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The Wigner ensemble of band random matrices describes the statistical properties of strongly chaotic
Hamiltonians; it may also be viewed as a disordered tight-binding model with an electric field. We in-
vestigate the scaling properties of the localization of eigenstates and that of the distribution of level spac-
ings, P(s), for finite matrices. We show that both quantities are uniquely determined by two scaling pa-

rameters.
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Band random matrices (BRM) are now under close
consideration mainly due to their relevance to different
physical problems [1-6]. First, it was shown that the
BRM ensemble can be used to describe statistical proper-
ties of the so-called quantum chaos for systems which are
fully chaotic in the classical limit [2-4]. In this ap-
proach, the size of the band was found to relate to the de-
gree of quantum localization. Therefore, the BRM give
the possibility of studying the influence of quantum ef-
fects on statistical properties of both eigenfunctions and
spectrum. Another important application of the BRM is
in solid state physics where a similar band structure of
matrices naturally occurs in the study of localization in
1D and quasi-1D models with random potential [5]. Re-
cent studies [3,4] of the BRM ensemble have discovered
scaling properties for both the localization length of
eigenstates and the spectral statistics.

The BRM are defined as the set of real symmetric ma-
trices of order NV with nonzero matrix elements restricted
to a band of width 26— 1, and chosen as independent
Gaussian random variables. For N — oo, the eigenstates
of such matrices are exponentially localized and as a
consequence, the level spacing distribution P(s) is Pois-
sonian. Using supersymmetry and relating averages of
Green functions of BRM to known results about Ander-
son and nonlinear sigma models, Fyodorov and Mirlin [6]
were able to prove that the localization length /o« is pro-
portional to #2. This result was also expected from the
theory of a simple model of quantum chaos, the kicked
rotator, whose time evolution is described by a band ma-
trix [2] and also from a derivation given in Ref. [7].

For finite V, it was shown in Refs. [3,4] that the sta-
tistical properties of BRM are characterized by a single
parameter x =b2/N. More precisely, both the average lo-
calization length of eigenvectors, /(V,b), and the level
spacing distribution are functions of the variable x. For
the eigenvectors, the scaling relation was found to be very
simple:
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To deal with both localized and extended states, a
definition of / based on information entropy was used [see
Eq. (6)]. Recently, Eq. (1) was analytically derived [8].

Let us first picture BRM as tight-binding Hamiltoni-
ans for 1D disordered systems; this approach was fruitful
during early investigations of “‘dynamical localization™ in
quantum deterministic chaotic systems [9]. For the An-
derson model, where eigenstates are exponentially local-
ized, Pichard [10] has given the general scaling hy-
pothesis

EnIN=g(Ex/N) , )

where £y and & are, respectively, the localization length
for the sample of length NV and the infinite sample,
defined as the rate of exponential decay and computed by
means of transfer matrices. This scaling law takes the
simple form (1), found for BRM, when the entropy
length /n is used, for the Anderson and Lloyd model [11].
The scaling variable x is just £w//N, and one can show
that /o = k€.

One further expects that the detailed structure of
quasi-1D tight-binding Hamiltonians, which, e.g., in the
case of only nearest-neighbor hopping include many van-
ishing off-diagonal matrix elements within the band, does
not significantly alter either the scaling variables or the
global behavior of the scaling functions which are there-
fore similar to those for the BRM. In other words, there
is evidence that the one-parameter scaling of Eq. (2)
holds for quasi-1D systems of Anderson type [12].

On the other hand, the occurrence of band structure in
a strongly chaotic Hamiltonian has been investigated by
Feingold, Leitner, and Piro [13] with semiclassical
methods. It was shown that, in the basis of the eigenvec-
tors v; of a canonical operator 4(§,p), arranged in in-
creasing order of the corresponding eigenvalues a;, the
off-diagonal matrix elements of H(§,p) decrease from
the diagonal, giving rise to a band structure. Moreover,
the diagonal elements have a smooth, classical variation,
with additional small and rapid quantum fluctuations
[14]. Correspondingly, a BRM model was studied which
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in addition has diagonal matrix elements with nonzero
mean [7,15,16]: {A;>=ia. In the picture of disordered
solids, one may think of this requirement as the applica-
tion of an electric field to a 1D lattice of length N with
random couplings of each site to the nearest b-1 left sites
and b-1 right sites. The case of nearest-neighbor interac-
tion and diagonal disorder has been investigated in Ref.
[17], and the eigenvectors were shown to have a factorial
decay.

The BRM model with increasing diagonal elements
was originally introduced by Wigner [18] almost forty
years ago, with a motivation similar to that of Refs. [7,
15,16]. We therefore shall refer to this model as the
Wigner ensemble. It was then quickly discarded in favor
of the well-known Gaussian ensembles when it seemed
that it was mathematically difficult. Recently, however
[7], it was shown that the localization length /. should
obey the relation

lo=b2f(y), y=ab’?. 3)

The function f(y) was numerically found in Ref. [7], and
in Ref. [6] an argument is given to show that it behaves
like ky ~" at large y [19].

The level spacing distribution also scales with y, P(s,y)
[16]. It becomes Poissonian for y— 0 and Wigner type
in the limit y— oo, The gradual crossover occurs as
semicircle densities of states corresponding to diagonal
blocks of size /e become displaced in energy due to the
increase in a. While the P(s) of each block is Wigner
type, eigenvalues in different blocks are uncorrelated and
unrepelling. Therefore, Poissonian behavior is lost as the
degree of overlap between consecutive semicircles de-
creases. This degree of overlap is determined by y=a/«/
k~/b =k ~'yf(y), which tends to unity as y — oo.

Until now, studies of this model have been restricted to
infinitely long samples, V— oo. The purpose of this pa-
per is to study the behavior of the Wigner ensemble at
finite V. In particular, we show that

IN/N =F(x,y), (4)

and obtain the main properties of F, which include a
transition between two different regimes. Moreover, we
find that the spacing distribution also scales in both x and
v, P(s,x,p).

The Wigner ensemble is given by real symmetric VXN
matrices with nonzero matrix elements restricted to a
band centered on the diagonal: 4;; =0 if |i —j| > b. The
matrix elements are chosen as independent Gaussian ran-
dom variables with the following moments:

(Aij>=ia6,-j, <A,'%>=6,'j+] . (5)

The ensemble is therefore described by three parameters:
N, b, and a. Our results, however, are restricted to the
case where | Kb <K N.

The entropy localization length of a normalized vector
u=~(uy,...,uy) is defined as

10 MAY 1993
2
1
In -2
1—3 o
opo
-1
2
3
2 -1 0 1 2
Inzx

FIG. 1. Scaling of localization in x, at the fixed value of
»=20. The various symbols correspond to different values of b:
b=12 (x), b=16 (0), b=20 (0), b=24 (1), b=40 (D),
b=45 (&), and b=50 (x). The straight lines are the best fits
to the data in the asymptotic regimes.

N
I(u)=Nexp|— .ZI WP Inu?) — Hoper | . 6)
=
One recognizes the definition of information entropy; the
reference term H . is chosen in order that /=/N in the
case of maximal delocalization, and in our case this
occurs for =N and a =0, which corresponds to Gauss-
ian orthogonal ensemble matrices of size N. For large N,
one computes Hr==InN —0.73. The definition (6) is
very convenient because it applies to both localized and
extended states, and gives results which correspond to the
common intuition of length of a state. We average the
entropy over all eigenvectors of a number of matrices in
the ensemble. This average value is then used to evaluate
In by means of (6).

The validity of the two-parameter scaling hypothesis
has been tested numerically by plotting By =Iy/N as a
function of one variable, keeping the other fixed (see
Figs. 1-3). We find two different types of behavior, sep-
arated by a small crossover regime centered around the
line

20 25 30 35 40 45
Iny

FIG. 2. Scaling of localization in y, at a fixed value of x =1.
The various symbols denote different values of N: N =256 (%),
N =400 (¢), N=576 (&), and N =800 (O). The straight line
represents the prediction of Eq. (10) with k =4+/2.
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FIG. 3. The numerically obtained C,(y) function [see Eq.
(8)]. The three symbols correspond to different values of x:
x=0.5(0), x=1 (0 ), and x =2 (*).

x=x0)=y/2k , )

where k =4+/2 [19]. The behavior in each of the two re-
gimes results from the competition between the charac-
teristic length of the corresponding infinite system, /e,
and the actual size of the sample, V. The first regime,
where x < y/2k, is the “electrical regime.” Here, it is the
electric field characteristic length [19], /w ¢, which com-
petes with V. On the other hand, in the second regime,
where x > y/2k, the situation is analogous to that of Eq.
(1). We refer to this regime as the “Anderson regime.”
Here, / » 4 is given by Eq. (3).

In order to understand the behavior of By in both re-
gimes | and 2, one needs to interpolate between the limit-
ing behaviors at large [19] and vanishing y [see Eq. (1)]
using the insight obtained from the numerical data. Ac-
cordingly, we find that

a; (y)
x“Ci()
FOop)=—— =2, ®)
1+ x“YCi(y)
where /=1 corresponds to the electrical regime and i =2

to the Anderson one. From Eq. (3), taking x— 0, we
have C(y)=f(y). The numerical study indicates that
ay(y) =1 for all y, rather than only for large y or large N
(see Fig. 1 and Table 1). In order that Eq. (8) agree with
Eq. (1), a;(0)=1 and C,(0) =c. Moreover, assuming
continuity of By between the two regimes leads to

C() =G/2k) "¢, 9)
Finally, we observe that a,(y) is monotonically increas-
ing.

It is worthwhile to describe the way in which the limit-
ing behavior of Eq. (8) is approached when either x or y
vanishes. In both cases we are left with a single regime
and, accordingly, no transition. In very large samples,
that is, when x— 0, we have By— B [see Eq. (3)].
Since always, x < y/2k for all b and a, we are in the elec-
tric regime. This is in agreement with the finding of Ref.
[17] that in infinite systems the electric field is dominant
in determining the localization length. On the other
hand, when y — 0, we have a,(y) — 1 and x,— 0, such
that the Anderson regime of Eq. (1) is recovered for all b
and V.

In Table I, a quantitative comparison between the pre-
dictions of Eq. (8) and the numerical results is presented
for four different values of y. Two different methods
were used to obtain x. The value of x, represents the
value of x at the intersection of the best fitting straight
lines corresponding to the two regimes (see Fig. 1). On
the other hand, x| is obtained in a similar way only this
time with the constraint @y =1. The agreement between
the numerical and the theoretical x¢’s is reasonable con-
sidering the arbitrariness in the definition of the former.

The argument given in Refs. [6,19] for the asymptotic
behavior of f(y) can be extended to the case of a finite
system of length N. The corresponding energetically al-
lowed range in the space-energy plane changes shape
when r =Na/2, that is, x =y/k. It turns out, however,
that the resulting localization length,

By =kx/(y+kx), (10)

is the same on both sides of the transition. This and the
fact that the resulting x is twice larger than in Eq. (7)
are a consequence of the strong assumptions entering this
derivation. Nevertheless, this simplified model is a good
starting point towards a theory for Eq. (8).

One expects that in addition to By, which is basis
dependent, other quantities of the Wigner ensemble also
display scaling analogous to that of Eq. (4). In particu-
lar, it is important to verify whether such scaling holds
for spectral properties. Accordingly, we studied the be-
havior of the spacing distribution P(s). Figure 4 repre-
sents the analog of Fig. 2, with a parametrization of the
spectrum, the g variable of the best fitting Brody distribu-
tion [20] to the numerically obtained spacing distribu-
tions, replacing the parametrization of eigenstates, name-
ly, the entropy localization length. As in Fig. 2, we keep
x fixed and vary y. Notice that while for g =1 the Brody
distribution is identical to the one of Wigner, at ¢g=0 it

TABLE I. The exponents a; and crossover values of x, x, at various y’s.

y ai az Xcr,a Xer,1 Xcr,th
S 1.08 +0.02 1.145 %+ 0.004 0.4+0.2 0.27 +£0.02 0.4
10 1.06 = 0.02 1.305 £0.006 1.4+£0.2 12 0.9
20 1.040 + 0.006 1.433 = 0.006 2.11 +0.07 1.9+0.2 1.8
40 1.042 = 0.007 1.40 + 0.02 341+0.6 29+0.5 3.5
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FIG. 4. The scaling of the Brody parameter g with y. Here
x =0.18. Moreover, b=10 (O) and b=12 (®).

takes the Poisson form. Since for /y =O(N) there is only
a small number of independent blocks, g > go> 0, even
when y — 0.

The two-parameter scaling we find in the Wigner en-
semble is expected to show up in disordered short wires in
strong electric fields. The latter should be not much
longer than the square of the number of sites in their
cross section, such as to keep x finite. For a particular
sample, V and b are fixed. Then, as the electric field « is
increased, a transition between the Anderson and electric
regimes is to be expected. Since the behavior of the local-
ization length is explicitly manifest in that of the corre-
sponding conductance, these predictions can be directly
verified in experiment.
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