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Band Husimi distributions and the classical-quantum correspondence on the torus
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Band Husimi distributions~BHDs! are introduced in the quantum-chaos problem on a toral phase space. In
the framework of this phase space, a quantum state must satisfy Bloch boundary conditions~BCs! on a torus
and the spectrum consists of a finite number of levels for given BCs. As the BCs are varied, a level broadens
into a band. The BHD for a band is defined as the uniform average of the Husimi distributions for all the
eigenstates in the band. The generalized BHD for a set of adjacent bands is the average of the BHDs associated
with these bands. BHDs are shown to be closer, in several aspects, to classical distributions than Husimi
distributions for individual eigenstates. The generalized BHD for two adjacent bands is shown to be approxi-
mately conserved in the passage through a degeneracy between the bands as a nonintegrability parameter is
varied. Finally, it is shown how generalized BHDs can be defined so as to achieve physical continuity under
small variations of the scaled Planck constant. A generalization of the topological~Chern-index! characteriza-
tion of the classical-quantum correspondence is then obtained.@S1063-651X~98!03011-6#

PACS number~s!: 05.45.1b, 03.65.Sq
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I. INTRODUCTION

The main objective of ‘‘quantum chaos’’ is to understa
the correspondence between classically nonintegrable
tems and their quantum counterparts in the semiclass
limit @1#. During the past two decades, significant progr
has been made in the study of this correspondence with
discovery of phenomena such as dynamical localization@1–
3#, ‘‘scarring’’ of eigenstates by unstable periodic orb
@1,4–6#, and statistical properties of the eigenspectrum@1,7#.
However, the relation between classical phase-space s
tures and corresponding quantum-dynamical entities is
far from being completely understood.

In this paper we introduce quantum-mechanical distri
tions that, in the semiclassical limit, are expected to appro
in a natural way classical distributions on both regular a
chaotic phase-space structures. This will be done in
framework of a toral phase space, where, as shown in a
cent series of works@8–10#, some interesting insights in th
quantum-chaos problem can be achieved. Quantum dyn
ics can be reduced to a torus if two conditions are satis
~see Sec. II for more details!. First, the classical map for th
system is strictly periodic in all the phase-space coordina
The simplest nonintegrable system possessing this prop
is the ‘‘kicked-Harper’’~KH! model@8–15# with the Hamil-
tonian

H5A cos~v !1A cos~u! (
s52`

`

d~ t/t2s!, ~1!

whereu andv are dimensionless conjugate phase-space v
ables ~with the Poisson bracket$u,v%51/I , I being some
classical action!, A is the amplitude, andt is the time period.
The system~1! is exactly related@14# to the problem of pe-
riodically kicked charges in a uniform magnetic field und
resonance conditions@16#. In the limit t→0, Eq.~1! reduces
PRE 581063-651X/98/58~5!/5655~13!/$15.00
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to the integrable Harper HamiltonianH05A cos(u)
1Acos(v). The transition from integrable to chaotic phas
space structure, as the dimensionless classical parameg
5At/2pI is increased from 0, is shown in Fig. 1. The se
ond condition for quantum dynamics on a torus is tha

scaled\, denoted here byr (@ û,v̂#52p ir5 i\/I ), assumes
rational valuesr5q/p (q andp are coprime integers!. The
admissible quantum states are then those that satisfy B
quasiperiodic boundary conditions~BCs! on the torus; see
Sec. II. The energy or quasienergy spectrum consists of
cisely p levels and, as the BCs are varied, each of th
levels spans a band.

The advantage of this framework is that it allows for
characterization of the classical-quantum correspondenc
means of integer topological invariants, the Chern indic
@8–10#, associated with thep bands. The Chern indexs for
a band is analogous to the quantum Hall conductance ca
by a magnetic band in a perfect crystal@17–24# and is a
measure of the sensitivity of the eigenstates in the ban
variations in the BCs@8–10,25#. For q51, the toral phase
space coincides with the basic unit cell of periodicity of t
system. In this case, where the classical-quantum corres
dence can be established in the simplest and most na
way, s can assume, in principle, all values. Several arg
ments@8,9,25#, supported by numerical evidence, then ind
cate that if the Husimi distribution of an eigenstate is loc
ized, in a semiclassical regime (r!1), on classical regular
orbits ~e.g., Kol’mogorov-Arnol’d-Moser tori or periodic or-
bits! the corresponding band hass50. On the other hand
eigenstates whose Husimi distribution is spread over
classical chaotic region should correspond to bands withs
Þ0. The transition from a nearly integrable regime@e.g., Fig.
1~a!#, where almost alls50, to a fully chaotic regime@e.g.,
Fig. 1~d!#, where almost allsÞ0, as a nonintegrability pa
rameter is varied, takes place via degeneracies between
5655 © 1998 The American Physical Society
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FIG. 1. Classical Poincare´ maps of typical orbits of the kicked-Harper~KH! model ~1! for different values of the nonintegrability
parameterg5At/2pI : ~a! g50.001~nearly integrable regime!, ~b! g50.26 ~mixed regime! ~notice, for future reference, the island chai
of periods 6 and 8 surrounding the central elliptic point!, ~c! g50.56 ~the chaotic region occupies a large fraction of the phase space!, and
~d! g50.95 ~strongly chaotic regime!.
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jacent bands. In the passage through a degeneracy bet
bandsb and b8, the Chern indicessb and sb8 change, re-
spectively, by6Ds, where, generically@19,26#, uDsu51. A
‘‘diffusion’’ of Chern indices @27# occurs then in the trans
tion above.

Despite this characterization of the classical-quantum
respondence for smallr, the eigenstates may not be cons
ered close to classical phase-space structures, strictly sp
ing, for anyr. This is because of the following reasons.~a!
While the BCs satisfied by a quantum state have a w
defined physical meaning~see Sec. III!, they are of a purely
quantum nature. In particular, the strong dependence o
eigenstates on the BCs forsÞ0 and, in several cases~see
Sec. III!, also fors50, has no classical counterpart.~b! The
Husimi distribution of an eigenstate always assumesp zeros
in the torus; see Sec. II. Because of this fact, an eigens
cannot tend, in the semiclassical limit, to the microcanon
uniform distribution on the chaotic region@8,28#. ~c! In the
general case ofqÞ1, the exact eigenstates may be viewed
arising from quantum tunneling between degenerate clas
een

r-
-
ak-

l-

he

te
l

s
al

orbits located inq adjacent unit cells@9–11#. As a conse-
quence,s is always nonvanishing@10# and the topological
characterization of the classical-quantum corresponde
cannot be extended straightforwardly to this general cas

We show in this paper that a natural way to overco
these difficulties is simply to average uniformly the Husim
distributions of the eigenstates in a band over all the BCs
what follows we refer to the result of this averaging as t
band Husimi distribution~BHD!. The BHDs turn out to be
closer, in several aspects, to classical distributions than
simi distributions for individual eigenstates. It is well know
@5,6# that smoothing a probability distribution over a ran
DE of energy levels has the effect of washing out pure
quantum structures such as scars. AsDE is increased, this
effect increases and the smoothed probability distribut
~e.g., the spectral Wigner function in Ref.@6#! becomes
closer to a classical distribution. In our case the smoothin
done not over a range ofdiscreteenergy levels but over the
continuousrange of one band, corresponding essentially t
single level in the framework of a toral phase space. This
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PRE 58 5657BAND HUSIMI DISTRIBUTIONS AND THE . . .
thus theminimal smoothing in this framework and it is pe
formed just for the sake of eliminating the purely quantu
effects of individual BCs. The BHD may be viewed as t
representative Husimi distribution for a level in the torus.
several important cases, we shall find it necessary to ge
alize the concept of BHD by considering the average
BHDs associated with a set of adjacent bands.

This paper is organized as follows. In Sec. II we summ
rize the relevant known facts about quantum dynamics o
torus @8–10#. In Sec. III the concept of BHD for a singl
band is introduced. In Sec. IV the concepts of generali
band ~set of adjacent bands! and the associated BHD ar
introduced and studied. In Sec. V the generalized BHD
two adjacent bands near a degeneracy of these bands is
ied. In Sec. VI we show how to define generalized BHDs
qÞ1 in order to achieve physical continuity under sm
variations inr. In this way, the topological characterizatio
of the classical-quantum correspondence is extended to
general case ofqÞ1. Conclusions are presented in Sec. V

II. QUANTUM DYNAMICS ON A TORUS

We provide here some relevant background on quan
dynamics on the torus@8–10# using, for later convenience
the notation of Ref.@10#, where a general formulation of th
problem was presented. Consider a classical area-prese
map strictly periodic in the phase space (u,v) with a 2p
32p unit cell, which is the basic torusT2. The one-step
quantum evolution operator corresponding to the class
map isÛ(û,v̂), where@ û,v̂#52p ir. If r is a rational num-
ber, r5q/p (q and p are coprime integers!, there exists a
pair of ‘‘smallest’’ commuting phase-space translations

D̂15eiû/r, D̂25eip v̂. ~2!

Because of@ û,v̂#52p ir, D̂1 (D̂2) is a translation by 2p
(2pq) in the v (u) direction. SinceÛ(û,v̂) is periodic in
both û andv̂ with period 2p, it commutes withD̂1 andD̂2 .
There exist therefore simultaneous eigenstatesC of Û, D̂1 ,
and D̂2:

ÛuCb,w&5e2 ivb~w!uCb,w&,

D̂1uCb,w&5eiw1 /ruCb,w&, D̂2uCb,w&5eipw2uCb,w&,
~3!

where b is a ‘‘band’’ index ~see below!, vb(w) is the
quasienergy, andw5(w1 ,w2) is a Bloch wave vector vary
ing in the ‘‘Brillouin zone’’ ~BZ! 0<w1,2pr, 0<w2
,2p/p, a torus to be denotedTBZ in what follows. Now, for
each given value ofw, Eqs.~3! can be interpreted as quas
periodic BCs satisfied by the eigenstatesuCb,w& in the
‘‘quantum’’ toral phase spaceTQ

2 : 0<u,2pq, 0<v
,2p. It can be shown@10# that for eachw the quasienergy
spectrum consists precisely ofp levels vb(w), b
51, . . . ,p. As the BCs are varied~by varyingw in the BZ!,
each level broadens into a ‘‘band.’’

In the absence of band degeneracies@vb(w)Þvb8(w) for
all w andb8Þb#, uCb,w& must be periodic in the BZ up to
constant phase factor depending, in general, onw. The phase
er-
f

-
a

d

r
tud-
r
l

he
.

m

ing

al

of uCb,w& may be chosen so thatuCb,w& will be exactly pe-
riodic in one direction, sayw1 , but then it will be periodic in
w2 only up to a phase factor that, in its simplest form, ha
phase that is linear inw1 @10#:

uCb,w112pr,w2
&5uCb,w&, ~4!

uCb,w1 ,w212p/p&5exp~ isbw1 /r!uCb,w&. ~5!

Here the constantsb must be an integer in order for Eq.~5!
to be consistent with Eq.~4!. It is easy to see from Eqs.~4!
and~5! that 2psb is the total phase change ofuCb,w& when
going around the BZ boundary counterclockwise. This ph
change is independent of phase transformations ofuCb,w&. In
fact, the integersb is a topological number, theChern index,
which can be expressed in a form manifestly invariant un
phase transformations@see Ref.@8# and expression~28! be-
low#.

The general form ofuCb,w& in thev representation is@10#

Cb,w~v !5^vuCb,w&5 (
m50

p21

fb~m;w!cw112pmr,w2
~v !, ~6!

wherefb(m;w) are expansion coefficients andcw(v) arekq
functions@29#,

cw~v !5 (
l 52`

`

exp~ i lw 1 /q!d~v2w212p l /p!. ~7!

Without the labelb, Eq.~6! is the most general expression
a quantum state in thev representation for given BCs~i.e.,
given w). A completely analogous expression is obtained
the conjugate (u) representation by Fourier transforming E
~6!. These expressions imply, essentially, a discretization
the toral phase spaceTQ

2 into p2 points,um1
5w112pm1r,

vm2
5w212pm2 /p, m1 ,m250, . . . ,p21, with f(m1 ;w)

being the probability amplitude foru to assume the value
um1

. The corresponding amplitude forv5vm2
is the discrete

Fourier transform off(m1 ;w). This discretization was stud
ied by Hannay and Berry@30# in the special case ofq51
(TQ

2 5T2) andw50 ~strict periodicity!. They used thep am-
plitudesf(m;w50) to investigate the evolution of a quan
tum state in the cat maps.

A most useful representation ofuCb,w& is the coherent-
state representationCb,w(R)5^RuCb,w&, where R[(u,v)
and uR0& is a coherent state,

^vuR0&5S a2

2p2r
D 1/4

expF2
a2~v2v0!2

4pr
2

iu0

2pr
~v2v0/2!G .

~8!

Herea is the ‘‘squeezing parameter,’’ related to the para
eters of the harmonic oscillator for which the quantum ev
lution of the state~8! is nondispersive. An equivalent expre
sion for a coherent state depends onu0 andv0 only through
the complex numberz05u0 /a2 iav0 ~see, e.g., Refs
@28,31#!, giving an analytic representationCb,w(z). For fu-
ture convenience, however, we shall use the representa
Cb,w(R), choosing, as in Ref.@28#, the symmetric valuea
51.
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Important properties ofCb,w(R) concern its zeros, in
both theR and w variables. At fixedw, Cb,w(R) always
assumes exactlyp zeros R5R0,j (w) ( j 51, . . . ,p) in TQ

2

~counting possible but nongeneric zero multiplicities!. This
property was proved in Ref.@28# for q51 anda51, but it
can be easily generalized to allq and a, using Eq.~6!, to-
gether with Eqs.~7! and ~8!. It is also well known@28# that
the p zerosR0,j (w), like the p amplitudesfb(m;w) in Eq.
~6!, completely determine the wave functionCb,w(R). At
fixed R, the numberN0(R) of zerosw5w0(R) of Cb,w(R)
in the BZ is not smaller thanusbu @32#. These properties
imply that thep zerosR0,j (w) must wind aroundTQ

2 at least
usbu times whenw is varied in the BZ. Thus, if for some
R5R8, Cb,w(R8) does not vanish in the BZ,sb50. We
shall refer to the union of allR8 as thelocalization domainof
Cb,w(R), for reasons that will become clear in the followin
paragraph. Asw is varied over the entire BZ, thep zeros
R0,j (w) never enter this domain~see also Ref.@25#!.

In a nearly integrable situation@e.g., very smallA in the
KH model ~1!# and in a semiclassical regime (r!1), most
eigenstatesCb,w(R) will be localized on regular classica
orbits and the corresponding bands are usually very nar
~almost independent ofw). A good approximation to the
Husimi probability distributionuCb,w(R)u2 in its localization
region is given by@8,34#

uCb,w~R!u2'
N

V~R!
expH 2

1

2pr
F H̄0~R!2Eb

V~R!
G2J , ~9!

where H̄0(R) is the energy function for an effective inte
grable HamiltonianH0 in this nearly integrable situation,Eb
is an energy eigenvalue ofH0 approximating the very nar
row band@Eb'vb(w)\/t#, V(R) is the phase-space veloc
ity for H0 , andN is a normalization constant. The relatio
~9! manifestly shows that the eigenstates are quite insens
to variations inw in the region of phase space where they
localized. In particular, thep zerosR0,j (w) should never en-
ter this region, thus implying a finite localization domain~as
defined above!. We therefore expect that eigenstates that
localized on regular classical orbits forr!1 should belong
to bands withsb50 ~see also Sec. III!.

It is important to remark here that the valuesb50 may
occur only forq51 sincesb has to satisfy the Diophantin
equation psb1qmb51, where mb is a second intege
@10,20#. For qÞ1, the exact eigenstates are quite ‘‘noncla
sical’’ since they may be viewed as arising from quantu
tunneling betweenq degenerate classical orbits located in t
q adjacent unit cells definingTQ

2 @9–11#. Thus, even in a
completely integrable situation, thep zerosR0,j (w) always
cover the torusTQ

2 whenw varies in the BZ@9#.
In a strongly chaotic situation, where a typical orbit fil

the entire phase spaceT2, the p zerosR0,j (w) for q51 are
expected to be distributed almost uniformly inTQ

2 5T2 @28#
and to explore the entireT2 as w is varied in the BZ@8#.
Almost all the bands should therefore be characterized
nonvanishingsb . The transition from a nearly integrabl
situation~almost allsb50) to a strongly chaotic one~almost
all sbÞ0), as a nonintegrability parameter is varied, tak
place via successive degeneracies between adjacent b
@8,9# ~see also the Introduction!.
w
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III. BAND HUSIMI DISTRIBUTIONS

We start this section by considering in more detail t
nature of the BCs~3! using the KH system~1! as a model.
The nearly integrable regime for this system correspond
very small values of the classical parameterg5At/2pI @see
Fig. 1~a!#. In this regime, the system is well described by t
Harper HamiltonianH05A cos(u)1Acos(v). For r51/p, p
odd, the energy spectrum ofH0 consists ofp bandsEb(w),
b51, . . . ,p, in order of increasing energy. Only the centr
band @b5(p11)/2# has a nonvanishing Chern indexsb
51 @17#. In the semiclassical regimep@1, the eigenstates o
this band are concentrated on the separatrix orbit@see Fig.
1~a!#, which is not contractible to a point. On the other han
the eigenstates of the other bands, which have vanish
Chern indices, are concentrated on orbits that are contrac
to a point.

This state of matters persists also forg not very small,
when the separatrix orbit breaks into a stochastic layer,
island chains emerge from theH0 contractible orbits. For
example, forr51/11, the Chern indicessb appear to be the
same as in the Harper case in the entire intervalg<0.26
@9,35#. Namely, only the central quasienergy band feature
nonvanishing Chern indexsb51. We have studied numeri
cally the sensitivity of the eigenstates to variations in t
BCs ~i.e., variations inw) for several values ofg in the
interval above. We find that eigenstates insb50 bands suf-
ficiently ‘‘far’’ from the central band~i.e.,b close to 1 or 11!
are indeed almost insensitive to variations inw ~large local-
ization domain!. This is not the case, however, for ban
sufficiently close to the central band. While the Chern ind
for these bands vanishes, the sensitivity of the eigenstate
variations inw is quite strong~very small or empty localiza-
tion domain!, almost as strong as that of eigenstates in
central band. This is clearly illustrated in Figs. 2 and 3.
general, we expect strong sensitivity to variations inw in
sb50 bands that are sufficiently close tosbÞ0 bands.

This sensitivity has no classical analog sincew is a purely
quantum characterization of the eigenstates, which are c
centrated on different regions ofTQ

2 for different values of
w. In fact, by comparing Eqs.~3! with the definitions~2! of
the operatorsD̂1 andD̂2 , we see immediately thatw is just
a quasicoordinateof R5(u,v):

w1⇔rS u

r
mod 2p D , w2⇔

1

p
~pv mod 2p!.

To understand this better, consider, for givenw5w8, the
‘‘displaced’’ quantum state

D̂~z0!uCb,w8&5exp~z0â†2z0* â!uCb,w8&, ~10!

wherez05u01 iv0 and â5(û1 i v̂)/4pr is the annihilation
operator. It is easy to verify, using the well-known comm
tation relation for the phase-space translationsD̂(z0) @36#,
that the state~10! satisfies the BCs~3! with the displaced
value ofw5w81R0 @R05(u0 ,v0)#. On the other hand, us
ing the expression~8! ~for a51), we find that the coherent
state representation of the state~10! is given by
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FIG. 2. Density plots of Husimi distributionsuCb,w(R)u2 for the KH model with parametersg50.26 @compare with Fig. 1~b!# andr
51/11. The central bandb56 ~with Chern indexs651) is considered for different values ofw in the BZ: ~a! w5(0,0), ~b! w
5(p/11,0), ~c! w5(0,p/11), and~d! w5(p/11,p/11). In these plots, as well as in Figs. 3–5, we use a power-law density scale~with power
'1/3) and ten gray tones, with darker tones corresponding to higher values of the distribution. In cases~b! and ~c!, uCb,w(R)u2 is
concentrated on one of the two hyperbolic fixed points, while in cases~a! and ~d! it is concentrated on both points.
st

is
er

If,

.
imi
^RuD̂~z0!uCb,w8&5exp@ i ~uv02u0v !/4pr#Cb,w8~R2R0!.
~11!

Thus the shifted functionCb,w8(R2R0) is, up to a phase
factor, the coherent-state representation of a quantum
characterized by the displaced value ofw5w81R0 . This is
a vivid illustration of the notion of ‘‘quasicoordinate ofR’’
for w.

From Eq.~11! one may get the impression that there
always strong sensitivity to variations in the BCs. Howev
sinceD̂(z0) does not commute, for generalz0 , with the evo-
lution operatorÛ, the displaced state~10! will not be, in
general, an eigenstate. Still, one has the expansion

^RuD̂~z0!uCb,w8&5 (
b851

p

cb,b8~R0 ,w!Cb8,w~R!,
ate

,

where the coefficientscb,b8(R0 ,w)5^Cb8,wuD̂(z0)uCb,w8&.
Assume, for example, thatCb,w(R) is almost insensitive to
variations inw ~large localization domain!. Then, from Eq.
~11! and w5w81R0 it follows that the coefficient
cb,b(R0 ,w) should be relatively small for almost allw if R0
is larger than the typical width of the localization domain.
on the other hand,Cb,w(R) is highly sensitive to variations
in w, the coefficientscb,b8(R0 ,w), for b8'b, may be rela-
tively large for ‘‘many’’ pairs (R0 ,w)Þ0. For example, in
the cases shown in Figs. 2 and 3, these pairs include@R0
5(p,p),w5(0,p/11)# @i.e., w85(p/11,0); compare Fig.
2~b! with Fig. 2~c! and Fig. 3~b! with Fig. 3~c!# and @R0
5(p,p),w5(p/11,p/11)# @i.e., w85(0,0); compare Fig.
2~a! with Fig. 2~d!#.

Because of the purely quantum nature ofw and the BCs,
it is natural to perform a uniform average overw in the
Brillouin zone in order to obtain ‘‘more classical’’ quantities
In this paper we shall consider the average of the Hus
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FIG. 3. Similar to Fig. 2, but for bandb55 with Chern indexs550. Despite the fact thats550, we observe strong sensitivity t
variations inw, as in the case of Fig. 2. In~a! @w5(0,0)# uCb,w(R)u2 is concentrated on the island chain of period 8@see Fig. 1~b!#. Notice
that the localization regions in the case of plots~b! and~c! are reversed relative to the corresponding plots in Fig. 2.~d!, on the other hand,
is qualitatively similar to Fig. 2~d!.
e

e
g
k

u-
s

ic
s-
probability distributionuCb,w(R)u2, giving theband Husimi
distribution ~BHD! for bandb:

Pb~R!5
1

uTBZu ETBZ

dwuCb,w~R!u2, ~12!

whereuTBZu54p2q/p2 is the area of the Brillouin zone. Th
BHD ~12! corresponds to theminimal smoothing of a prob-
ability distribution in the framework of a toral phase spac
namely, the smoothing over the continuous range of a sin
band. We now show that this smoothing is sufficient to ma
the BHD more classical than an individual Husimi distrib
tion uCb,w(R)u2 in several aspects. First, we notice from Eq
~3! that uCb,w(R)u2 is periodic only with unit cellTQ

2 , i.e.,
the quantum phase space, which differs from the class
oneT2 wheneverqÞ1. Now, using the relation@10#

D̂~22ps!uCb,w&5exp~ isw2 /r!uCb,w122ps,w2
&

,
le
e

.

al

(s integer! as well as Eq.~11! in Eq. ~12!, we easily find that

Pb~R!5
1

q (
s50

q21

Pb
~q!~u12ps,v !, ~13!

wherePb
(q)(R) is defined as in Eq.~12!, but the integral is

performed over 1/q of the BZ, i.e., 0<w1 ,w2,2p/p, and
uTBZu is replaced byuTBZu/q. It is then clear from Eq.~13!
that Pb(R), unlike uCb,w(R)u2, is periodic with unit cellT2

for general q. This allows one to impose onPb(R) the nor-
malization condition

E
T2

dR Pb~R!51. ~14!

This makesPb(R) analogous to a classical probability di
tribution on the classical phase spaceT2.

Second,uCb,w(R)u2 always assumesp zerosR0,j (w) ( j
51, . . . ,p) in TQ

2 ~see Sec. II!. These zeros giveuCb,w(R)u2
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a rather ‘‘nonclassical’’ appearance, for example, they do
allow uCb,w(R)u2 to approach, in the semiclassical limit, th
microcanonical uniform distribution in the chaotic regio
~strong-chaos regime! @8,28#. On the other hand, the BHD
never vanishesin the phase space@Pb(R).0 for all R in
T2#, simply because thep zerosR0,j (w) ( j 51, . . . ,p) gen-
erally vary withw and, by definition@see Eq.~12!#, a BHD
involves an integration over allw. It is therefore possible for
a BHD to resemble a classical probability distribution. F
example, in Fig. 4 we show the BHD for the case conside
in Fig. 2 (b56). The relatively high probability density nea
the hyperbolic pointsR5(p,0),(0,p) can be easily under
stood from classical considerations. The bandb56 corre-
sponds to a ‘‘broken’’ separatrix orbit~that is, a homoclinic
orbit in the chaotic layer! and the phase-space velocity o
this orbit vanishes as one approaches the hyperbolic po
Accordingly, the approximate formula~9! suggests that the
BHD should assume relatively high values near these po
Figure 5 shows that the localization region of the BHD f
band b55 is completely different from that of individua
Husimi distributions~see Fig. 3!. Although this band has
sb50, it exhibits strong sensitivity to variations of the BC
The representative or dominant localization region for suc
band can be found only by inspecting its BHD. In th
strongly chaotic regime (g@1) and in the semiclassica
limit, the BHDs are expected to approach the microcanon
uniform distribution.

Finally, consider the special but important case of ba
with sb50, which is possible only forq51 ~see Sec. II!.
Here an eigenstateCb,w(R) can always be written as
symmetry-adapted sum@20,22#

Cb,w~R!5 (
l 1 ,l 252`

`

exp@2 ip~ l 1w11 l 2w2!#^RuD̂1
l 1D̂2

l 2uwb&,

~15!

FIG. 4. Band Husimi distribution~BHD! for the case considere
in Fig. 2 (b56). The BHD was calculated by averagin
uCb,w(R)u2 over 20320 values ofw, uniformly distributed in the
BZ. This BHD, with a localization region similar to that of Figs
2~a! and 2~d!, is close to a classical probability distribution for th
stochastic layer in Fig. 1~b! ~see the text!.
ot
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whereD̂1 and D̂2 are the basic phase-space translations~2!
anduwb& is some square-integrable state, which is analog
to a Wannier function@20,22,24#. Inserting Eq.~15! into Eq.
~12!, we easily obtain the exact expression

Pb~R!5 (
l 1 ,l 252`

`

z^u12p l 1 ,v12p l 2uwb& z2. ~16!

While the Wannier function̂ Ruwb& is not invariant under
gauge transformations in which the eigenstates are multip
by phase factors exp@iu(w)# @24#, the BHD ~16! is gauge
invariant. In a nearly integrable situation and in a semicl
sical regime,z^Ruwb& z2 may be identified with the ‘‘quasi-
mode’’ of Ref. @37#, which is well localized on a classica
regular orbit and, in the limitr→0, tends pointwise to zero
outside this orbit. Similarly, the BHD~16! tends pointwise to
zero outside the periodic repetition of the orbit on all u
cells (l 1 ,l 2). It is therefore a periodic version of the quas
mode, appropriate for a toral phase space. A good appr
mation to the BHD should be given by the right-hand side
Eq. ~9!, which, like Eq.~16!, is essentially independent ofw
and is periodic with unit cellT2. The differenceZb,w(R)
[uCb,w(R)u22Pb(R) is the sum of the overlaps of th
quasimode^u12p l 1 ,v12p l 2uwb& @in unit cell (l 1 ,l 2)#
with a quasimode in a different unit cell. The functio
Zb,w(R) is thus of a purely quantum nature and it is entire
responsible to thep zeros ofCb,w(R) and to the sensitivity
of Cb,w(R) to variations ofw for R outside the localization
domain. This clarifies the classical nature of the BHD in th
case.

IV. GENERALIZED BANDS AND BHDs

In several important situations, some of which will b
considered in the following sections, it is necessary to g

FIG. 5. Similar to Fig. 4, but for the case considered in Fig
(b55). The BHD appears to be concentrated on four of the
islands of an island chain of period 6, surrounding the main isla
chain of this period in Fig. 1~b!. The localization region for this
BHD is representative for bandb55 but is qualitatively different
from that ofuCb,w(R)u2 for all the special values ofw considered in
Fig. 3.
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eralize the concept of BHD by smoothing over more tha
single band, namely, over a set ofN adjacent bandsb
5b1 , . . . ,bN . This gives thegeneralizedBHD

Pb12bN
~R!5

1

N (
b5b1

bN

Pb~R!. ~17!

The additional smoothing over bands should give a m
classical BHD, as when smoothing over many levels in
bounded quantum system@6#. The ‘‘maximal’’ smoothing is,
of course, that over all thep bands. From the completene
of the eigenstates~6!, together with the normalization cond
tion ~14!, we find in this case that

1

p (
b51

p

Pb~R!5
1

uT2u
,

whereuT2u54p2 is the area of the classical torus. Thus,
one could expect, the generalized BHD in this case is just
uniform distribution over phase space.

The set ofN adjacent bands can be considered as a sin
entity, ageneralized band~GB!. One may perform arbitrary
linear combinations of GB eigenstates at fixedw to obtain
general states satisfying given BCs~3! on the torus. While
these states are generally not eigenstates of the evolu
operator, they are ‘‘almost stationary’’ provided the ener
or quasienergy width of the GB is sufficiently small@10#.
The set of all these states, for allw, is the space of the GB
A natural starting basis for this space is, of course, the se
N eigenstatesCb,w(R), b5b1 , . . . ,bN , at each fixed value
of w. An arbitrary basis will then be given by

C̄n,w~R!5 (
b5b1

bN

Bb
~n!~w!Cb,w~R!, ~18!

n51, . . . ,N. To ensure orthonormality of the basis~18! in
the new ‘‘band index’’n, the coefficientsBb

(n)(w) must form
a unitary matrix. Obviously, the states~18! satisfy the BCs
~3!. In addition, it is natural to require that these states w
satisfy quasiperiodicity conditions inw, analogous to those
of Eqs. ~4! and ~5!, with well-defined Chern indicess̄n .
Clearly, this will be the case only if the matrixBb

(n)(w) in
Eq. ~18! satisfies these conditions with Chern indicessb,n

5s̄n2sb . The determinant of this matrix must be strict
periodic inw; otherwise it will vanish at somew ~see Sec. II
and Ref.@32#!, which cannot happen since the matrix is un
tary. It follows from this that

sGB[ (
b5b1

bN

sb5 (
n51

N

s̄n . ~19!

In other words, the total Chern indexsGB of the GB is ‘‘con-
served’’ under the basis transformation in Eq.~18!.

Another ‘‘conservation’’ law following from Eq.~18! is

(
b5b1

bN

uCb,w~R!u25 (
n51

N

uC̄n,w~R!u2. ~20!
a

e
a

s
e

le
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y
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In particular, Eq.~20!, when integrated overw, implies that
the generalized BHD~17! can be calculated using an arb
trary basis~18!.

An important case is when one can find a new basis~18!

whose Chern indicess̄n all vanish. Before discussing th
meaning of this case, we first determine the conditions t
need to be satisfied to make it possible. Because of Eq.~19!,
a necessary condition is clearly thatsGB50. This condition
is also sufficient, since ifsGB50 one can always find a
unitary matrixBb

(n)(w) with Chern indicessb,n52sb ~im-

plying that s̄n50 for all n). In fact, one can simply choos
Bb

(n)(w), n51, . . . ,N, as theN orthonormal eigenvectors o
an N3N Hermitian matrix that is strictly periodic inw and
whoseN homotopic invariants~Chern indices! are 2sb , b
5b1 , . . . ,bN . Such a matrix can be explicitly constructe
for any given set of integerssb with sGB50 @18#. It is
worthwhile to stress here that due to the general Disphan
relationpsb1qmb51 @10,20# the conditionsGB50 can be
satisfied only ifN is a multiple ofq, i.e., the minimalN is
N5q.

The fact that one can find a new basis~18! with s̄n50 for
all n means that the GB can be viewed as ‘‘weakly sen
tive’’ to variations in the BCs, despite the fact that the orig
nal Chern indicessb may be all different from zero. This ca
be expressed in a more precise way using Eq.~20!. Since
s̄n50, one can assume thatC̄n,w(R) has a finite localization
domain ~see Sec. II!. Equation ~20! then implies that the
function(b5b1

bN uCb,w(R)u2, characterizing the GB, has also

finite localization domain. In this sense, the GB exhib
weak sensitivity to variations in the BCs. Nonzero values
the Chern indicessb in this case only mask the true nature
the GB, which is best described in terms of the new ba
One can thus say that a GB consisting ofq adjacent bands
with sGB50 is analogous to a band withsb50 in the case
of q51. In Sec. VI these ideas will be further developed
order to generalize the Chern-index characterization of
classical-quantum correspondence to the case ofqÞ1.

V. BHDs NEAR DEGENERACIES

In this section we show that the generalized BHD for tw
adjacent bands~to be denoted, for simplicity, byb51,2) is
approximately conserved as a nonintegrability parameterg is
slightly varied through a degeneracy pointg0 of these bands,
i.e., v1(w0)5v2(w0) at g5g0 , wherew0 is some isolated
value ofw. This is despite the fact that the separate BHDs
the two bands usually change significantly under such va
tion.

Formally, the unitary evolution operator can be written
Û5exp@2iĜ(g)#, whereĜ(g) is a Hermitian operator. The
quasienergy states~6! are eigenstates ofĜ(g) with eigenval-
uesvb(w). Consider two values ofg, g1 andg2 , very close
to g0 and such thatg1,g0,g2 and let us denote byuCb,w

( j ) &,
j 51,2, the eigenstates ofĜ(g j ). We assume that forg in the
interval @g1 ,g2# ~containing the degeneracy point! and for
all w, the distance betweenv1(w) andv2(w) is significantly
smaller than the distance between any of these quasiene
and vb(w), bÞ1,2. In this case, one can write, to a goo
approximation,
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Cb8,w
~2!

~R!' (
b51

2

Bb
~b8!~w!Cb,w

~1! ~R!, ~21!

where the expansion coefficientsBb
(b8)(w), b,b851,2, form

a 232 unitary matrix built from the normalized eigenvecto
of the 232 Hermitian matrix Gb,b8(w)
5^Cb,w

(1) uĜ(g2)uCb8,w
(1) &. Equation ~21! is thus an approxi-

mate special case of Eq.~18!. Nevertheless, the general rel
tion ~19! holds exactly in this case as well. It expresses
well known conservation of the total Chern indexs11s2 in
the passage through a degeneracy point@19,26#.

From Eq.~21! we get the relation

uC1,w
~1!~R!u21uC2,w

~1!~R!u2'uC1,w
~2!~R!u21uC2,w

~2!~R!u2,
~22!

which is an approximate special case of Eq.~20!. After inte-
grating Eq.~22! over the entire BZ, we obtain the approx
mate conservation law for the generalized BHD of the t
bands:

P1,2
~1!~R!'P1,2

~2!~R!.

As a first, instructive example, we consider the deg
eracy between bandsb53,4 in the KH model with r
51/11 for g5g0'0.264 ~see Ref.@9#!. For g5g150.26
,g0 , the Chern indices of the two bands are, respectiv
s35s450, while for g5g250.2645.g0 they change to
s352s452 @35#. For g5g3'0.2653, the Chern indice
reassume the valuess35s450 due to a second degenera
between the two bands. Thus, for bothg5g1 and g5g3 ,
one can associate Wannier functions^Ruwb& with these
bands, as in Eq.~15!. These functions are expected to
localized on classical regular orbits~tori!, such as those
shown in Fig. 1~b!. Our numerical results indicate tha
^Ruwb& for b53 (b54) at g5g3 is essentially the same a
^Ruwb& for b54 (b53) at g5g1 . This ‘‘exchange’’ of
Wannier functions in the passage through the degeneracy
be understood as follows. Sufficiently far from the dege
eracy region the bands vary almost linearly as a function og
~see Fig. 11 in Ref.@9#! and are well approximated by
primitive semiclassical quantization of the two tori on whi
the functionŝ Ruwb&, b53,4, are localized. Near the dege
eracy region, however, the actual band structure results f
an ‘‘avoided crossing’’ between the two bands@see Fig.
12~a! in Ref. @9##, leading to the exchange phenomenon.
Fig. 6~a! we plot the BHDs for the two bands along th
symmetry lineu5v for g5g1 . These BHDs exhibit, essen
tially, the profiles of the two Wannier functions. A simila
plot for g5g2 ~between the two degeneracies! is shown in
Fig. 6~b!. It is evident that the BHDs have changed sign
cantly following the small variation ing from g1 to g2 .
However, Fig. 6~c! shows that the generalized BHD for th
two bands is conserved to high accuracy under this variat
This BHD, associated with a GB having a total Chern ind
sGB50 ~see Sec. IV!, corresponds essentially to a ‘‘supe
position’’ of the two Wannier functions. Between the tw
degeneracies, the GB can be still described by Wannier fu
tions, associated with a new basis~18! with s̄n50.
e
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FIG. 6. ~a! BHDs along the symmetry lineu5v for bandsb
53 ~solid line! andb54 ~dashed line! in the case of the KH mode
with parametersg50.26 andr51/11. The BHDs were calculated
by averaginguCb,w(R)u2 over 1003100 values ofw uniformly dis-
tributed in the BZ. ~b! Similar to ~a!, but for g50.2645.g0

'0.264, whereg0 is a degeneracy point for bandsb53,4. Notice
the dramatic change of the BHDs relative to those of case~a!,
despite the small variation ing through the degeneracy point.~c!
Generalized BHD for bandsb53,4, obtained by averaging the re
sults for the two bands in case~a! ~solid line! and in case~b!
~dashed line!.
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As a second example we consider a GB withsGBÞ0 in
the same model (r51/11). For g5g0'0.3387, a degen
eracy between the bandsb55 andb56 takes place. Due to
the special symmetries of the KH model@8#, a degeneracy
between bandsb56 andb57 must occur at precisely th
same value ofg0 but at a different value ofw0 . As g is
varied throughg0 , the Chern indices of bandsb55,7 both
change fromsb50 to sb521, while s6 changes froms6
51 to s653. The BHDs for all these bands are shown
Figs. 7~a! ~for g,g0) and 7~b! ~for g.g0). Since the bands
b55,6,7 degenerate at the same value ofg0 , it is clear from
our previous analysis that only the generalized BHD of
these three bands can be expected to be approximately
served in the passage through the degeneracy point. In
Fig. 7~c! shows that this BHD, associated with a GB havi
sGB51, is conserved with significantly better accuracy th
in the case of Fig. 6~c!.

VI. BHDs UNDER SMALL VARIATIONS OF r

In this section we show how to define generalized BH
for qÞ1 that are continuous under small variations ofr on
the rational numbers. The topological characterization of
classical-quantum correspondence in the torus is then ge
alized toqÞ1. We shall use the renormalization-group a
proach of Wilkinson@23,24#, which was applied to the in
vestigation of the spectrum of a general class of tim
independent Hamiltonians on the torus. In what follows
assume that the generatorĜ of the evolution operatorÛ
5exp(2iĜ) belongs to this class of Hamiltonians.

We first briefly summarize the main results of Re
@23,24#. Let r85q8/p8 be a rational number sufficientl
close tor5q/p and such thatp8@p. The p8 bands forr8
5q8/p8 can then be grouped intop ‘‘clusters’’ of adjacent
bands, where each cluster is associated in a natural way
a bandb for r5q/p. Namely, the energy or quasienerg
interval covered by the bands in the cluster is relatively cl
to that covered by bandb; in addition, the total Chern index
of the cluster is equal tosb ,

s~Cb![ (
b85d~b!

d~b!1Nb21

sb8
8 5sb , ~23!

whereCb denotes the cluster corresponding to bandb, d(b)
is the label of the lowest band in the cluster,Nb is the num-
ber of bands in the cluster, andsb8

8 is a Chern index forr8
5q8/p8. The spectrum and eigenstates in clusterCb can be
approximately calculated from an effective HamiltonianHeff
obtained by properly quantizing the band functionvb(w).
The effective scaled\ in this quantization turns out to be

reff5
qeff

peff
5

pq82p8q

p8sb1q8mb

, ~24!

wheremb is the integer uniquely determined from the Di
phantine equationpsb1qmb51. It is easy to show that the
numerator and denominator in the last fraction in Eq.~24!
are relatively prime integers. Equation~24! then implies a
simple formula for the number of bands in the cluster,Nb
5peff ,
ll
on-
ct,

n

s

e
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-

-
e

.
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e

Nb5p8sb1q8mb . ~25!

FIG. 7. ~a! Similar to Fig. 6~a!, but for the bandsb55 ~solid
line!, b56 ~dashed line!, andb57 ~dotted line! in the case ofg
50.3385,g0'0.3387, whereg0 is a degeneracy point of all the
three bands.~b! Similar to ~a!, but for g50.339.g0 . ~c! General-
ized BHD for bandsb55,6,7, obtained by averaging the results for
the three bands in case~a! ~solid line! and in case~b! ~dashed line,
essentially indistinguishable from the solid line!.
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Now, the existence of an approximate effective Ham
tonian Heff for a cluster means that the space of states
bandb approximately coincides with the space of states
theNb bands of clusterCb . Providedr8 is sufficiently close
to r, any state in the cluster is well approximated by a line
combination of states that belong only to bandb. This fact is
expressed concisely by the statement that the projection
erator for bandb is approximately equal to that for cluste
Cb :

1

uTBZu ETBZ

dwuCb,w&^Cb,wu

'N (
b85d~b!

d~b!1Nb21
1

uTBZ8 u
E

TBZ8
dw8uCb8,w8

8 &^Cb8,w8
8 u, ~26!

where all the primed quantities refer tor8 andN is a nor-
malization constant that remains to be determined. Let
assume, for simplicity, that the phase-space variablesR8

5(u8,v8) for r8 (@ û8,v̂8#52p ir8) are related to the vari
ablesR5(u,v) for r by R85Ar/r8 R. Using then the ex-
pressions in Eqs.~6! and~8! for bothr andr8, we immedi-
ately obtain from Eq.~26! that

Pb~R!5
1

uTBZu ETBZ

dwuCb,w~R!u2

'
1

Nb
(

b85d~b!

d~b!1Nb21
1

uTBZ8 u
E

TBZ8
dw8uCb8,w8

8 ~R8!u2

5PCb
8 ~R8!, ~27!

where the constantN in Eq. ~26! has been determined a
N51/Nb from the normalization condition~14!. Equation
~27! shows that the BHDPb(R) for bandb is approximately
equal to the generalized BHDPCb

8 (R8) for the clusterCb . In

the limit r8→r, the space of the cluster becomes identica
that of bandb @the approximate equality in Eq.~26! is re-
placed by an equality# andPCb

8 (R8)→Pb(R). This expresses

the continuity of the generalized BHD, associated with cl
tersCb , under small variations ofr on the rationals.

The most important reference values ofr are, of course,
those with q51 ~i.e., r51/p), for which the topological
characterization of the classical-quantum correspondenc
the torus is well established@8–10#. Using the analysis in the
preceding paragraph, this characterization can be easily
tended to rational valuesr85q8/p8 (q8Þ1) sufficiently
close tor51/p. Consider first the case ofsb50, with eigen-
states localized on a regular classical orbit and exhibit
weak sensitivity to variations in the BCs. Here the Diopha
tine equationpsb1qmb51 (q51) implies that mb51.
Then, from Eq.~25!, the corresponding clusterCb consists
simply of Nb5q8 bands with total Chern indexs(Cb)50
@see Eq.~23!#. As shown in Sec. IV, one can find for such
cluster~or generalized band! a new basis~18! whose effec-
tive Chern indices all vanish. The cluster can then be view
as exhibiting weak sensitivity to variations in the BCs,
analogy to the single bandb. In addition, because of Eq
~27!, the generalized BHD for the cluster is approximate
-
n
n

r
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o

-

on

x-

g
-

d

equal to the BHD for bandb and is therefore localized on th
same classical regular orbit. In the case ofsbÞ0, the number
Nb of bands in the cluster is generally different fromq8 and
varies withb. However, the Chern indexs(Cb) of the clus-
ter is still equal tosb @Eq. ~23!# and, like the single bandb,
the cluster exhibits strong sensitivity to variations in t
BCs, in the sense that a new basis~18! whose effective
Chern indices all vanish does not exist~see Sec. IV!. If the
BHD for bandb is spread over the classically chaotic regio
the same will be true for the generalized BHD of the clust
The topological characterization of the classical-quant
correspondence on the torus is thus generalized tor8 suffi-
ciently close tor51/p by replacing single bandsb with the
corresponding clustersCb .

As an example, we consider the case ofr51/5 for the KH
model with g50.3. While for this value ofg the chaotic
region occupies a significant portion of the phase space~see
Fig. 1!, the Chern indices turn out to be the same as in

FIG. 8. BHDs along the symmetry lineu5v for bands and
clusters of bands in the KH model with nonintegrability parame
g50.3. ~a! The upper curve~see a magnification in the inset! is the
BHD for bandb51 in the case ofr51/5. The other three curve
are the generalized BHDs for the corresponding clusterCb in the
cases ofr56/31,4/21,2/11, in order of descending curves~see also
the inset!. ~b! Similar to ~a!, but for the central bandb53. In both
cases, the BHDs were calculated by averaginguCb,w(R)u2 over
4003400 values ofw uniformly distributed in the BZ.
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5666 PRE 58ITZHACK DANA, YAAKOV RUTMAN, AND MARIO FEINGOLD
integrable limit ~Harper model!, i.e., sb50 for b51,2,4,5
~‘‘regular-motion’’ bands! and s351 ~‘‘chaotic-motion’’
band!. Similarly, for three rational approximantsr8 of r,
r852/11,4/21,6/31, the Chern indices are the same as th
in the Harper model@17# ~however, the quasienergy spect
and states are, of course, completely different from thos
the integrable limit!. Using then formula~25!, we find for
these values ofr8 that Nb5q8 for b51,2,4,5 while Nb
5q811 for b53. Figure 8~a! shows the BHDPb(R) for
b51 and the corresponding generalized BHDsPCb

8 (R8),

calculated using Eq.~27!, along the symmetry lineu5v.
Similar results forb53 are shown in Fig. 8~b!. The conver-
gence ofPCb

8 (R8) to Pb(R) as r8 approachesr is clear in

both cases.

VII. CONCLUSIONS

The framework of quantum dynamics on a toral pha
space offers the possibility of classifying the eigenstates
regular or chaotic according to their sensitivity to variatio
in the boundary conditions, i.e., variations of the quasico
dinatew in the Brillouin zone. A measure of this sensitivit
for a given bandb is the Chern indexsb , which determines
the quasiperiodicity conditions~4! and ~5! satisfied by the
band eigenstates. Providedr ~the scaled\) assumes a ratio
nal value of the form 1/p (p being a sufficiently large inte
ger!, eigenstates well localized on regular classical orbits
long to bands withsb50. On the other hand, eigenstat
concentrated in chaotic regions of the phase space us
belong to bands withsbÞ0.

By definition, sb characterizes the entire bandb, rather
than individual eigenstates. The Chern-index classifica
into regular or chaotic refers then to bands and not to eig
states. It is also well known@8,10# that sb can be expresse
as a uniform average overw in the BZ:

sb5
i

2pETBZ

dwE
TQ

2
d2RF]Cb,w* ~R!

]w1

]Cb,w~R!

]w2

2
]Cb,w* ~R!

]w2

]Cb,w~R!

]w1
G , ~28!

where Cb,w(R) is the coherent-state representation of
eigenstateuCb,w&. These observations motivate one to intr
duce other global characterizations of the bands that take
account all the BCs only in an average sense, thus resol
the ambiguity in the choice of a particular BC. These ad
tional characterizations should provide a more detailed
scription of the classical-quantum correspondence on
torus without referring to the individual, nonclassical BCs
-
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In this paper we have introduced and studied one s
characterization, the band Husimi distribution, given by t
uniform average ofuCb,w(R)u2 over w. The BHD may be
viewed as the representative Husimi distribution for ‘‘leve
b and is expected to be closer to a classical probability d
sity thanuCb,w(R)u2. This expectation was shown to be fu
filled in several aspects in Sec. III. The BHD concept pla
an important role in extending the Chern-index character
tion of the classical-quantum correspondence to rational
ues ofr with numerators larger than 1~see Sec. VI!. In this
case, a generalized version of the BHD has to be introdu
~see Sec. IV!, given by the average of the BHDs associat
with a cluster of adjacent bands forr85q8/p8'1/p.

Smoothing a quantum probability distribution over
range of energy levels is important in the theoretical study
scars using the semiclassical periodic-orbit theory@5,6#. In
the case of the BHD, this smoothing is performed over
continuous range of one band, corresponding essentially
single level in the framework of a toral phase space. Us
the adaptation of periodic-orbit theory to this framewo
@12#, it may be possible to achieve a better understanding
the nature of BHDs and generalized BHDs in the semicl
sical limit.

An important question is to what extent information abo
the individual band eigenstates can be recovered from
BHD. We recall here the well known fact in solid-state phy
ics that all the Bloch eigenstates in a band can be sim
reproduced from the corresponding Wannier function. Th
in this case, no information about the individual eigensta
is lost by averaging over them~the average being the Wan
nier function!. The relation~15!, valid only for sb50, is
analogous to the formula expressing the Bloch eigenstate
terms of the Wannier function. In this case, the relation~16!
shows that the BHD is closely related to the absolute va
squared of a Wannier function. This relation may be e
tended tosbÞ0 using results from Ref.@24#. It was also
shown recently@38# that the Wigner functions of all of the
band eigenstates can be reproduced from the Wigner an
of the BHD. On the basis of these observations, we exp
that it should be possible to recover, at least partially, r
evant information about the individual eigenstates from
BHDs. This will be investigated in future works.
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