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We consider a classical Hamiltonian H = L, + M, + L,M,, where the components of L and M satisfy Poisson brackets 
similar to those of angular momenta. There are three constants of motion: H, L* and M*. By studying Poincare surfaces of 
section, we find that the motion is regular when L2 or M* is very small or very large. It is chaotic when both L* and M2 have 
intermediate values. The interest of this model lies in its quantization, which involves finite matrices only. 

Classical Hamiltonian systems with N degrees of 
freedom have two essentially different types of 
orbits [I, 21. “Regular” orbits, such as those of 
integrable systems, are multiply periodic in time. 
They lie on N-dimensional tori in phase space and 
neighboring orbits separate at a rate which is 
roughly linear in time. On the other hand, “irreg- 
ular” or “chaotic” orbits explore higher dimen- 
sional domains of phase space (possibly the entire 
energy hyper-surface) and neighboring orbits 
separate exponentially. Intermediate “pseudo- 
integrable” orbits may also exist [3]. 

There has been considerable controversy 
whether a similar distinction exists in quantum 
theory [4]. Classically chaotic systems, such as the 
HCnon-Heiles oscillator [5] or the Sinai billiard [6, 
71 have quantum analogs with an in$inity of states. 
Numerical simulations involving a truncation 
which leaves only a finite number of states may 
perhaps miss features which are essential for a 
meaningful comparison with the corresponding 
classical system [8]. In fact, any system with a finite 
number of states is almost periodic [9, lo]. 

The purpose of this paper is to present a classical 
system having both regular and chaotic motions. 
The quantum analog of this system is well defined 
and involves only a finite number of states. Its 
behavior will be discussed in a future publication. 

Our system consists of two rotators, with angu- 
lar momenta L and M respectively. (Here, a “rota- 
tor” means any physical system with dynamical 
variables having the same Poisson brackets- or 
commutators - as the components of angular mo- 
mentum.) The Hamiltonian is 

H=A(L,+M,)+BL,M,, (1) 

where A and B are numerical constants. Ham- 
iltonians with a similar structure have been used to 
describe the interaction of quasi-spins in nuclear 
physics [l l] and of pseudo-spins in solid state 
physics [ 121. 

Although it is possible to write explicitly 
L = q, x p, and M = q2 x p2, where qi and pi are 
conjugate canonical variables, it is far more con- 
venient to consider a reduced phase space with 
only six dynamical variables L and A4, having 
Poisson brackets 

]&?I, Ll = c %!nsLs > (24 

PL Mnl = ~6ms~s 7 (2b) 

[L,, M”l = 0. PC) 

(As usual, t,, = + 1 if mns is an even/odd per- 
mutation of 123, and E,, = 0 if any two indices are 
equal). 

0167-2789/83/0000-0000/%03.00 0 1983 North-Holland 



434 M. Feingold and A. Peres/Regular and chaolic motion of coupled rotators 

The variables L and M are not canonical but 

their reduced phase space can easily be handled by 

means of Martin’s generalized dynamics [13]. In 

that formalism, Poisson brackets 

[F, G] = c @““(~F/~zm)(~G/~zn), 

where the ylmn are functions of 

are defined as 

(3) 

the dypamical 

variables zk. In the present case, we take 

zm = L rn, 

and 

(44 

zm+3 = M In, 

for m = 1,2,3. We then have 

(4b) 

m!_ 
rl -- )Inm = c tmnsLs, 

and 

(54 

U 
m+3,n+3 _ 

- -rl 
n + 3,m + 3 _ 

- pY4s, 

for m, n = 1,2,3. All other ylmn vanish. 

The Hamiltonian evolution is 

(5b) 

dL/dt = [L, H] , (64 

dM/dt = [M, H] , (6b) 

or, more generally, dF/dt = [F, H] for any func- 

tion F(L, M). It can be shown (see appendix) that 

this Hamiltonian evolution is volume preserving 

(Liouville’s theorem is valid in the reduced phase 

space) but lower order Poincare invariants do not 

seem to exist, because the q” matrix is singular. 

In the 6-dimensional reduced phase space, there 

are three constants of motion: H, L2 and M2. 

There may be more if A = 0 (then L, and M, are 

constant) or B = 0 (then L, and M, are constant). 

If AB # 0 we can rewrite 

H=L,+M,+L,M,, (7) 

by choosing A-’ as the unit of time and AB-’ as 

the unit of angular momentum. The KAM theo- 

rem [l, 21 then suggests that the motion should be 

regular if L* and M* are either very small or very 

large, when expressed in units of AB-’ as above 

(because, in these units they are very small or very 

large if B +O or A +O, respectively). Our numerical 

simulation indeed confirms this expectation, and 

also shows that intermediate values of L2 and M* 

lead to chaotic motion. 

The calculations were performed in double pre- 

cision (16 digits) with a IBM 370/168 computer. 

The differential equations 

dL,Jdt = - Ly, (84 

dL,ldt = L, - LzMx , (8b) 

dLzldt = L,M, , (8~) 

dM,ldt = - M?, (84 

dM,,/dt = M, - L.,M, , (8e) 

dM,ldt = L.xM)> , (80 

were integrated by a Runge-Kutta method (sub- 

routine DVERK of the IMSL library [14]). The 

time step At was chosen so that any reduction of 

At did not cause an appreciable change in the 

results. To test the accuracy of the calculation, we 

checked the constancy of H, L2 and M2. 

Poincare surfaces of section were obtained by 

plotting M,, versus L, for Ly = 0, as in figs. 1 and 

2. We have, at any point on such a section (for 

given H, L2 and M2) 

L, = * (L2 - Ly ) (9) 

M, = {(H - LJL, f [(l + L:)(M2 - M;) 

- (H - L;)‘]“‘)/(l + L:) , (10) 

and 

M, = H - L; - L,M, . (11) 

The + signs in (9) and (10) are independent so that 

each surface of section may contain up to four 

distinct classes of points, belonging to different 
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Fig. 1. Poincart? surface of section with H = 0, Lz = M* = 0.65, 

L, = 0. There are both regular and chaotic trajectories. (All the 

isolated dots belong to the same trajectory.) 

regions of phase space. Figs. 1 and 2 were obtained 
by taking minus signs in both (9) and (lo), i.e., 

L, < 0 (1W 

and 

l&f, < L,M, . W) 

Note that all values are real. Therefore, because 
of the square root in (9) and (lo), the physical 
region is finite. It must satisfy both 

IL,1 < L 

and 

(13) 

(1 + L:)(M2 - M;) > [H - (L2 - Ly’y . (14) 

Moreover, for given L2 and M2, the value of H 

itself is bounded: 

H2 < 

i 

(L + M)2 > ifLM<l, 

’ (L2+ 1)(M2+ l), ifLM> 1. (15) 

(Proof. By symmetry, the largest value of IHI, for 
given L2 and M2, is obtained when L, = My = 0 

and, moreover, both L, and M, have the same sign 
as L,M,. Assume that all these signs are positive. 
We rewrite (7) as 

H = (L2 - L;)“2(M2 - Mf)“2 - L,M, (16) 

and set dH/aL, = aH/BM, = 0. This gives two 
algebraic equations for L, and M,, whence (15) 
follows.) 

Fig. 2. Same as fig. 1, but with H = - 3.9 and L2 = M2 = 4. 
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Both fig. 1 and fig. 2 are symmetric with respect 

to a reflection of the MY-axis. This is due to the fact 

that M,.+ - M, and L,+ - L, (here Ly = 0) corre- 

spond to a time reversal, as easily seen from (8). 

Fig. 1 is also symmetric with respect to 

Lx--+-L,, but fig. 2 is not. This is due to the 

following fact. The Hamiltonian (7) is invariant 

under a rotation of 180” around the Lz and MZ axes 

(namely L,y+ - L,, L,v-+ - L,, M,-+ - M, and 

My+ - M.,). However, the criterion (12b) is not 
invariant under that transformation. The figure 

which is symmetric to fig. 2 would be obtained by 

taking the opposite criterion, and belongs to a 

different region of phase space. 

Fig. 1, however, which corresponds to H = 0, 
has an additional symmetry, namely a combined 

rotation of 180” around the LX-axis and the 

MY-axis (L,+- L,, L,+- L,, M,-+- M, and 

M;+ - M,). This rotation makes H + - H and 

therefore it does not affect the surfaces of section 

for which H = 0. 
Fig. 3 shows the behavior of surfaces of section 

for different values of L* and M2, and fixed H. The 

value H = 0 was chosen for symmetry. It also gives 

the largest physical region in the Lx-My plane. As 

expected, very small or very large values of L* or 

M* give (mostly) regular orbits; intermediate val- 

ues give (mostly) chaotic orbits; and there is a 

Fig. 3. Behavior of the surfaces of section for different values 
of L* and M’, and fixed H = 0. In the hatched region, there 

were both regular and chaotic trajectories. In the regions 
labelled Reg and Ch, we found only regular and chaotic 

trajectories, respectively. 

transition region where both types of orbits co- 

exist, as in fig. 1. 

Fig. 3 was constructed as follows. First, we note 

that each point of fig. 3 corresponds to an entire 

surface of section such as fig. 1. A point in fig. 3 was 

labelled regular, chaotic, or intermediate, by taking 

four orbits starting at equidistant points on the 

L,-axis. When all four orbits were regular, or all 

chaotic, the corresponding point in fig. 3 was 

dubbed regular or chaotic, respectively. Otherwise, 

it was “intermediate”. This admittedly crude 

procedure - which nevertheless required many 

hours of computer time - was naturally unable to 

detect small chaotic domains in regular surfaces of 

section, and vice versa, although we do expect such 

domains to exist arbitrarily close to any point [ 151. 

Therefore fig. 3 should be understood as having 

only qualitative validity. 

By a similar procedure, we have tested the status 

of surfaces of sections for fixed L’ = M* = 4 and 

variable H (see, e.g., fig. 2). We found only regular 

orbits for 4 < IHI < 5, mostly chaotic ones for 

IHI < 3 and orbits of both types for 3 < \H ( < 4. 

Note that 5 is the maximum value of H, by virtue 

of eq. (15) and that the classification of orbits must 

be independent of the sign of H, because of the 

symmetry mentioned above. The importance of 

these results lies in the possibility of testing their 

quantum analogue, which we briefly discuss below. 

In the quantized version of this model, we have 

L’ = h*f(I + I) and M* = h’m(m + l), where 1 and 

m are integers. The dynamical variables L and M 

are represented by hermitean matrices of order 

21 + 1 and 2m + 1, respectively (in fact, by stan- 

dard numerical matrices [16] preceded by a factor 

h). The Hamiltonian H, which involves the direct 

product of these matrices, is itself a matrix of order 

(21 + 1)(2m + 1). Obviously, the order of these 

matrices becomes very large in the semiclassical 

limit (L and M fixed, h+O so that I and m are 

large). By analogy with the results of ref. 8, we 

expect the quantum energy spectrum to consist of 

families of nearly equidistant levels if the classical 

motion is regular, and to be “random” (possibly 

with some level repulsion) if the classical motion is 
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chaotic, Detailed numerical results will be the 
subject of another publication [17]. 
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Appendix A 

We shall now prove that the equations of motion 
(6) are volume preserving (Liouville’s theorem is 
valid in the reduced phase space) but not area 
preserving, because the q”” matrix is singular. It is 
convenient to use notations similar to those of 
general relativity: Repeated indices will involve an 
implicit sum and U,, will mean aU/azm. 

From (3) and (6), the equations of motion can 
be written as 

dz”/dt = q”“H., . (A.11 

Consider two neighboring points zm and zm + cm. 
The linearized deviation equation is [18] 

dcm/dt = M;ck, (A.3 

where 

Mkm = (‘l mH,n).k = ‘l mn,kH,n + rl mnH,nk . 

Eq. (A.2) can be integrated as 

C(t) = S(tK(O) 7 

where the transfer matrix S(t) satisfies 

dS/dt = MS 

(A.3) 

(A.4) 

(A.3 

and S(0) = I. We have 

d(det S)/dt = (det S) Tr(S-’ dS/dt) , 

=(detS)TrM. 

64.6) 

(A.7) 

Now, from (A.3), 

Tr M = q m,,H,, + q mnH,,, . 64.8) 

The first term on the right-hand side vanishes in 
our case, by virtue of (5) and the second term 
vanishes always, because q”” is antisymmetric. It 
follows that det S = 1 is constant, so that the 
motion is volume preserving. 

Are there lower order Poincare invariants? We 
shall show that it is possible to prove in general an 
area preserving theorem, which unfortunately is 
vacuous in our case because the “area” as defined 
in it necessitates a nonsingular matrix v~. 

Consider a third neighboring point zm + 0”. We 
define the area spanned by the infinitesimal vectors 
[ and 8 as 

A = rl,,i”@ , (A.9) 

where v,,,,, is defined by q,~“” = S; (provided that 
the matrix q” is not singular). Eq. (A.9) coincides 
with the ordinary definition of an area in the case 
where the z” are the standard canonical variables. 
Our problem is to show that dA/dt = 0. 

We have, from (A.l), 

d?,ldt = %&lksH,s . (A. 10) 

Combining this with (A.2) (A.3) and similar equa- 
tions for d@/dt, we obtain, after some rear- 
rangement 

dA idt = H,,i”e”(?mn,k’l ks + tlknl] ks,m + flmkfl ks,,,) , 

(A. 11) 

= H,& “e”(tl,.k + %k.m + tlkm,n)tl ks . (A.12) 

However, the Jacobi identity implies that there 
exists a vector field V, such that [13] 
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?fn, = vf7z.n - v,,rfl 1 

and it follows that the 

ishes identically. 

(A.13) 

parenthesis in (A.12) van- 
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