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Band distributions (BDs) are introduced describing quantization in a toral phase space. A BD i
the uniform average of an eigenstate phase-space probability distribution over a band of toral bounda
conditions. A general explicit expression for the Wigner BD is obtained. It is shown that the Wigner
functions forall of the band eigenstates can be reproduced from the Wigner BD. Also, BDs are show
to be closer to classical distributions than eigenstate distributions. Generalized BDs, associated w
sets of adjacent bands, are used to extend in a natural way the Chern-index characterization of
classical-quantum correspondence on the torus to arbitrary rational values of the scaled Planck const
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The classical and quantum dynamics of several nonin
grable model systems, which have become paradigmatic
the field of quantum chaos, can be reduced to a torus, eit
in configuration space (e.g., the Sinai billiard [1–3]) or i
phase space (e.g., the “cat maps” [4,5] and the “kicke
Harper” model [6–12]). Quantally, the admissible tora
states have to satisfy proper boundary conditions (BC
i.e., they have to be periodic in the torus up to consta
Bloch phase factors. This Letter is concerned with system
for which general Bloch BCs are defined on a toral pha
space: several of such systems have been discussed in
quantum-chaos literature [4–12], although attention h
often been confined to strict periodicity. General Bloc
BCs are physically relevant if the toral phase space rep
sents the unit cell of a Hamiltonian or mapping which i
periodic on phase space: models of this type occur na
rally in problems involving magnetic fields combined with
periodic potentials [13–22]. A further reason for study
ing Bloch BCs is that some physical insight comes from
examining the sensitivity of eigenstates to variation in th
BCs [9–12,21].

It is well known [4–12] that a necessary condition fo
the reduction of phase-space quantum dynamics to a to
T2

Q is that a scaled Planck constant for the problem, d
noted byr  h̄y2p, assumes rational values:r  qyp
(q and p are coprime integers). The “quantum” toru
T2

Q is q times larger than the torusT2 to which the cor-
responding classical dynamics can be reduced [6,10–1
For each BC, characterized by the Bloch wave vectorw,
the spectrum consists of preciselyp levels [11]. Asw
is varied, these levels broaden intop bands labeled by
an indexb. A measure of the sensitivity of the eigen
states in bandb to variations in the BCs is theChern index
sb [9–12,21], an integer topological invariant analogou
to the quantum Hall conductance carried by a magne
band in a perfect crystal [13–20]. The eigenstates m
be weakly dependent on the BCsonly if sb  0, a value
which may arise only ifq  1 [11]. In this case, where
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Q  T2, one can easily establish a classical-quantum c

respondence on the torus for smallr [4,9,10]. Several
arguments [9,10,21], supported by numerical evidence,
dicate that if the Husimi distribution of an eigenstate
localized on a classical regular orbit (e.g., a Kol’mogoro
Arnol’d-Moser torus or a periodic orbit) the correspondin
band hassb  0. On the other hand, eigenstates who
Husimi distribution is spread over the classical chaotic
gion should belong to bands withsb fi 0. The transition
from a nearly integrable regime, where almost allsb  0,
to a fully chaotic regime, where almost allsb fi 0, as
a nonintegrability parameter is increased, takes place
degeneracies between adjacent bands, leading to a “d
sion” of the Chern indices [23]. The last three sentenc
summarize what we call the Chern-index characterizat
of the classical-quantum correspondence on the torus.

There is a sense in which eigenstates are not natural f
characterization of the classical-quantum corresponden
in that they exhibit rather nonclassical features, due
their association with the purely quantum quantityw and
to their generic sensitivity on this quantity. In particula
the Chern-index characterization above cannot be exten
to the general caseq fi 1 on the basis of the eigenstate
[10,11]. In order to take into account all the BCs bu
at the same time, to eliminate their individual pure
quantum effects, we propose in this Letter to character
the classical-quantum correspondence on a toral ph
space by quantities given byaveragesover all the BCs.
As a matter of fact, one such quantity is the Chern ind
itself, which can be expressed as the uniform average
the eigenstate two-form with respect tow [9,11]. Here we
introduce theband distribution(BD), given by the uniform
average of the phase-space probability distributions (eit
Wigner or Husimi) for the band eigenstates over all t
BCs. The BD may be viewed as the representative pro
bility distribution for a level in the torus. We obtain
a general explicit expression for the Wigner BD.
main result of this Letter is expressed by formulas (
© 1998 The American Physical Society
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and (6) below, by which the Wigner functions ofall of
the band eigenstates are encoded in a single, anal
function, the Wigner BD. Thus,no information is lost
about the individual eigenstates by averaging the Wign
function over the band. Also, it will be demonstrate
that the BDs are “more classical” than the distribution
of band eigenstates in several aspects. We also giv
generalization of the BD concept, which is analogous
the smoothing of a probability distribution over a range o
energy levels which is used in scar theory [24]. As a ma
tic

er

s
a

to
f

in

application, the generalized BDs are used to extend in
very natural way the Chern-index characterization of th
classical-quantum correspondence toq fi 1. More details
about the Husimi case are given in Ref. [12].

Our phase space issu, yd, fû, ŷg  2pir, and the
Hamiltonian or mapping for our system is assumed to
periodic in this space with a2p 3 2p unit cell, which
is the classical torusT2. If r  qyp, the quantum torus
can be chosen asT2

Q  f0, 2pqd 3 f0, 2pd and the y

representation of the band eigenstates is [11]
Cb,wsyd 
p21X
m0

fbsm; wd
X̀

l2`

expfilsw1 1 2pmrdyqgdsy 2 w2 1 2plypd , (1)
.

whereb  1, ..., p. This state is an eigenfunction of the
commuting phase-space translation operators onT2

Q, D̂1 
expsiûyrd and D̂2  expsipŷd, where û  2pirdydy:
the eigenvalues are expsiw1yrd and expsipw2d, implying
thatw  sw1, w2d is the Bloch wave vector. Up to phase
factors depending only onw and on the Chern indexsb ,
the eigenstates (1) are periodic inw space with a unit cell
given by the “Brillouin zone” BZ f0, 2prd 3 f0, 2pypd
[11]. We denote byPb,w su, yd a phase-space probability
distribution (either Wigner or Husimi) for the eigenstates
We define theband distribution(BD) for bandb by

Pbsu, yd 
1

jBZj

Z
BZ

dw Pb,w su, yd , (2)

wherejBZj  4p2qyp2 is the area of the Brillouin zone.
A more explicit expression forPbsu, yd can be obtained in
the Wigner case. We find in this case, using (1),
Pb,w su, yd ;
1

2p2r

Z `

2`

dy0 expsiuy0yprdCp
b,wsy 2 y0dCb,w sy 1 y0d 

X̀
r2`

X̀
s2`

Absr , s; wddsu 2 w1 2 rprd

3 dsy 2 w2 2 spypd , (3)
er
ed

e

where the first equality defines the Wigner function, an
where

Absr , s; wd 
p

4p

p21X
m0

exp

"
ipssr 2 2md

p

#
3 fbsm; wdfp

bfsr 2 md modp; wg .

(4)
The result (3) shows that the support of the Wign
function for an eigenstate is, quite generally, a lattice
phase space, which is shifted uniformly by shiftingw.
This generalizes the result of Hannay and Berry [4] f
w  0 (strict periodicity) to arbitrary BCs. Using (3) in
(2), we obtain the following expression for the Wigner BD

Pbsu, yd 
p2

4p2q

X
r0,1

X
s0,1

Absr , s; w1  u 2 rpr,

w2  y 2 spypd . (5)

Equation (5) will now beinvertedto expressAbsr , s; wd
in terms of the Wigner BD. To this end, one notice
first that, due to the strict periodicity of Eq. (3) in th
Brillouin zone, the right-hand side of (5) will not change
the summations are performed overr  r̄, r̄ 1 1 ands 
s̄, s̄ 1 1, wherer̄ and s̄ are arbitrary integers. Next, one
writes Eq. (5) withsu, yd replaced bysu 1 kqp , y 1 lpd
for k  0, 1 and l  0, 1, choosingr̄  kp, s̄  lp in
the four cases. Using (4), one then finds thatPbsu 1

kqp , y 1 lpd is given by the right-hand side of Eq. (5
with the extra factors21dks1lr1klp under the summation
signs. The resulting four equations can be easily solv
d
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for Absr , s; wd:

Absr , s; wd 
p2q
p2

X
k0,1

X
l0,1

s21dks1lr1klp

3 Pbsu 1 kqp , y 1 lpd ,

(6)
whereu  w1 1 rpr and y  w2 1 spyp. Together
with the latter expressions, Eq. (6) shows that the Wign
functions (3) of all the band eigenstates are simply encod
in the single, smooth phase-space functionPbsu, yd. Thus,
no information about (3) is lost by performing the averag
in (2), as this information is fully recoverable from the
Wigner BD.

We now discuss properties of the BD (2), including
aspects in which it is “more classical” thanPb,w su, yd.
First, we remark thatPbsu, yd, in particular (5), is a
smooth function, unlike the Wigner function (3) of the
eigenstates. Also, using the relationeirsŷ2w2dyrCb,w syd 
Cb,w122pr ,w2 syd (r integer) [11] in (2), and noticing that
expsirŷyrd is just a translation ofu by 2pr, we easily
find thatPbsu, yd is periodic with unit cellT2 (the classical
torus) forgeneralq. This is in contrast withPb,w su, yd,
whose unit cell of periodicity is the quantum torusT2

Q . We
can then impose onPbsu, yd the normalization conditionR

T 2 du dy Pbsu, yd  1, makingPbsu, yd analogous to a
classical probability distribution in the phase spaceT2.
Using the periodicity ofPbsu, yd in Eq. (6), it is easy to
see that at any four pointssu 1 kqp , y 1 lpd (k  0, 1,
3125
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l  0, 1) in T2
Q, Pb,w su, yd in (3) assumes values differing

at most in sign, a fact which was observed in Ref. [4] i
the particular case ofw  0 (andq  1). This means that
only a quarter of the values assumed by (3) inT2

Q may be
independent. This rather nonclassical property of (3)
generally not possessed by the Wigner BD.

Next, consider Pb,wsu, yd in the Husimi case:
Pb,w su, yd  jCb,w su, ydj2, where Cb,w su, yd is the
coherent-state representation ofjCb,w l. For given
sb, wd, Pb,wsu, yd always assumesp zeros su0,j , y0,jd
(j  1, . . . , p) in T2

Q [9,11,12]. These zeros make
Pb,w su, yd rather “nonclassical”; for example, they do no
allow Pb,wsu, yd to approach, in the semiclassical limit
the microcanonical uniform distribution in a strong-chao
regime [9,25]. On the other hand, the Husimi BDnever
vanishes[Pbsu, yd . 0 in T2], simply because thep
zerossu0,j , y0,jd generally vary withw and the definition
(2) involves an integration over allw.

Finally, we discuss the important case of bands wi
Chern indexsb  0, which is possible only whenq  1
[11]. In this case,jCb,w l can be written as a symmetry-
adapted sum [16,18]

jCb,w l 
X̀

l1,l22`

e2ipsl1w11l2w2dD̂
l1
1 D̂

l2
2 jwbl , (7)

wherejwbl is some square-integrable state, which is ana
ogous to a Wannier function [16,18,20]. Inserting (7) int
(2), we easily obtain a general exact expression for the B

Pbsu, yd 
X̀

l1,l22`

Pwb su 1 2pl1, y 1 2pl2d , (8)

wherePwb su, yd is the Wigner or Husimi function of the
Wannier statejwbl. While the Wannier function is not
invariant under gauge transformations in which the Bloc
states are multiplied by expfiusw1, w2dg [20], the BD (8)
is gauge invariant. In a nearly integrable situation an
in a semiclassical regime, the HusimiPwb su, yd is well
localized on a classical regular orbit, provided bandb
is well separated from neighboring bands [Pwb su, yd is
then the “quasimode” of Ref. [26]]. In the semiclassica
limit r ! 0, Pwb su, yd tends pointwise to zero outside
the classical orbit [26]. Similarly, the BD (8) in the
Husimi case tends pointwise to zero outside the period
repetition of the classical orbit on all unit cellssl1, l2d. It
is therefore a periodic version of the quasimode Husim
density, appropriate for a toral phase space. The differen
Pb,w su, yd 2 Pbsu, yd is the sum of the overlaps of the
quasimode with the translated quasimode in all unit ce
sl1, l2d fi s0, 0d, and it is of a purely quantum nature. This
clarifies the classical nature of the BD in this case.

In some important cases, it is necessary to general
the BD concept by averaging over more than one ban
3126
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usually over a set ofN adjacent bandsb  b1, . . . , bN .
This set may be considered as a single entity, agener-
alized band(GB), which can be characterized by its to
tal Chern index,sGB ;

PbN
bb1

sb , and by thegeneralized
BD associated with it,PGBsu, yd  N21

PbN
bb1

Pbsu, yd.
The further averaging over bands should give a more cl
sical BD, as when smoothing over many levels in a ge
eral quantum system [24]. The “maximal” smoothing is
of course, that over all thep bands. From the com-
pleteness of the eigenstates (1), we find in this case t
p21

Pp
b1 Pbsu, yd  s4p2d21. Thus, as one could ex-

pect, the generalized BD in this case is just the unifor
distribution in phase space.

The use of generalized BDs is quite natural, for examp
near a degeneracy between a pair of bands. In fa
precisely at the degeneracy point it is usually not useful
consider the two bands separately, and they must be trea
as one single entity (the GB). It is well known [15] tha
the Chern indices of the two bands generically vary b
61 (for q  1) across the degeneracy, leaving their tot
Chern index unchanged. Similarly, one can show [12] th
the generalized BD for the two bands is approximate
conserved across the degeneracy, despite the fact tha
separate BDs may vary drastically.

We are now ready to present a main application of t
BD concept. We show how generalized BDs can be us
to extend in a natural way the Chern-index characterizati
of the classical-quantum correspondence on the torus
11] to general rational valuesq0yp0 of r near the special
values of the form1yp for which this characterization
was originally formulated. Our basic assumption is th
the renormalization-group approach developed in [19,2
which was applied to the investigation of the spectrum
a general class of Hamiltonians on the torus, is applica
to the band spectrum of our nonintegrable system. T
assumption has been verified numerically for the kicke
Harper model on a broad interval of the nonintegrabili
parameter [12,27]. Letr0  q0yp0 be a rational number
sufficiently close tor  qyp and such thatp0 ¿ p.
From Ref. [19], we know that thep0 bands forr0 can be
grouped intop “clusters” of adjacent bands, where eac
clusterCb is associated in a natural way with a bandb
for r  qyp. Namely, the energy or quasienergy interva
covered by the bands inCb is relatively close to that
covered by bandb and the total Chern indexssCbd of Cb

is equal tosb . The spectrum and eigenstates inCb can
be calculated approximately from an effective Hamiltonia
Heff, obtained by properly quantizing the band function fo
bandb.

The existence ofHeff means that the space of states
bandb approximately coincides with the space of states
Cb. In other words, the projection operator for bandb is
approximately equal to that forCb :
1
jBZj

Z
BZ

dw jCb,w l kCb,w j ø
1

Nb

dsbd1Nb21X
b0dsbd

1
jBZ0j

Z
BZ0

dw 0 jC0
b0,w 0 l kC0

b0,w 0 j , (9)
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where all the primed quantities refer tor0, Nb is the number of bands inCb , anddsbd is the label of the lowest band in
Cb . We immediately obtain from (9) that

1
jBZj

Z
BZ

dw jCb,w su, ydj2 ø
1

Nb

dsbd1Nb21X
b0dsbd

1
jBZ0j

Z
BZ0

dw 0 jC0
b0,w 0 su0, y0dj2, (10)
where the variablessu0, y0d for r0 are related to the vari-
ablessu, yd for r by su0, y0d 

p
ryr0 su, yd . Equation

(10) shows that the Husimi BD for bandb is approximately
equal to the generalized Husimi BDP0

Cb
su0, y0d for clus-

ter Cb . An analogous approximate equality in the Wigne
case can be similarly established. In the limitr0 ! r, the
space of the cluster becomes identical to that of bandb [the
approximate equality in (9) is replaced by an equality], an
P0

Cb
su0, y0d ! Pbsu, yd.

The most important reference values ofr are those
with q  1, for which the Chern-index characterization o
the classical-quantum correspondence is well establish
[9–11]. For theser’s, Eq. (10) implies that if the BD
for band b is concentrated, in a semiclassical regime
on a regular classical orbit [sb  ssCbd  0] or on the
classical chaotic region [sb  ssCbd fi 0], the same will
be true for the generalized BD forCb . One can also
show that general cluster states, characterized by a w
defined value ofw, are “weakly” or “strongly” sensitive
to variations inw depending on whetherssCbd  0 or
ssCbd fi 0 [12]. The Chern-index characterization o
the classical-quantum correspondence on the torus is t
extended tor0 sufficiently close tor  1yp by replacing
single bandsb with the corresponding clustersCb .

In conclusion, the BD concept introduced in this Lette
was shown to exhibit interesting and useful properties: (
The Wigner functions of the band eigenstates are ful
recoverable from the Wigner BD. (b) At the same time
the BDs are more classical than eigenstate distributions
several aspects. (c) Generalized BDs allow one to exte
in a natural way the Chern-index characterization of th
classical-quantum correspondence toq fi 1.

We remark that the BD concept could be furthe
developed in several directions. Smoothing a quantu
probability distribution over a range of energy levels i
important in the theoretical study of scars using th
semiclassical periodic-orbit theory [24]. In the case of th
BD, the smoothing is performed over the continuous ran
of one band, corresponding essentially to asingle level
in the framework of a toral phase space. This “minima
smoothing is performed just for the sake of eliminatin
the purely quantum effects of individual BCs. Using th
adaptation of periodic-orbit theory to the framework o
a toral phase space [28], it may be possible to achieve
better understanding of the nature of BDs and generaliz
BDs in the semiclassical limit. Also, a more complet
characterization of the classical-quantum corresponden
on the phase-space torus should be achieved by int
ducing, in addition to the Chern index and the BDs, ne
quantities which are also naturally defined as averag
over all the BCs. It should also be interesting to dete
mine whether the distributions for the band eigenstates a
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also recoverable from the Husimi BD, and to extend the
representation (8) of the BD in terms of Wannier states to
the casesb fi 0, using results from Ref. [20].
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