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SCARS IN BILLIARDS: THE PHASE SPACE APPROACH 
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Although scats in the eigenfunctions of classically chaotic systems were originally observed in the configuration space represen- 
tation, we ~how that these can be better visualized in phase space. On the quantitative side, a recent theory of scars is extended to 
billiards. For the stadium detailed agreement between theory and numerical experiment is found. 

Condensed matter physics, atomic physics, quan- 
tum optics and other subfields of contemporary 
physics are largely based upon quantum mechanics. 
Unfortunately~ except for a small number of  very 
simple systemS, we can only solve the SchrSdinger 
equation numerically. Approximate solutions can be 
obtained either by perturbation methods (these are 
limited to systems close to the ones which are exactly 
solvable) or s~miclassically. The latter approach is 
quite a bit more powerful since in principle it should 
apply to all systems. However, at present a full semi- 
classical theory exists only for integrable Hamilto- 
nians. 

One of  the few semiclassical results which apply in 
the case of classically chaotic motion is the trace for- 
mula of  GutzWiller [ 1 ], which gives the density of 
states in terms I of classical periodic orbits. Recently, 
this formalisn~ has received considerable attention 
and has been ~hown to be in good agreement with 
numerical experiment for a variety of  chaotic sys- 
tems [ 2 ]. On lhe other hand, the eigenfunctions of  
strongly chaotic systems were believed for a long time 
to correspond i to Wigner functions which are ho- 
mogeneous over the energy shell [ 3 ]. In billiards, this 
conjecture leads to eigenfunctions which in turn are 
homogeneous Over configuration space. This simple 

picture was undermined by the finding of  high in- 
tensity patterns resembling periodic orbits ("scars") 
in the eigenfunctions of the stadium billiard [4]. 
Consequently, a theory of scars in configuration space 
was constructed by Bogomolny [ 5 ]. Latter on, Berry 
[ 6 ] derived a semiclassical phase space formula for 
the spectral Wigner function 

W(Z, E, E) -~h N ~ J ~ ( E - E , )  W,(Z) ,  ( 1 ) 
n 

where z -  (q, P),  W~(Z) is the Wigner function cor- 
responding to the nth eigenstate, N is the number of  
degrees of freedom and J , (E)  is a normalized Lor- 
entzian of  width ¢. As will be shown, Berry's formula 
is restricted to the case of smooth Hamiltonians. Ac- 
cordingly, the purpose of  this paper is twofold. First 
we shall argue that phase space is a more natural en- 
vironment for the study of  scars. In order tO support 
this statement, the Wigner and Husimi functions for 
the stadium are compared with the corresponding 
scarred eigenfunction, ~ ( x ,  y).  Second, a billiard 
formula for W(z, E, ~) is derived and compared with 
the numerical results. 

For two-degrees-of-freedom systems the energy 
shell is three-dimensional while configuration space 
has only two dimensions. As a consequence, in phase 
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space one has better resolution when attempting to 
distinguish between the contributions of different 
periodic orbits to a given state. The importance of 
phase space has been especially appreciated by Davis 
[ 7 ], who studied Wigner and Husimi distributions 
numerically for systems with a mixture of regularity 
and chaos. Here, we shall illustrate this statement us- 
ing the stadium billiard, a system which is globally 
chaotic. We set the radius of the two semicircular 
caps, r, to be equal to half the length of the straight 
segments, a. In fig. la, an eigenfunction is compared 
with periodic orbits numbers 2 (full line) and 26 
(dashed line). (We order the periodic orbits in as- 
cending sequence by their linear stability eigen- 
value.) To each there corresponds a second sym- 
metry-related periodic orbit obtained by a reflection 
with respect to the x-axis. Although the second orbit 
seems to resemble better the shape of the scar in the 
eigenfunction, the assignment is not compelling. In 
phase space however, the correspondence between 
periodic orbits and scars is rather transparent. In fig. 
lb the associated Husimi distribution in the surface 
of section at x =  r=  1 is compared with the periodic 
orbits which neighbor its local maxima [ 8 ]. In this 
representation, two additional orbits, numbers 25 and 
52, can be seen to contribute to this state. Notice that 
the inherent limitation of  this procedure is due to the 
finite width of the individual contributions to the 
Husimi distribution, The major advantage of work- 
ing in phase space is that the relationship between 
scars and orbits suggested in fig. 1 b can be verified 
by requiring consistency with a different surface of 
section. Accordingly, in fig. lc the same comparison 
is performed in the x=r/2 section. We find that the 
assignment of periodic orbits to maxima in the cor- 
responding Husimi distribution matches the one in 
fig. lb. 

In both fig. la and fig. lb the stable and unstable 
manifolds of orbit number 2 are shown. Although 
the high intensity contours do follow the manifolds, 
the effect is not pronounced [ 9 ]. This phenomenon 
is strongly enhanced, however, if the Wigner func- 
tion rather than the Husimi distribution is studied 
(see fig. I d). On the other hand, due to the very rich 
structure of the Wigner function it cannot be easily 
employed to visually identify the periodic orbits 
which scar the state. 

We now proceed to the second part of the paper 

and to a quantitative discussion of scarring. We start 
by shortly summarizing the derivation which led 
Berry to a trace formula for W(z, E, E). For details 
we refer the reader to ref. [ 6 ]. From eq. ( 1 ) one can 
show that 

:(i W(z,E, E)= ~Re dtexp[i(E+iE)t/hl 
0 

X f dsexp(-ip's/h)G(qA, qB, t ) ) ,  (2) 

where G is the propagator, evaluated at qA=q--s/2, 
qB=q+s/2. Berry first replaces the propagator by its 
WKB approximation, the Van Vleck formula [ 10 ], 
and then performs the s and t integrations by the sta- 
tionary phase approximation. As a consequence of  
the s integration, it is found that trajectories which 
satisfy the midpoint rule, that is, Z=(ZA+ZB)/2, 
dominate the spectral Wigner function. The remain- 
ing integral over time has the form 

2 N 
W(z, E, ~)= --~ 

o o  

× ~, Refdtexp{(it/h)[E+ie-H(ZA)] 
midpoint 

orbits 0 

+(i/h)A(z,t)+iy}[det(mga+l)] -~/2 , (3) 

where A(Z, t) is the symplectic area enclosed be- 
tween the midpoint orbit and a straight segment con- 
necting its endpoints (the chord area), and where 
mAB=dZ.B/dZA. If  we denote the phase in eq. (3) by 
(9/h then the stationary phase condition takes the 
form OO/Ot=E-H(ZA)=O. Accordingly, the mid- 
point orbits which lie in the E-energy shell will dom- 
inate the time-integral of eq. (3). As was shown by 
Berry [ 6 ], a crucial point for scarring is that for pe- 
riodic orbits 0 2 ~ / 0 t 2 =  0. Consequently, the periodic 
orbit contributions to W(z, E, ~) result from a de- 
generate stationary phase integral and therefore 
dominate the contributions from non-periodic or- 
bits. However, trajectories which are almost periodic 
are also important because they determine the way 
in which the dominant contributions to W(z, E, e) 
decay as a function of~, the displacement away from 
the periodic orbit in the surface of section. For these 
trajectories the correction to the chord area is 
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Fig. 1. ConfiguratiOn versus phase space for the 744th state. (a) The eigenfunction. (b) The Husimi distribution on the x=r surface of 
section. The relevant periodic orbits are also shown: the second (11), the 25th (O), the 26th ( • )  and the 52nd ( × ). The dashed curves 
which emerge fron~ the second periodic orbit are its stable and unstable manifolds. (c) As in (b) only that here x ffi r/2. (d) The Wiguer 
function on the same surface of section as in (b) (see text). 

AA - -  M - I  = ~ , J ~ - - ~  ~,  (4)  

where J is the symplectic and unit matrix M= d~n/ 
d~A is the linearized mapping about the periodic or- 

bit in the surface o f  section. Finally, in order to per- 
form the degenerate stationary phase integration the 
third derivative o f  the phase in eq. (3)  is needed, 
0 3qb/Ot3 =~.J~. The resulting contribution f rom an in- 
dividual periodic orbit o f  action S is 
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2 N 

Wvo(Z, E, c) = x / d e t ( M + l )  e -'r/n 

2 . . {2[H(z)-E] '~  
× (h2l~/~l)1/3 t°tl~ (h2l~J~l),/3 ] • (5) 

For billiard systems, £=  (p, ~)  = 0  and accordingly 
Wpo of eq. (5) needs to be modified. This is most 
easily done when ~= 0, E = 0 (point z on the periodic 
orbit, and no smoothing in energy). In this case, the 
only way to satisfy the midpoint requirement is to 
have the endpoints of  the midpoint orbit, ZA and ZB, 
also lie on the periodic orbit at symmetrically dis- 
placed positions from z. This displacement uniquely 
determines a midpoint orbit and is proportional to 
z---- t -  T, where t is the time it takes to get from zA to 
zB and T is the period. It is convenient to change the 
integration variable in eq. (3) from t to z. Then, in 
order to perform this integration, we need to express 
the properties of  the midpoint orbits as a function of 
z. Since here H(ZA)=H(zB)=H(z) and A(z, t) is 
just the action of  the periodic orbit, S, the argument 
of  the exponent in eq. (3) is independent of z. As a 
consequence, there is no stationary point and the in- 
tegration has to be performed over all possible val- 
ues of  z. As z is increased, eventually either ZA or ZB 
will reach the boundary. We shall refer to this value 
of  z as Zo. For z > Zo the midpoint relation cannot be 
satisfied any longer. Accordingly, the integral in eq. 
(3) runs only over the ( -  Zo, Zo) interval. We now 
use the facts that MAB=T#2MTd2 where T~ is a 
translation for time z and that in billiards S=pL 
where L is the length of the periodic orbit, to obtain 

Wpo(Z, E, ~=E=O ) 

2 u 1 
- n h M 2 t  

- -  [ (Tr M+2+2ToM21)~/2 

- (TrM+2-2ToMEI )  1/2] c o s ( k L + y )  . (6) 

Notice that in eq. (6),  Wpo=O(h  - I )  while Berry's 
result of  eq. ( 5 ) is only O (h - 2/3 ). Accordingly, phase 
space scars for billiards will more strongly diverge in 
the semiclassical limit. 

When either ¢ or ~ is nonzero the formula for W(z, 
E, ~) becomes rather complex and we shall postpone 

its derivation for a future publication. The major 
difference with respect to eq. (5) is that the elegant 
factorization of the behaviors in the surface of sec- 
tion and that perpendicular to the energy shell is lost. 
Instead, in the billiard result the two behaviors are 
mixed in the form of a new special function. 

We now proceed to quantitatively check the pre- 
dictions of  eq. (6) for the case of  the stadium bil- 
liard. For this purpose we have numerically calcu- 
lated the values of  the Wigner function at the point 
P3=(x=0 .51 ,  y=0.745,  kx /ky=-2)  for the first 
1000 odd-odd states and have taken the Fourier 
transform with respect to k, 

F(z ,L)= If dkexp(ikL)kW(z,k)  . (7) 

In practice, the spectral Wigner function is a com- 
plex superposition of many contributions generated 
by the multitude of periodic orbits. In the light of  eq. 
(6),  the purpose of the Fourier transform is to filter 
out all the unwanted orbits and therefore allow us to 
study the component due to a particular periodic or- 
bit. The factor of  k which appears in eq. (7) was in- 
troduced in order to remove any k-dependence in the 
amplitude of eq. (6). Since P3 lies on the third pe- 
riodic orbit we should obtain peaks in the Fourier 
transform at integer multiples of  its length, 
L 3 = 4.4721. Indeed, in fig. 2a, among several other 
peaks the n = 1 and n = 2 multiples of  L3 can be lo- 
cated with a precision of 0.1%. The corresponding 
heights however, agree to the theoretical prediction 
of eq. (6) only to within 17% and 12% error re- 
spectively. The additional peaks are due to other pe- 
riodic orbits which are neighboring in phase space. 
For these contributions ~ is finite and therefore the 
full fledged billiard theory is needed in order to ana- 
lyze them. The prediction is that if the Fourier trans- 
form is performed over an infinitely large range which 
is restricted to the semiclassical regime (large k ), then 
each periodic orbit corresponds to two &function 
peaks rather than a single one. Moreover, the 10ca- 
tions of  the two peaks are immediate results of  the 
complete theory. On the other hand, for the k-inter- 
val which is used in the present calculation only one 
broad peak should be observed and its height and 
position can only be obtained by a different numer- 
ical integration for each ~. We will not attempt to 
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Fig. 2. The F(Z, L) function: (a) zffiP3, (b) z=P, (see text). 

from its neighbors. As a consequence, an error of only 
0.03% in the position and 6% in the height is 
obtained. 

In summary, we have shown that Berry's semi- 
classical theory for the spectral Wigner function is 
not only more convenient because of being a phase 
space theory but also that it can be extended to hold 
for billiards. Moreover, we have quantitatively 
checked the modified theory against numerical re- 
sults from the stadium. We feel that such checking 
is important, because many studies of the scarring 
phenomenon have been qualitative or semiquanti- 
tative at best. 
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study the off-orbit peaks in a quantitative way. An 
additional source of structure in fig. 2a is that due to 
the finite k-iniegration interval, all the peaks are 
broadened andl accordingly strongly interfere with 
each other. Th~ effects of the interference can be ob- 
served by comparing the fringes associated with L = 0 
with those at L!=L3 It is obvious that for the latter 
they are strongly perturbed by a nearby finite-~ peak. 
This nearby peLk is also the source of the relatively 
large errors which we found in the heights and lo- 
cations of the nL3 peaks. In fig. 2b, F(z, L) for 
z=P2= (x=0.5[l, y=0.49, kx/ky= - 1 ) is shown. P2 
lies on the second periodic orbit for which L2= 
4.8482. Clearly~ the n= 1 peak is quite well isolated 
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