PHYSICAL REVIEW E VOLUME 58, NUMBER 5 NOVEMBER 1998
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Band Husimi distribution§BHDs) are introduced in the quantum-chaos problem on a toral phase space. In
the framework of this phase space, a quantum state must satisfy Bloch boundary cortBi@snen a torus
and the spectrum consists of a finite number of levels for given BCs. As the BCs are varied, a level broadens
into a band. The BHD for a band is defined as the uniform average of the Husimi distributions for all the
eigenstates in the band. The generalized BHD for a set of adjacent bands is the average of the BHDs associated
with these bands. BHDs are shown to be closer, in several aspects, to classical distributions than Husimi
distributions for individual eigenstates. The generalized BHD for two adjacent bands is shown to be approxi-
mately conserved in the passage through a degeneracy between the bands as a nonintegrability parameter is
varied. Finally, it is shown how generalized BHDs can be defined so as to achieve physical continuity under
small variations of the scaled Planck constant. A generalization of the topol¢Gicain-index characteriza-
tion of the classical-quantum correspondence is then obtdiBa063-651X98)03011-§

PACS numbeps): 05.45:+b, 03.65.Sq

. INTRODUCTION to the integrable Harper HamiltonianH,=A cos()
+Acosp). The transition from integrable to chaotic phase-
The main objective of “quantum chaos” is to understandspace structure, as the dimensionless classical parameter
the correspondence between classically nonintegrable sys-a /27| is increased from 0, is shown in Fig. 1. The sec-
tems and their quantum counterparts in the semiclassicd)ng condition for quantum dynamics on a torus is that a

limit [1]. During the past two decades, significant progress Al
has been made in the study of this correspondence with thecaledr, denoted here by ([u,v]=2mip=i#/l), assumes

discovery of phenomena such as dynamical localizdtion ~ 'ational valuesp=a/p (g andp are coprime integejsThe

3], “scarring” of eigenstates by unstable periodic orbits adml.SS|b.Ie quantum states are then those that satisfy Bloch
[1,4—6], and statistical properties of the eigenspectfas]. quasiperiodic boundary coqdltlor(BCs) on the torqs; see
However, the relation between classical phase-space stru€€c- Il. The energy or quasienergy spectrum consists of pre-
tures and corresponding quantum-dynamical entities is stifisely p levels and, as the BCs are varied, each of these
far from being completely understood. levels spans a band.

In this paper we introduce quantum-mechanical distribu- The advantage of this framework is that it allows for a
tions that, in the semiclassical limit, are expected to approachharacterization of the classical-quantum correspondence by
in a natural way classical distributions on both regular andneans of integer topological invariants, the Chern indices
chaotic phase-space structures. This will be done in thg8-10], associated with thp bands. The Chern index for
framework of a toral phase space, where, as shown in a rex band is analogous to the quantum Hall conductance carried
cent series of workg8—10], some interesting insights in the by a magnetic band in a perfect crysfdl7—24 and is a
quantum-chaos problem can be achieved. Quantum dynameasure of the sensitivity of the eigenstates in the band to
ics can be reduced to a torus if two conditions are satisfiegariations in the BC$8-10,29. For q=1, the toral phase
(see Sec. Il for more detajlsFirst, the classical map for the space coincides with the basic unit cell of periodicity of the
system is strictly periodic in all the phase-space coordinatesystem. In this case, where the classical-quantum correspon-
The simplest nonintegrable system possessing this propertience can be established in the simplest and most natural
is the “kicked-Harper”(KH) model[8—-15] with the Hamil-  way, o can assume, in principle, all values. Several argu-
tonian ments[8,9,25, supported by numerical evidence, then indi-
cate that if the Husimi distribution of an eigenstate is local-
ized, in a semiclassical regim@<<1), on classical regular
orbits (e.g., Kol'mogorov-Arnol’d-Moser tori or periodic or-
bits) the corresponding band has=0. On the other hand,
whereu andv are dimensionless conjugate phase-space varkeigenstates whose Husimi distribution is spread over the
ables (with the Poisson brackefu,u}=1/, | being some classical chaotic region should correspond to bands with
classical actiop A is the amplitude, and is the time period.  # 0. The transition from a nearly integrable regipeeg., Fig.

The systen(1) is exactly related14] to the problem of pe- 1(a)], where almost alb-=0, to a fully chaotic regim¢e.g.,
riodically kicked charges in a uniform magnetic field underFig. 1(d)], where almost alb-#0, as a nonintegrability pa-
resonance conditiorfd6]. In the limit 7— 0, Eqg.(1) reduces rameter is varied, takes place via degeneracies between ad-

o]

H=Acogv)+Acogu) Z_ S(tIT—s), (1)
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FIG. 1. Classical Poincarmaps of typical orbits of the kicked-Harp€kH) model (1) for different values of the nonintegrability
parametery=Ar/27l: (a) y=0.001(nearly integrable regime(b) y=0.26 (mixed regime (notice, for future reference, the island chains
of periods 6 and 8 surrounding the central elliptic ppifit) y=0.56 (the chaotic region occupies a large fraction of the phase pace
(d) y=0.95(strongly chaotic regime

jacent bands. In the passage through a degeneracy betweeriits located ing adjacent unit cell§9—-11]. As a conse-
bandsb andb’, the Chern indicesr, and o, change, re- quence,s is always nonvanishingj10] and the topological
spectively, by+ Ao, where, genericallj19,26, [Ac|=1. A  characterization of the classical-quantum correspondence
“diffusion” of Chern indices[27] occurs then in the transi- cannot be extended straightforwardly to this general case.
tion above. We show in this paper that a natural way to overcome
Despite this characterization of the classical-quantum corthese difficulties is simply to average uniformly the Husimi
respondence for sma#l, the eigenstates may not be consid- distributions of the eigenstates in a band over all the BCs. In
ered close to classical phase-space structures, strictly speakhat follows we refer to the result of this averaging as the
ing, for anyp. This is because of the following reasoffi@.  band Husimi distributionBHD). The BHDs turn out to be
While the BCs satisfied by a quantum state have a welleloser, in several aspects, to classical distributions than Hu-
defined physical meanin@ee Sec. I, they are of a purely simi distributions for individual eigenstates. It is well known
qguantum nature. In particular, the strong dependence of thig,6] that smoothing a probability distribution over a range
eigenstates on the BCs for#0 and, in several casdsee AE of energy levels has the effect of washing out purely
Sec. lll), also foroc=0, has no classical counterpait) The  quantum structures such as scars. A is increased, this
Husimi distribution of an eigenstate always assumesros effect increases and the smoothed probability distribution
in the torus; see Sec. Il. Because of this fact, an eigenstaie.g., the spectral Wigner function in R€f6]) becomes
cannot tend, in the semiclassical limit, to the microcanonicatloser to a classical distribution. In our case the smoothing is
uniform distribution on the chaotic regidi,28]. (c) In the  done not over a range dfiscreteenergy levels but over the
general case af# 1, the exact eigenstates may be viewed acontinuousrange of one band, corresponding essentially to a
arising from quantum tunneling between degenerate classicalnglelevel in the framework of a toral phase space. This is
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thus theminimal smoothing in this framework and it is per- of |¥, ) may be chosen so thi, ) will be exactly pe-
formed just for the sake of eliminating the purely quantumriodic in one direction, say;, but then it will be periodic in

effects of individual BCs. The BHD may be viewed as thew, only up to a phase factor that, in its simplest form, has a
representative Husimi distribution for a level in the torus. Inphase that is linear i, [10]:
several important cases, we shall find it necessary to gener-

alize the concept of BHD by considering the average of |‘I’b,w1+2wp,w2>:|‘1’b,w>7 (4)
BHDs associated with a set of adjacent bands.
This paper is organized as follows. In Sec. Il we summa- |\IbeW1YW2+2ﬁ,p):exp(icrbwllp)|\lfbyw>. (5

rize the relevant known facts about quantum dynamics on a

torus [8—10. In Sec. Ill the concept of BHD for a single

Here the constanié, must be an integer in order for E()

band is introduced. In Sec. IV the concepts of generalizedo be consistent with Eq4). It is easy to see from Eq$4)

band (set of adjacent bangsand the associated BHD are

and(5) that 2w oy, is the total phase change pFy,,,) when

introduced and studied. In Sec. V the generalized BHD foigoing around the BZ boundary counterclockwise. This phase
two adjacent bands near a degeneracy of these bands is stugrange is independent of phase transformation@gf,). In
ied. In Sec. VI we show how to define generalized BHDs forfact, the integerr, is a topological number, th@hern index
g#1 in order to achieve physical continuity under smallwhich can be expressed in a form manifestly invariant under

variations inp. In this way, the topological characterization

phase transformatiorfsee Ref[8] and expressioii28) be-

of the classical-quantum correspondence is extended to thew].

general case af# 1. Conclusions are presented in Sec. VII.

II. QUANTUM DYNAMICS ON A TORUS

We provide here some relevant background on quantum

dynamics on the torug8—10] using, for later convenience,

the notation of Ref[10], where a general formulation of the

The general form of¥y, ,,) in thev representation ig10]
p—1
Wol(0) = (0| W) = 2, So(MW) s, - 20mpm, (0, (6)

whereg,(m;w) are expansion coefficients agig,(v) arekq
functions[29],

problem was presented. Consider a classical area-preserving

map strictly periodic in the phase spaaeg ) with a 27
X 277 unit cell, which is the basic toru?. The one-step

guantum evolution operator corresponding to the classical

map isU(U,0), where[u,0]=2ip. If p is a rational num-
ber, p=q/p (g and p are coprime integeysthere exists a
pair of “smallest” commuting phase-space translations
|51=ei6/”, 62=eip;. (2)
Because ofu,0]=2mip, D; (D,) is a translation by 2
(27rq) in thev (u) direction. SinceU(u,v) is periodic in
bothu ando with period 2, it commutes WitH5l and I52.
There exist therefore simultaneous eigenstatesf U, D,

andD,:
Ol Wy =e oWy ),

Ii\)1|‘Ijb,w> = eiW1/p|qu,w>a |52|\I,b,w> = eipW2|\I,b,W>1 (3)

where b is a “band” index (see beloy, wy(w) is the
quasienergy, and=(w4,W,) is a Bloch wave vector vary-
ing in the “Brillouin zone” (BZ) O0=w;<2mp, O<w,
<2mx/p, atorus to be denotel, in what follows. Now, for
each given value ofv, Egs.(3) can be interpreted as quasi-
periodic BCs satisfied by the eigenstatek,,) in the
“quantum” toral phase spaceTé: O=su<2mqg, O=<v
< 2. It can be showri10] that for eachw the gquasienergy
spectrum consists precisely op levels wp(w), b
=1,...,p. As the BCs are varietby varyingw in the B2,
each level broadens into a “band.”

In the absence of band degeneragieg(w) # wy/ (W) for
all w andb’ #b], | ¥}, ,,) must be periodic in the BZ up to a
constant phase factor depending, in generalyoiihe phase

oo

Yulv)= > explilw, /q) (v —wy+ 2l /p).

)

Without the labeb, Eq.(6) is the most general expression of
a quantum state in the representation for given BQge.,
givenw). A completely analogous expression is obtained in
the conjugatef) representation by Fourier transforming Eq.
(6). These expressions imply, essentially, a discretization of
the toral phase spad% into p? points,um1=w1+ 2mTmyp,
Um,=Wat27My/p, My, my=0,... p—1, with ¢(my;w)
being the probability amplitude fou to assume the value
U, - The corresponding amplitude for:vmz is the discrete

Fourier transform ofb(m, ;w). This discretization was stud-
ied by Hannay and Berr§30] in the special case af=1
(Tész) andw= 0 (strict periodicity. They used thg am-
plitudes ¢(m;w=0) to investigate the evolution of a quan-
tum state in the cat maps.

A most useful representation ¢¥,, ) is the coherent-
state representatiod}, ,(R) =(R|¥}, ), where R=(u,v)
and|Ry) is a coherent state,

u
- 27_r(;(v—v()/Z) .

o?
27%p ) XF{ -
®

Here « is the “squeezing parameter,” related to the param-
eters of the harmonic oscillator for which the quantum evo-
lution of the statd8) is nondispersive. An equivalent expres-
sion for a coherent state dependswgnanduv only through

the complex numberzp=uy/a—iav, (see, e.g., Refs.
[28,31)), giving an analytic representatiohy, ,,(z). For fu-

ture convenience, however, we shall use the representation
¥, w(R), choosing, as in Ref28], the symmetric valuer

=1.

1/4
e

a®(v—vp)?

<U|R0>: 47TP
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Important properties of¥,, ,(R) concern its zeros, in [ll. BAND HUSIMI DISTRIBUTIONS
both theR andw variables. At fixedw, ¥, ,(R) always
assumes exactlp zerosR=Rg;(w) (j=1,...,p) in Té
(counting possible but nongeneric zero multiplicifieshis
property was proved in Ref28] for g=1 anda=1, but it
can be easily generalized to gland «, using Eq.(6), to-
gether with Eqs(7) and(8). It is also well known[28] that
the p zerosRy;(w), like the p amplitudese,(m;w) in Eq.
(6), completely determine the wave functioh, ,(R). At
fixed R, the numbeNy(R) of zerosw=w(R) of ¥ (R) —(p+ i ;

@n the BZ is not smaller thafoy)| [_32]. These 2properties liaf ?1[7?_ IrgFt)hels)éﬂiggzss:aﬁ]cr)ggﬁrr;;;hr%hg ziegrgnlsrt]gti? of
imply that thep zerosRy,(w) must wind around'g at least  his hand are concentrated on the separatrix dege Fig.

|oy| times whenw is varied in the BZ. Thus, if for some 1(5)] \which is not contractible to a point. On the other hand,
R=R', ¥,,(R’) does not vanish in the BZy,=0. We e eigenstates of the other bands, which have vanishing
shall refer to the union of aR’ as thelocalization domairof  chern indices, are concentrated on orbits that are contractible
Wy, w(R), for reasons that will become clear in the following g g point.

paragraph. Asw is varied over the entire BZ, the zeros This state of matters persists also fpmot very small,

Ro, (W) never enter this domaifsee also Ref.25]). - when the separatrix orbit breaks into a stochastic layer, and

In a nearly integrable situatiofe.g., very smalAin the  jgjand chains emerge from the, contractible orbits. For
KH model (1)] and in a semiclassical regim@<1), most  example, forp=1/11, the Chern indices,, appear to be the
eigenstatesV, ,,(R) will be localized on regular classical ggme as in the Harper case in the entire interysl0.26
orbits and the corresponding bands are usually very narroyy 35). Namely, only the central quasienergy band features a
(almost independent of). A good approximation to the ponyanishing Chern index,=1. We have studied numeri-
Husimi probability distribution ¥y, ,,(R)|? in its localization  cajly the sensitivity of the eigenstates to variations in the
region is given by[{8,34] BCs (i.e., variations inw) for several values ofy in the
2 interval above. We find that eigenstatesoig=0 bands suf-

] ) ficiently “far” from the central bandi.e.,b close to 1 or 11

We start this section by considering in more detail the
nature of the BC$3) using the KH systentl) as a model.
The nearly integrable regime for this system corresponds to
very small values of the classical parameer Ar/27| [see
Fig. 1(@]. In this regime, the system is well described by the
Harper HamiltoniarH,= A cos{i)+Acosg). For p=1/p, p
odd, the energy spectrum bf, consists ofp bandsEg(w),
b=1,...,p, in order of increasing energy. Only the central

v , N 1 [Ho(R)—E,
¥R~ V(R) &P~ 2mp|  V(R) are indeed almost insensitive to variationsair(large local-
ization domain. This is not the case, however, for bands
where gO(R) is the energy function for an effective inte- sufficiently close to the central band. While the Chern index
grable HamiltoniarH,, in this nearly integrable situatiofs, ~ for these bands vanishes, the sensitivity of the eigenstates to
is an energy eigenvalue ¢f, approximating the very nar- variations inw is quite strongvery small or empty localiza-
row band[ Ey~ w,(W)#/7], V(R) is the phase-space veloc- tion domain, almost as strong as that of eigenstates in the
ity for Ho, and\V is a normalization constant. The relation central band. This is clearly illustrated in Figs. 2 and 3. In
(9) manifestly shows that the eigenstates are quite insensitivgeneral, we expect strong sensitivity to variationswinin
to variations inw in the region of phase space where they areos=0 bands that are sufficiently close 4g+0 bands.
localized. In particular, the zerosRy;(w) should never en-  This sensitivity has no classical analog sincés a purely
ter this region, thus implying a finite localization dom#&as ~ quantum characterization of the eigenstates, which are con-
defined above We therefore expect that eigenstates that argentrated on different regions af for different values of
localized on regular classical orbits fpr<1 should belong W. In fact, by comparing Eqg3) with the definitions(2) of
to bands witho,=0 (see also Sec. Il the operator®; andD,, we see immediately that is just
It is important to remark here that the valag=0 may  a quasicoordinateof R=(u,v):
occur only forq=1 sinceo}, has to satisfy the Diophantine
equation po,+qup=1, where u, is a second integer
[10,20. For g# 1, the exact eigenstates are quite “nonclas- WiSp
sical” since they may be viewed as arising from quantum
tunneling between degenerate classical orbits located in the
g adjacent unit cells defining'é [9-11]. Thus, even in a To understand this better, consider, for giversw’, the
completely integrable situation, thezerosRo;(w) always “displaced” quantum state
cover the torusil'(z3 whenw varies in the BZ9].
In a.strongly chaotic situation, where a typical orbit fills 5(Zo)|‘Pb,w/>=eXF(ZoéT—23 é)|‘1’b,w/>, (10)
the entire phase spad&, thep zerosRy;(w) for g=1 are
expected to be distributed almost uniformlyTlé’b:T2 [28] o
and to explore the entir? asw is varied in the BZ[8]. = Wherezy=uo+ivo anda=(u+iv)/4mp is the annihilation
Almost all the bands should therefore be characterized bgperator. Itis easy to verify, using the well-known commu-
nonvanishingo,,. The transition from a nearly integrable tation relation for the phase-space translatibng,) [36],
situation(almost allo,=0) to a strongly chaotic on@lmost  that the statg10) satisfies the BC$3) with the displaced
all o,#0), as a nonintegrability parameter is varied, takesvalue ofw=w’+Rg [Ro=(ug,vg)]. On the other hand, us-
place via successive degeneracies between adjacent baridg the expressioB) (for a=1), we find that the coherent-
[8,9] (see also the Introductipn state representation of the st&id) is given by

u 1
;mod 277) , Woe B(pv mod 217).
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FIG. 2. Density plots of Husimi distributiorialfb,w(R)|2 for the KH model with parameterg=0.26 [compare with Fig. (b)] andp
=1/11. The central bantb=6 (with Chern indexog=1) is considered for different values of in the BZ: () w=(0,0), (b) w
=(m/11,0), (c) w=(0,7/11), and(d) w= (7/11,m/11). In these plots, as well as in Figs. 3—5, we use a power-law density(sddigower
~1/3) and ten gray tones, with darker tones corresponding to higher values of the distribution. Inbgaaed (c), |\I'b'W(R)|2 is
concentrated on one of the two hyperbolic fixed points, while in cémesnd (d) it is concentrated on both points.

(R|D(20)| Wy ) =exdi(Uvo—Ugv)/4mp] ¥y (R—Ry).  Where the coefficientsy, b (Ro,W) =( ¥y w|D(20) [ Wpw)-
(1)  Assume, for example, thak, ,(R) is almost insensitive to
variations inw (large localization domajn Then, from Eq.
(1) and w=w'+R, it follows that the coefficient
af@,b(Ro,W) should be relatively small for almost all if R,
IS larger than the typical width of the localization domain. If,
on the other hand¥y, ,,(R) is highly sensitive to variations
in w, the coefficientsy, ,,,(Rq,w), for b’~b, may be rela-
From Eq.(11) one may get the impression that there istwely large for “m‘?‘”y”. pairs Ro,w)#0. For e_xample, N
always strong sensitivity to variations in the BCs. However,the cases shown in Flgs. 2 and 3, these pairs mc[thj_)e
. Ta . =(m,m),w=(0,7/11)] [i.e., w'=(w/11,0); compare Fig.
S|qceD(zo) doe:c, not corTlmute, for genemy, .Wlth the ev'o- 2(b) with Fig. 2c) and Fig. 3b) with Fig. 3(c)] and [R,
lution operatorU, the displaced stat€l0) will not be, in =(m,7),w=(7/117/11)] [i.e., w'=(0,0); compare Fig.

Thus the shifted functionV,, ,,(R—Ry) is, up to a phase
factor, the coherent-state representation of a quantum st
characterized by the displaced valuewof w’'+R,. This is

a vivid illustration of the notion of “quasicoordinate &”
for w.

general, an eigenstate. Still, one has the expansion 2(a) with Fig. 2(d)].
Because of the purely quantum naturenofind the BCs,
p it is natural to perform a uniform average owverin the
(R||5(Zo)|‘1’b,w'>: 2 Cp.pr(Ro,W)Wpr w(R), Brillouin zone in order to obtain “more classical” quantities.

b'=1 In this paper we shall consider the average of the Husimi
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FIG. 3. Similar to Fig. 2, but for banB=5 with Chern indexos=0. Despite the fact thats=0, we observe strong sensitivity to
variations inw, as in the case of Fig. 2. i@ [w=(0,0)] | ¥, ,(R)|? is concentrated on the island chain of periofs8e Fig. 1b)]. Notice
that the localization regions in the case of pl@isand(c) are reversed relative to the corresponding plots in Figd2.on the other hand,
is qualitatively similar to Fig. @l).

probability distribution| ¥, ,(R)|?, giving theband Husimi (s intege) as well as Eq(11) in Eq. (12), we easily find that
distribution (BHD) for bandb: a1

1
1 Py(R)= asgo P9(u+2ms,v), (13

PolR)= 7

JT dw| Wy W(R)[?, (12
o where Péq)(R) is defined as in Eq(12), but the integral is

where|Tgz| = 472q/p? is the area of the Brillouin zone. The Performed over Y of the BZ, i.e., G=w,,w,<2/p, and
BHD (12) corresponds to theninimal smoothing of a prob- | Tezl is replaced by Teg|/q. It is then clear from Eq(13)
ability distribution in the framework of a toral phase space,thatPy(R), unlike|¥, ,(R)|?, is periodic with unit cellT?
namely, the smoothing over the continuous range of a singlér general g This allows one to impose dy(R) the nor-
band. We now show that this smoothing is sufficient to makemalization condition

the BHD more classical than an individual Husimi distribu-

tion [ Wy, ( R)|?in sgveral_as_pects. Fir§t, we notice fro_m Egs. J' dRP,(R)=1. (14)
(3) that | Wy, ,(R)|? is periodic only with unit ceIITé, ie. T2

the quantum phase space, which differs from the classic

oneT? wheneverg+ 1. Now, using the relatiofiL0] aIlhis makesP,(R) analogous to a classical probability dis-

tribution on the classical phase space
R _ Second,| ¥}, ,(R)|? always assumep zerosRg;(w) (j
D(=2m8)[Wp ) =exp(iswz/p)|Wp,w, 2msm,) =1,...,p) in T§ (see Sec. )l These zeros givePy, ,(R)|?
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FIG. 4. Band Husimi distributiofBHD) for the case considered FIG. 5. Similar to Fig. 4, but for the case considered in Fig. 3
in Fig. 2 (b=6). The BHD was calculated by averaging (b=5). The BHD appears to be concentrated on four of the six
|Wp.w(R)|? over 20x 20 values ofw, uniformly distributed in the islands of an island chain of period 6, surrounding the main island
BZ. This BHD, with a localization region similar to that of Figs. chain of this period in Fig. (b). The localization region for this
2(a) and 2d), is close to a classical probability distribution for the BHD is representative for banol=5 but is qualitatively different
stochastic layer in Fig.(b) (see the tejt from that of| W, ,,(R)|? for all the special values af considered in

Fig. 3.
a rather “nonclassical” appearance, for example, they do not R R
allow | ¥, ,(R)|? to approach, in the semiclassical limit, the whereD, andD, are the basic phase-space translati@s
microcanonical uniform distribution in the chaotic region and|¢y) is some square-integrable state, which is analogous
(strong-chaos regimg8,28]. On the other hand, the BHD to a Wannier functioti20,22,24. Inserting Eq.(15) into Eq.
never vanishesn the phase spadeP,(R)>0 for all R in (12, we easily obtain the exact expression
T2], simply because thp zerosRy;(w) (j=1,...,p) gen-
erally vary withw and, by definitionsee Eq(12)], a BHD
involves an integration over al. It is therefore possible for
a BHD to resemble a classical probability distribution. For
example, in Fig. 4 we show the BHD for the case consideredVhile the Wannier functionR|¢y) is not invariant under
in Fig. 2 (b=6). The relatively high probability density near gauge transformations in which the eigenstates are multiplied
the hyperbolic point)R=(,0),(07) can be easily under- by phase factors ekip(w)] [24], the BHD (16) is gauge
stood from classical considerations. The bdand6 corre- invariant. In a nearly integrable situation and in a semiclas-
sponds to a “broken” separatrix orbithat is, a homoclinic ~ sical regime |(R|¢,)|? may be identified with the “quasi-
orbit in the chaotic laygrand the phase-space velocity on mode” of Ref.[37], which is well localized on a classical
this orbit vanishes as one approaches the hyperbolic pointsegular orbit and, in the limip— 0, tends pointwise to zero
Accordingly, the approximate formul@®) suggests that the outside this orbit. Similarly, the BHD16) tends pointwise to
BHD should assume relatively high values near these pointzero outside the periodic repetition of the orbit on all unit
Figure 5 shows that the localization region of the BHD forcells (4,l5,). It is therefore a periodic version of the quasi-
bandb=5 is completely different from that of individual mode, appropriate for a toral phase space. A good approxi-
Husimi distributions(see Fig. 3. Although this band has mation to the BHD should be given by the right-hand side of
o,=0, it exhibits strong sensitivity to variations of the BCs. Eq. (9), which, like Eq.(16), is essentially independent of
The representative or dominant localization region for such and is periodic with unit cellT?. The differenceZ, y(R)
band can be found only by inspecting its BHD. In theE|\Ifb,W(R)|2—Pb(R) is the sum of the overlaps of the
strongly chaotic regime y>1) and in the semiclassical quasimode(u+2mlq,v+2mly ¢p) [in unit cell (14,15)]
limit, the BHDs are expected to approach the microcanonicalith a quasimode in a different unit cell. The function
uniform distribution. Z, w(R) is thus of a purely quantum nature and it is entirely

Finally, consider the special but important case of bandsesponsible to the zeros of¥},,,(R) and to the sensitivity
with o, =0, which is possible only fog=1 (see Sec. )l  of ¥, ,(R) to variations ofw for R outside the localization
Here an eigenstatd'y, ,(R) can always be written as a domain. This clarifies the classical nature of the BHD in this

©

Pb(R)zl IE Ku+2mly,0+27l, o). (16)

1lp=—»

symmetry-adapted sufi20,22] case.
© N IV. GENERALIZED BANDS AND BHDs
Vou(R)= 2 exl—ip(lwy+ 1wy (RIDD | ¢y),

In several important situations, some of which will be
(15 considered in the following sections, it is necessary to gen-

1.p=—
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eralize the concept of BHD by smoothing over more than dn particular, Eq.(20), when integrated ovew, implies that
single band, namely, over a set &f adjacent bandd  the generalized BHO17) can be calculated using an arbi-
=b4,...,by. This gives thegeneralizedBHD trary basis(18).

An important case is when one can find a new b&kss

1 whose Chern indices_rn all vanish. Before discussing the
Pblbe(R): szb Po(R). 17 meaning of this case, we first determine the conditions that
! need to be satisfied to make it possible. Because of B3,

The additional smoothing over bands should give a moré Necessary gondltlpn IS 'clearly thage=0. This cond!tlon
Is also sufficient, since ibrgg=0 one can always find a

classical BHD, as when smoothing over many levels in a” | ) i o - .
bounded guantum systeli]. The “maximal” smoothing is, unl_tary matrixBp~(w) with Chern 'nd'ceS‘Tb’“f —op (im-
of course, that over all thp bands. From the completeness plying thato,,=0 for all n). In fact, one can simply choose

of the eigenstatet), together with the normalization condi- BE,”)(W), n=1,...,N, as theN orthonormal eigenvectors of
tion (14), we find in this case that an NXx N Hermitian matrix that is strictly periodic imw and
whoseN homotopic invariant¢Chern indicesare — o, b

1P 1 =b,,...,by. Such a matrix can be explicitly constructed
EbZl Pb(R)=?, for any given set of integers, with ogg=0 [18]. It is

T worthwhile to stress here that due to the general Disphantine

) . _ relationpo,+qu,=1 [10,20 the conditionocgg=0 can be
where|T?|=4* is the area of the classical torus. Thus, assatisfied only ifN is a multiple ofg, i.e., the minimalN is
one could expect, the generalized BHD in this case is just thpd:q_

uniform distribution over phase space. ' T
X . . The fact that one can find a new bagi8) with o,=0 for
The set ofN adjacent bands can be considered as a 3'”9|8|| n means that the GB can be viewed as “wgakly sensi-

?nt'ty’ agegera:_lzed b?rngG B).' On? rtnay F;efff‘”g‘ arglttrary tive” to variations in the BCs, despite the fact that the origi-
Inear (’ion: tma |ort1.s o .elgerés ates "’:h mte 0 OW?]'.? nal Chern indicesr, may be all different from zero. This can
general states satisfying given BC3 on the torus. "€ he expressed in a more precise way using @€). Since

these states are generally not eigenstates of the evolutieR™ - — o o
operator, they are “almost stationary” provided the energy?n=0, One can assume thét, ,(R) has a finite localization
or quasienergy width of the GB is sufficiently sm&l0]. domain (see Sec. )l Equation(20) then implies that the

. b .
The set of all these states, for all is the space of the GB. function= N, |¥,,,(R)|?, characterizing the GB, has also a
A natural starting basis for this space is, of course, the set dfnite localization domain. In this sense, the GB exhibits

N eigenstated’,, ,(R), b=b,,...,by, at each fixed value weak sensitivity to variations in the BCs. Nonzero values of
of w. An arbitrary basis will then be given by the Chern indicesr, in this case only mask the true nature of
the GB, which is best described in terms of the new basis.
_ by One can thus say that a GB consistinggoadjacent bands
\I,n,W(R):b_Eb By (W)W w(R), (18)  with o0gg=0 is analogous to a band with,=0 in the case
— M1

of g=1. In Sec. VI these ideas will be further developed in
order to generalize the Chern-index characterization of the

n=1,...,N. To ensure orthonormality of the basisg) in classical-quantum correspondence to the casg+dt.

the new “band indexn, the coefficient®{"(w) must form

a unitary matrix. Obviously, the stat€$8) satisfy the BCs
(3). In addition, it is natural to require that these states will
satisfy quasiperiodicity conditions i, analogous to those In this section we show that the generalized BHD for two
of Egs. (4) and (5), with well-defined Chern indices,.  adjacent band&o be denoted, for simplicity, bp=1,2) is
Clearly, this will be the case only if the matr&{’(w) in  approximately conserved as a nonintegrability paramgter
Eq. (18) satisfies these conditions with Chern indiegg,  Slightly varied through a degeneracy pojnfof these bands,
= o,—ay. The determinant of this matrix must be strictly € @1(Wo) = w>(Wo) at y=1y,, wherew, is some isolated

periodic inw; otherwise it will vanish at some (see Sec. II value ofw. This is despite the fact that the separate BHDs of

and Ref[32]), which cannot happen since the matrix is uni- t_he two bands usually change significantly under such varia-
tion

tary. It follows from this that

V. BHDs NEAR DEGENERACIES

Formally, the unitary evolution operator can be written as
by N U=exd —iG(y)], whereG(y) is a Hermitian operator. The
Ooe= > Op=>, op. (199  quasienergy state$) are eigenstates &(y) with eigenval-
b=by n=1 ueswp(W). Consider two values of, y; andy,, very close
to v, and such thay, < y,< ¥, and let us denote byP{),),

j=1,2, the eigenstates Gf( ;). We assume that foy in the
interval [ y4,v,] (containing the degeneracy poirgnd for
all w, the distance betweean, (W) andw,(w) is significantly

by N smaller than the distance between any of these quasienergies
2 Wy W(R)[2= 2 |@n WSR2 (20) and wb(w),_baﬁ 1,2. In this case, one can write, to a good
b=b, ‘ n=1 ’ approximation,

In other words, the total Chern indexg of the GB is “con-
served” under the basis transformation in Ef8).
Another “conservation” law following from Eq(18) is
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2 1.0

VR~ 2 B (WWHL(R), (D)

where the expansion coefficier®"(w), b,b’=1,2, form
a 2X 2 unitary matrix built from the normalized eigenvectors
of the 2X2 Hermitian matrix Gy (W)
= (PG (72)|[P,). Equation(21) is thus an approxi-
mate special case of E(L8). Nevertheless, the general rela-
tion (19) holds exactly in this case as well. It expresses the
well known conservation of the total Chern index+ o5 in
the passage through a degeneracy p(dift2§.

From Eq.(21) we get the relation

[ WER) 2+ [WELR) 2= WL(R) 2+ [WELR)I )
(22

which is an approximate special case of E2f)). After inte-
grating Eq.(22) over the entire BZ, we obtain the approxi-
mate conservation law for the generalized BHD of the two
bands:

0.6

PH(R)~PP(R). P

As a first, instructive example, we consider the degen- o4}
eracy between bandb=3,4 in the KH model withp
=1/11 for y=y,~0.264 (see Ref.[9]). For y=1vy,=0.26
<y, the Chern indices of the two bands are, respectively, %27
o3=0,=0, while for y=vy,=0.2645>y, they change to (b) )
o3=—0,=2 [35]. For y=vy3~0.2653, the Chern indices ) .
reassume the values;= 0,=0 due to a second degeneracy 0.0 1.0 u 20 3.0
between the two bands. Thus, for boyl+ y; and y= v3,
one can associate Wannier functiofB|¢,) with these 05
bands, as in Eq(15). These functions are expected to be
localized on classical regular orbiigori), such as those
shown in Fig. 1b). Our numerical results indicate that 041
(R|¢p) for b=3 (b=4) at y= v, is essentially the same as
(Rlgp) for b=4 (b=3) at y=1v,. This “exchange” of
Wannier functions in the passage through the degeneracy ca
be understood as follows. Sufficiently far from the degen- P
eracy region the bands vary almost linearly as a functiop of
(see Fig. 11 in Ref[9]) and are well approximated by a
primitive semiclassical quantization of the two tori on which
the functiongR|¢p), b= 3,4, are localized. Near the degen- o1 |
eracy region, however, the actual band structure results from
an “avoided crossing” between the two banflsee Fig.
12(a) in Ref.[9]], leading to the exchange phenomenon. In oo s 2 5
Fig. 6(a) we plot the BHDs for the two bands along the ' ' u ' '
symmetry lineu=v for y= ;. These BHDs exhibit, essen-
tially, the profiles of the two Wannier functions. A similar
plot for y= 17, (between the two degeneragigs shown in
Fig. 6b). It is evident that the BHDs have changed signifi-

cantly following the small variation iny from y; to 7. . 5 . .
. . by averagind¥y, ,,(R)|* over 100< 100 values ofv uniformly dis-
However, Fig. 6¢c) shows that the generalized BHD for the tributed in the BZ.(b) Similar to (a), but for y=0.2645>y,

two bands is conserved to high accuracy under this varlat|oné0.264, wherey, is a degeneracy point for bantis-3,4. Notice

This BHD, associated with a GB having a total Chern indexy,o qramatic change of the BHDs relative to those of case

oce=0 ,(,S"-‘e Sec. I, corresponds essentially to a “super- gegpite the small variation ify through the degeneracy poirit)
position” of the two Wannier functions. Between the tWo Generalized BHD for bands= 3,4, obtained by averaging the re-

degeneracies, the GB can be still described by Wannier funGyits for the two bands in cas@) (solid line) and in case(b)
tions, associated with a new bagis8) with o,=0. (dashed ling

03

0.2

FIG. 6. (a) BHDs along the symmetry line=v for bandsb
=3 (solid line) andb=4 (dashed lingin the case of the KH model
with parametersy=0.26 andp=1/11. The BHDs were calculated
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As a second example we consider a GB witgg# 0 in 05
the same modelg=1/11). Fory=vy,~0.3387, a degen-
eracy between the bantis=5 andb=6 takes place. Due to
the special symmetries of the KH modd], a degeneracy
between bandb=6 andb=7 must occur at precisely the
same value ofyy but at a different value ofvy. As vy is
varied throughyg, the Chern indices of bands=5,7 both P
change fromo,=0 to o,=— 1, while o5 changes fronug
=1 to 0¢=3. The BHDs for all these bands are shown in  ,,|
Figs. 7a) (for y<vyg) and 1b) (for y>yy). Since the bands
b=5,6,7 degenerate at the same valuegf it is clear from
our previous analysis that only the generalized BHD of all o1 |
these three bands can be expected to be approximately col
served in the passage through the degeneracy point. In fac
Fig. 7(c) shows that this BHD, associated with a GB having oo/
oge=1, is conserved with significantly better accuracy than
in the case of Fig. @).

0.5

VI. BHDs UNDER SMALL VARIATIONS OF p

In this section we show how to define generalized BHDs
for q# 1 that are continuous under small variationspofn
the rational numbers. The topological characterization of the
classical-quantum correspondence in the torus is then geneP
alized tog# 1. We shall use the renormalization-group ap-
proach of Wilkinson[23,24], which was applied to the in-
vestigation of the spectrum of a general class of time-
independent Hamiltonians on the torus. In what follows we

assume that the generatér of the evolution operatot)

=exp(-iG) belongs to this class of Hamiltonians.

We first briefly summarize the main results of Refs.
[23,24. Let p'=q’'/p’ be a rational number sufficiently
close top=q/p and such thap’>p. Thep’ bands forp’
=q’'/p’ can then be grouped info “clusters” of adjacent 03
bands, where each cluster is associated in a natural way wit
a bandb for p=q/p. Namely, the energy or quasienergy
interval covered by the bands in the cluster is relatively close
to that covered by banid; in addition, the total Chern index
of the cluster is equal to,, 02y

d(b)+Nb—1
o(Cp)= 2 o'l;, =0y, (23
b’ =d(b)

whereC,, denotes the cluster corresponding to bandi(b) o

is the label of the lowest band in the clusti, is the num-

ber of bands in the cluster, anf, is a Chern index fop’ (c)

=q'/p’. The spectrum and eigenstates in clugigrcan be

approximately calculated from an effective Hamiltontdgy 00,5 v 35 ”
obtained by properly quantizing the band functieg(w). u

The effective scaled in this quantization turns out to be

et pq’ —p'q FIG. 7. (a) Similar to Fig. &a), but for the band$=5 (solid
Pefi=— = ———, (24 line), b=6 (dashed ling andb=7 (dotted ling in the case ofy
Peft  p'op+Qq" pp =0.3385< y,~0.3387, wherey, is a degeneracy point of all the

) ) ] ) . three bands(b) Similar to (a), but for y=0.339> y,. (c) General-

where uy, is the integer uniquely determined from the Dio- ;64 BHD for band$=5,6,7, obtained by averaging the results for

phantine equatiopoy,+qup=1. It is easy to show that the the three bands in case) (solid line) and in caséb) (dashed line,

numerator and denominator in the last fraction in Ef)  essentially indistinguishable from the solid line

are relatively prime integers. Equatid@4) then implies a

simple formula for the number of bands in the clustdy,

= Peff» Np=p'op+0d" up- (25
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Now, the existence of an approximate effective Hamil- 10
tonian H for a cluster means that the space of states in 034
bandb approximately coincides with the space of states in 032
the Ny, bands of cluste€,,. Providedp’ is sufficiently close 08

0.30
to p, any state in the cluster is well approximated by a linear

combination of states that belong only to bdndThis fact is 0s |
expressed concisely by the statement that the projection opP ' 026 =
erator for bandb is approximately equal to that for cluster
Cb .

0.28

0.4 r

0.2 |

1
|-|— |J dW|qu,w><\Pb,w|
Bzl J Tz

d(b)+Np—1

~N X aw' [ W), VL Ll (26) ‘ | |
b’ =dib) |Tgzld Tz brw bW 0.0 1.0 u 2.0 3.0

where all the primed quantities refer gé and AV is a nor-
malization constant that remains to be determined. Let us N
assume, for simplicity, that the phase-space variablés
=(u’,v’) for p’ ([U’,0']=2mip’) are related to the vari-
ablesR=(u,v) for p by R"=+p/p’ R. Using then the ex-
pressions in Eqg6) and(8) for bothp andp’, we immedi-
ately obtain from Eq(26) that

1 2
| awiwr)
| Tezl J g,

d(b)+Np—1

Py(R)=

1
Nb b'=

| dww], (R
dib) | Tezl J Thy "

= P(’:b(R'), (27 0.0 10 u 20 30
where the constant in Eq. (26) has been determined as  FIG. 8. BHDs along the symmetry line=v for bands and
N=1/N, from the normalization conditiori14). Equation  clusters of bands in the KH model with nonintegrability parameter
(27) shows that the BHDP,(R) for bandb is approximately v=0.3. (a) The upper curvésee a magnification in the ingés$ the

equal to the generalized BHBY (R’) for the clusteiCy. In BHD for bandb_:l in the case op=1/5. The qther three_ curves
b are the generalized BHDs for the corresponding clu€§igiin the

the limit p’— p, the space of the cluster becomes identical to,ases of, = 6/31,4/21,2/11, in order of descending cur¢sse also
that of bandb [the approximate equality in E426) is re-  the inset. (b) Similar to (a), but for the central banti=3. In both
placed by an equaliyandP¢, (R")—Py(R). This expresses cases, the BHDs were calculated by averagit, ,(R)|? over
the continuity of the generalized BHD, associated with clus#400x400 values ofv uniformly distributed in the BZ.

tersC,, under small variations g on the rationals.

The most important reference valuespfire, of course, equal to the BHD for bant and is therefore localized on the
those withq=1 (i.e., p=1/p), for which the topological same classical regular orbit. In the caserg# 0, the number
characterization of the classical-quantum correspondence d, of bands in the cluster is generally different frarh and
the torus is well establishd@—10]. Using the analysis in the varies withb. However, the Chern index(C,) of the clus-
preceding paragraph, this characterization can be easily exer is still equal tooy, [Eq. (23)] and, like the single banl,
tended to rational valuep’=q’'/p’ (gq’'#1) sufficiently the cluster exhibits strong sensitivity to variations in the
close top=1/p. Consider first the case of,=0, with eigen- BCs, in the sense that a new bas¢i8) whose effective
states localized on a regular classical orbit and exhibitingChern indices all vanish does not exisee Sec. Y. If the
weak sensitivity to variations in the BCs. Here the Diophan-BHD for bandb is spread over the classically chaotic region,
tine equationpo,+qu,=1 (g=1) implies that u,=1. the same will be true for the generalized BHD of the cluster.
Then, from Eq.(25), the corresponding clusteZ, consists The topological characterization of the classical-quantum
simply of N,=q’ bands with total Chern inde#(C,)=0  correspondence on the torus is thus generalized' tsuffi-
[see Eq(23)]. As shown in Sec. IV, one can find for such a ciently close top=1/p by replacing single bands with the
cluster(or generalized banda new basig18) whose effec- corresponding clusteiS,, .
tive Chern indices all vanish. The cluster can then be viewed As an example, we consider the casgef1/5 for the KH
as exhibiting weak sensitivity to variations in the BCs, in model with y=0.3. While for this value ofy the chaotic
analogy to the single band. In addition, because of Eq. region occupies a significant portion of the phase sgaee
(27), the generalized BHD for the cluster is approximatelyFig. 1), the Chern indices turn out to be the same as in the
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integrable limit(Harper model i.e., 0,=0 for b=1,2,4,5 In this paper we have introduced and studied one such
(“regular-motion” band$ and o;=1 (“chaotic-motion” characterization, the band Husimi distribution, given by the
band. Similarly, for three rational approximanis’ of p, uniform average of\Ifb,W(R)|2 overw. The BHD may be
p'=2/11,4/21,6/31, the Chern indices are the same as thosgewed as the representative Husimi distribution for “level”
in the Harper model17] (however, the quasienergy spectrab and is expected to be closer to a classical probability den-
and states are, of course, completely different from those isity than|\Ifva(R)|2. This expectation was shown to be ful-
the integrable limit Using then formula25), we find for  filled in several aspects in Sec. lll. The BHD concept plays
these values op’ that N,=q’ for b=1,2,4,5 whileN, an important role in extending the Chern-index characteriza-
=q’'+1 for b=3. Figure 8 shows the BHDP,(R) for  tion of the classical-quantum correspondence to rational val-
b=1 and the corresponding generalized BHBéb(R'), ues ofp with numerators larger than (see Sec. VI In this
calculated using Eq(27), along the symmetry linei=o. case, a genera_lized version of the BHD has to be intro_duced
Similar results fob=3 are shown in Fig. &). The conver- (S€€ Sec. IV given by the average of the BHDs associated

P (R’ P. (R / hes is cl - with aclus_ter of adjacent bands fpf;q’/p’_%l/p.
gitnhcecaosest( ) 10 Po(R) asp” approaches is clear in Smoothing a quantum probability distribution over a

range of energy levels is important in the theoretical study of
scars using the semiclassical periodic-orbit theldg]. In
VII. CONCLUSIONS the case of the BHD, this smoothing is performed over the

The framework of quantum dynamics on a toral ph(,ﬂsecontinuous range of one band, corresponding essentially to a

space offers the possibility of classifying the eigenstates a ingle level in the framework of a toral phase space. Using

regular or chaotic according to their sensitivity to variations"€ 5!dapta“°” of p_er|0d|c-orp|t theory 1o this framework
in the boundary conditions, i.e., variations of the quasicoor[lz]’ it may be possible to ach|eye a better u_nderstand[ng of
dinatew in the Brillouin zone. A measure of this sensitivity the nature of BHDs and generalized BHDs in the semiclas-

for a given band is the Chern indexr,, which determines S'Cil I|'m|t. tant tion is to what extent inf i bout
the quasiperiodicity condition&4) and (5) satisfied by the N Important question 1S to what extent information abou
band eigenstates. Providedthe scaledi) assumes a ratio- the individual band eigenstates can be recovered from the
nal value of the form I (p being a sufficiently large inte- BHD. We recall here the well known fact in solid-state phys-
gen, eigenstates well localized on regular classical orbits be!CS that all the Bloch eigenstates in a band can _be simply
long to bands witho,=0. On the other hand, eigenstates _reproduced from the corresponding Wannier function. Thus,
concentrated in chaotic regions of the phase space usual!

belong to bands witlar,# 0.

n this case, no information about the individual eigenstates
¢ lost by averaging over thefithe average being the Wan-
nier function. The relation(15), valid only for o,=0, is

By definition, o, characterizes the entire bail rather nalogous to the formula expressing the Bloch eigenstates in
than individual eigenstates. The Chern-index classificatioff 9 ! Xp 9 9
terms of the Wannier function. In this case, the relatib®)

Into regular or chaotic refers then to bands and not to €198 hows that the BHD s closely related to the absolute value
states. It is also well knowf8,10] that o}, can be expressed

as a uniform average over in the BZ: squared of a Wannier function. This relation may be ex-
9 ' tended too,# 0 using results from Ref[24]. It was also
i IO (R) 0¥, (R) shown recently38] that the Wigner functions of all of the
Ub:Z_f dwf 2d2R ’ ’ band eigenstates can be reproduced from the Wigner analog
m™J Ty, TS
IWE W(R) 0¥y u(R)
AW, W,

IWy IW2 of the BHD. On the basis of these observations, we expect

that it should be possible to recover, at least partially, rel-
1 (28)  evant information about the individual eigenstates from the
BHDs. This will be investigated in future works.

where ¥, (R) is the coherent-state representation of the
eigenstat¢¥y, ,,). These observations motivate one to intro-
duce other global characterizations of the bands that take into The authors would like to thank J. Zak, P. Leboeuf, M.
account all the BCs only in an average sense, thus resolving/ilkinson, and D. Arovas for useful comments and discus-
the ambiguity in the choice of a particular BC. These addi-sions. This work was partially supported by the Israel Min-
tional characterizations should provide a more detailed deistry of Science and Technology and the Israel Science Foun-
scription of the classical-quantum correspondence on thdation, administered by the Israel Academy of Sciences and
torus without referring to the individual, nonclassical BCs. Humanities.
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