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The distribution of the quasi-energy separations for the periodically kicked quantum rotor is calculated.
This distribution is different from that associated with chaotic systems whose wave functions are extended
throughout the system. Rather, it agrees with the statistics expected for random band-diagonal Hamiltoni-
ans, which describe quantum motion in a disordered medium, where the wave functions are localized.
Novel statistical measures based on this localization are devised and applied.

The profound work of Wigner! and his successors on the
statistics of energy levels at random matrices makes it nat-
ural to study similar statistics in problems of quantum
chaos.? Wigner’s argument for the use of random matrices
is that for many-body systems like nuclei’® the true Hamil-
tonian is very complicated, and therefore can be considered
random. Moreover, there is no preferred representation in
which to define the random distribution. Thus, an ensem-
ble (of real symmetric matrices) invariant under, say,
orthogonal transformations is studied. The main result is
the Wigner-level repulsion, namely, the probability P (S)dS
of finding two levels separated by S vanishes as SdS for
small S.

The Hamiltonians of simple systems of low symmetry that
are chaotic in the classical limit,*® like the stadium or Sinai
billiard problem, or nonlinearly coupled harmonic oscilla-
tors, can be represented by a matrix which is pseudoran-
dom, that is, the matrix elements can be calculated by a
deterministic algorithm, but the final result is similar to a
‘“typical’’ matrix chosen from an ensemble. In particular,
the levels at high energy are studied where the quasi-
classical approximation is valid. Since these systems are
known to be chaotic (and nonintegrable) in the classical lim-
it, it was expected*® and found”® that Wigner statistics
would apply, i.e., there is level repulsion.

However, it is generally not obvious what ensemble of
matrices corresponds to a given problem. An example of a
quite different class of random matrices is given by the
problem of quantum motion in a (one-dimensional) random
medium.” This corresponds to an ensemble of band-
diagonal matrices, matrices all of whose nonvanishing ele-
ments lie in a band close to the diagonal. There is here a
special and natural representation, namely, the usual real-
space representation. The energy statistics in this case are
Poissonian, with no level repulsion, a rigorously proven
result.!® The reason is clear; the eigenstates are Anderson
localized (falling off exponentially away from their centers),
and there is thus negligible overlap between states with far-
separated centers. Since nearly all pairs of states have far-
separated centers in a large system, there is no level repul-
sion. However, the existence of a preferred representation
allows meaningful new statistical questions to be explored,
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for example, the distribution of level separation of pairs of
states whose centers are separated by a given distance.
Here Wigner repulsion is expected, with the scale of such
repulsion decreasing (exponentially) with separation (since
that is the behavior of the overlap of the two wave func-
tions).!! In this Rapid Communication we study a classical-
ly chaotic problem whose quantum version corresponds to
this class of random matrices.

A second generalization is also useful. Some of the most
interesting problems in Hamiltonian chaos are those of
periodically driven systems. Then the statistics of quasi-
energies rather than energies is appropriate. The quasi-
energies are eigenvalues (mod2w) of the operator H,,
where the time-evolution operator for one period ?o is
T(tg)=e 4",

Here we analyze the quasi-energy spacings for the periodi-
cally kicked quantum rotor,'>!> with moment of inertia 7
and unit period. It was recently argued and supported by
numerical evidence that states of fixed quasi-energy are ex-
ponentially localized in (angular) momentum (or energy)
space. The localization mechanism for this problem is simi-
lar to Anderson localization’ of an electron in a one-
dimensional random potential.

The one-period evolution operator is T =exp( — ik cosf)
xexp(—irp%2). (The first factor describes the kick of
dimensionless strength k; the second describes free propaga-
tion between kicks, where 7=#%/I, p = —id/86.) The states
uy in the preferred- (angular-) momentum representation
satisfy 3 Tpmtne = A u,° with A,=e~'® and

Tnm=("i)m—"fm_,,(k)exp(—iTm2/2).

The J,, are the Bessel functions of the first kind. We take
t=1 so 7/w is irrational, so that the phase in T, is pseu-
dorandom.!? The important elements of T lie in a band
around the diagonal. This property is probably the underly-
ing reason for Anderson localization. It also enables us to
diagonalize well-defined large blocks of this infinite matrix,
corresponding to the use of finite-size samples in the ran-
dom medium problem. We find that each of the eigenstates
is exponentially localized around some site n,, namely,

—yln—n_| . . s
|2l ~e @', The quasi-energy separations within each
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FIG. 1. The nearest-neighbor quasi-energy spacings distribution P;(S) for states separated a distance (a) L =6, (b) L =10, and (c)
L =15, in momentum space, while 7=1 and k=35. The distribution within the first bin is depicted in the insert.

large block numerically exhibit a Poisson distribution, as ex-
pected from the above discussion. We will present this
clearcut numerical evidence elsewhere. _

We turn now to the distribution P; (S) (Fig. 1) of quasi-
energy separations S between states localized at fixed separa-
tion L in momentum space.!! We define the center of a
given quasi-energy state as that angular momentum n,,
such that u,* =max;(|u*]). (The center is necessarily an

approximate concept, but we have checked that any errors
introduced are not appreciable.) It is clear that the probabil-
ity for small separation is small. Moreover, it is expected
that P, (S) will sharply decrease for S << e ~*L. This is quali-
tatively true, but our data do not establish the functional

dependence of P;(S) on L.

To improve the statistics, we study families of quasi-
energies rather than just pairs. These families are similar to
blocks of the Hamiltonian usually studied for time-
independent chaotic systems. We specifically study families
F,, of quasi-energies localized on a fixed number m (=7)
of momenta on an interval of length N with equal separa-
tion N/m. Each family is ordered in quasi-energy and the
sequence of quasi-energy separations is calculated and accu-
mulated for various families. The resulting distribution of
nearest-neighbor quasi-energies P (S) is plotted in Fig. 2 for
N=35and k=1,3,5, and in Fig. 3 for k=3, N=17, 21, 91.
It is obvious that the repulsion increases with k, but de-

7=1 while (@) k=1, (b) k=3, (c) k=S5. The insert shows the distribution within the first bin.
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FIG. 2. The nearest-neighbor spacings distribution of quasi-energy states for families with N =35. The parameters of the Hamiltonian are



RAPID COMMUNICATIONS

6854 FEINGOLD, FISHMAN, GREMPEL, AND PRANGE 31
— D =
g (a) 2 (b) ) (c)
© © ©
o o o
N=7
o o | o |
o o o
@© @© @©
o] o] O |
o o o
o
< | © <. <
ol © o [
o o o
o o
ol g o ol 3
O | 0.00 0.10 Q . Q| .00 0.10
[e) o + + o +—
0.00 100 g 200 0.00 100 g 200 0.00 1.00 s 2.00

FIG. 3. Same as Fig. 2, but for 7=1, k=3, with varying momentum-interval size (a) N = 7, (b) N=21, (c) N=091.

creases with N. This is explained by the localization picture,
since ¢=1/y increases with k (£=0.9,4.6,9.0 for
k=1,3,5). Thus, for constant N, the wave function over-
lap increases with k, while for constant k (i.€., ¢), the over-
lap decreases with N. Other, seemingly natural explanations,
for example, that an increase in repulsion corresponds to an
increase in the underlying classical stochasticity. with £ (as in
the time-independent models®!#) are ruled out by the N
dependence.

We now give some details of the numerical procedure.
The matrix, T is truncated to 200X 200 nonoverlapping
blocks along the diagonal. Each block is diagonalized
separately. States localized on edges of the blocks are af-
fected by the truncation, while states localized in the interi-
ors of the blocks are not. We can easily identify the
unwanted states as those for which ||A,| —1] > €, since the
truncation destroys the unitarity of 7. We have spot
checked that these eigenvalues correspond to eigenvectors
localized on the edges of blocks. The diagonalization was
checked also, by applying it to T with m? in Fig. 3 replaced
by m. For this case the exact solution is known,!’ and
indeed for the values of |A,| close to unity the eigenvectors
agreed with the exact solution. The size of the smallest bin
in each histogram is S,=S,/5, where S, is the mean
separation. We have taken € =S,/30, a third of the smallest
bin in the insert. The results do not change when € = S;/60.
The number of blocks diagonalized was such that the
number of differences used to obtain each of the histograms
in Fig. 1 is 16000 while each histogram in Figs. 2 and 3

contains 7500 and 9500 differences, respectively.

In summary, this work confirms that the quasi-energy
nearest-neighbor spacings distribution of the kicked rotor is
Poissonian and therefore is similar to the corresponding dis-
tribution for energy levels spacing in the one-dimensional
localization problem. This is further evidence for the simi-
larity between these two problems. This distribution is very
different from the ones that were obtained so far for sto-
chastic problems with time-independent Hamiltonians. The
relevant difference between the quantal behavior of these
two classes of problems, both chaotic in their classical limit,
is the extension or localization of the wave functions.

Note added. After submission of this paper we learned of
work by F. M. Israilev (unpublished, in Russian) which is
fully consistent with ours, although the emphasis is quite
different. We thank M. V. Berry for communicating this
work to us.

We thank H. G. Schuster for suggestions and encourage-
ment at early stages of this work and M. V. Berry for com-
ments on the results. Two of us (S.F. and D.R.G.) thank
the FEinstein Summer Institute for hospitality at the
Weizmann Institute where this work was started. The work
was supported in part by the U.S.-Israel Binational Science
Foundation (BSF), by the Bat-Sheva de-Rotschild Fund for
Advancement of Science and Technology, and by the NSF
through Grants No. DMR-79-001172-A02 and No. DMR-
79-08819.
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