the SM there is a Pois- 
son like behavior for small r, namely, A 3(r) is a 
straight line with a slope of 1/15. For large r it 
approaches A3( r )=cons t .  Such behavior char- 
acterizes the equally spaced spectrum as can easily 
be seen substituting E i = Di in (4.2) leading to 
(see also ref. 4) 

a 3 ( r )  = ~ ( 1  - r - 2 ) .  (4.3) 

For  large ( the crossover between the two regimes 
is a well-defined point r*.  The sharp crossover 
results from the special property of the SM that 
quasienergies are either totally uncorrelated or 
exactly equally spaced. For the other models this 
crossover is smooth. In both cases A 3 saturates at 
a constant value as is clear from comparison be- 
tween fig. 5 and fig. 6a. For large ( there is even 
quantitative agreement and the value found for 
( =  9 in the SM is close to the one obtained for the 

C and CR models with ~ = 9. From fig. 6a we note 
also that for k = 0 where the quasienergies are just 
( l rm2)mod2~r ,  A 3 is close to its value for a 
Poisson distribution. 

The comparison between fig. 5 and fig. 6a leads 
us to believe that the SM accounts for the main 
cause for the deviation from the Poisson distribu- 
tion. Therefore we study the effect of block finite- 
ness in the framework of this model. For this 
purpose za 3 was calculated for 37 = 400 and the 
results are presented in fig. 6b. The plot has a 
similar form as fig. 6a but with all the scales 
increased by a factor of two. In particular the 
crossover point is 

r *  = / ~ ( ( )  N, (4.4) 

where / i ( ( )  is independent of 37. For example 
/2(~= 9 ) =  0.128. In general r* - -37 /~ ,  since for 
r < 5 7 / (  mainly quasienergies belonging to differ- 
ent families contribute to A 3, while for r > N/~ 
also quasienergies that belong to the same family 
must contribute to A 3. Consequently, / i (()  --- 1 / ~  
This implies that r* ~ oo in the limit 37 ~ ~ .  In 
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fig. 7 the statistic A 3 is displayed but the sums in 
(4.2) are over quasienergies belonging to pairs of 
blocks. The ensemble contains 55 independent 
pairs. Comparison with fig. 5 reveals a scaling 
similar to the one found for the SM. We repeated 
the calculation of A 3 taking the sums in (4.2) over 
quasienergies of ~, blocks and the ensemble aver- 
age over 110/~ groups of blocks. The results are 
shown in fig. 8 for model C with k = 2 .  The 
Poissonian behavior is approached as p increases. 
This regrouping of blocks is in some sense similar 
to the increase of the block size. This scaling of A 3 
with the block size leads us to believe that it 
approaches true Poissonian behavior in the limit 
of the infinite T matrix. 

Fig. 7. Same as fig. 5a bu t  wi th  sums in (4.2) over  pai rs  of 
b locks .  

5 .  C o n c l u s i o n s  

121 A3( r ) 
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Fig. 8. The  s ta t i s t ic  A 3 ( r  ) of model  C for k = 2, summing  
over  p blocks.  

In the present work it was demonstrated that 
the statistics of quasienergies for various systems, 
with time dependent Hamiltonians, are similar to 
those of models for localization of electrons in 
disordered solids. This provides further evidence 
for Anderson localization in certain dynamical 
systems, with time-dependent Hamiltonians, such 
as (1.7). This is in agreement with earlier work, 
where the correspondence between these problems 
was proposed [25]. In particular the spectrum of 
the quasienergies satisfies Poissonian statistics, as 
reflected in the distribution of their separations 
and in the A 3 statistic. The deviations from Pois- 
sonian statistics, that are found in the numerical 
calculations are related to the block truncation of 
the matrix of the evolution operator. Although the 
kicked rotor is chaotic in the classical limit, the 
statistics of its quasienergies are very different 
from those found so far, for systems with time 
independent Hamiltonians. These statistics result 
from Anderson localization in angular momen- 
tum, that takes place for the kicked rotor. Quasi- 
energies that are localized in angular momentum 
within distances of the order of the localization 
length or smaller are repelled. In this work we 
studied two pseudorandom models, defined by the 
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Hamiltonian (1.7), as well as two truly random 
models. A remarkable, detailed and quantitative 
similarity between the statistics of the quasien- 
ergies of these models was found. These are de- 
termined primarily by the localization length. 
Therefore we conclude that the behavior of these 
systems is controlled mainly by Anderson localiza- 
tion. There are, however, differences in quantita- 
tive details between the pseudorandom and the 
corresponding random models. Such differences 
are, for example, the deviation from the Poisson 
distribution for finite systems (section 3) and the 
value of the localization length (section 2 and ref. 
34). Differences of this nature should be investi- 
gated in detail in further studies. 
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