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Statistical fluctuations of matrix elements in regular anti chaotic systems
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A combination of semiclassical arguments and random-matrix theory is used to analyze transition
strengths in quantum systems whose associated classical systems are chaotic. The mean behavior is

found semiclassically while the local fluctuations are characterized by a Porter-Thomas distribution.
The methods are tested numerically for a system with two degrees of freedom, the coupled-rotators
model. The deviations of the strength distribution from a Porter-Thomas one when the system is
nonchaotic are also investigated. It is found that the distribution gets gradually wider as the classi-
cal system becomes more regular.

The transition of a classical system from regular to
chaotic behavior is fairly well understood. The manifes-
tations of this classical behavior in the associate quantum
system has been the subject of many investigations in re-
cent years with particular attention given to the chaotic
regime. The few quantitative results are based either on
semiclassical arguments or on random-matrix theory.
For nonintegrable systems there is no working scheme for
semiclassical quantization. The Einstein-Brillouin-Keller
quantization breaks down in those regions of phase space
where invariant tori do not exist. On the other hand, the
extent to which random-matrix theory can be applied in
chaotic regions is still not fully understood.

In this paper we shall argue that a reasonable scheme
for the analysis of a quantum system whose associate
classical motion is chaotic involves a combination of
semiclassical and random-matrix methods. In this
scheme the mean behavior of the respective quantity is
given semiclassically, while the local Auctuations are
reproduced via random-Inatrix theory. Such a procedure
had been invoked for the energy spectrum. The average
level density is found semiclassically or by an empirical
procedure and the spectrum is then renormalized by di-
viding out the mean spacing. The unfolded spectrum has
then the statistical properties characterizing an ensemble
of Gaussian orthogonal random matrices (GOE), as was
found numerically for several chaotic systems. In par-
ticular, a Wigner distribution is obtained for the level-
spacing distribution.

A similar procedure emerges for the mean behavior
and Auctuation properties ' of transition-matrix ele-
ments. In particular transition strength distributions
seem to be characterized locally by Porter-Thomas distri-
butions. The purpose of this paper is to establish this
procedure for the matrix elements and to study the devia-
tions from a Porter-Thomas distribution as the classical
system becomes more regular. The procedure consists of
two steps. First, the average behavior of the transition
strengths is found semiclassically or empirically. Second,
the actual transition strengths are renormalized by divid-

where ~i ) and
~f ) are eigenstates of the Hamiltonian

with eigenvalues E, and F&, respectively. One can easily
show that S is the Fourier transform of the temporal au-
tocorrelation function C(t) of T

g(E E') = e' " *C(t)dt,
27TA

(2)

C(t) =Tr[6(E H) T(t) T(0)], — (3)

where T(t) is the Heisenberg representation of T at time

The first step in our approach involves the calculation
of an average strength function. In practice, this can be
done empirically as is explained below. However, for the
method to have a predictive power and in analogy with
the analysis of energy spectra we would like to establish a
semiclassical (SC) estimate Ssc of the strength function.
For that purpose we replace in (3) the autocorrelation
function C ( t ) by its classical analog C,] ( t ),

C„(t)=f „5[E—H(ri(0))]T(7i(t))T(g(0)) .dg(0)
(2srfi)"

(4)

Here d is the number of degrees of freedom and ri(t) is
the classical trajectory evolving from a point ri(0) in
phase space. In addition the infinite time interval in the
Fourier transform (2) should be replaced by a finite time
which is of the order of the shortest classical period of

ing out their mean behavior and are then subjected to a
statistical analysis. The statistical fluctuations of these
renormalized strengths should be similar to the local Auc-
tuations of transition strengths. We shall also explain
how to determine the energy scale for local fluctuations.
Our conclusions are supported by a numerical study of
the coupled-rotators model.

Transition-matrix elements ofter a more sensitive probe
of chaos than the spectrum alone. Given an operator T
we construct its strength function

&(E,E')= g I(f ITli) I'&(E —E;)5(E'—EI),
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where T(co) is the Fourier transform of T(g(t)).
Ssc describes the mean dependence of S on E and E'.

The quantity
Ssc(E )/(psc( )psc(E )f

with psc being the semiclassical level density, describes
the mean transition strength per initial state at energy E
and final state at energy E'. In practice the semiclassical
prediction can be reproduced by an empirically averaged
strength function S (E,E') obtained by means of replac-
ing the 5 function in (1) by as Gaussian of width y.

S (E,E')
p~(E)p~(E')

( g g )2 I'Zy2 ( Z + )2/'2~2
ye ' e

(6)

i,f
The width y has to be chosen properly. It should be

large enough so that the finer structure of the strength S
described by higher-order terms in a semiclassical expan-
sion will not show up. Yet it should not be too large so as
to wash the energy variations of S.

The proper width y has a certain scaling with respect
to A. This can be derived from a semiclassical expansion
of the level density in terms of closed trajectories. '

Such a trajectory contributes a term proportional to e'
where S is the action. This is an oscillatory term with
period of bE-2M/(BS/BE). The largest such bE is
determined by the trajectory with the shortest period
~=BS/BE. To wash that finer structure we need to
choose y ~2M/~. Thus y scales linearly in A while in
units of the mean level spacing D, y/D ~ O(R' ). This
is verified later in our numerical model. In practical ap-
plications we use in (6) a constant (energy independent) y.
This is justified if before calculating (6) we unfold the
spectrum with E; ~E;psc(E, ) where psc= 1/D.

In the semiclassical approach the smoothing of S is
achieved by evaluating the Fourier transform in (2) over a
finite time interval. Since the required energy resolution
in Ssc should not be better than 2M/r we can use the
time-energy uncertainty principle to infer that it is
sufficient to compute the temporal correlation function
over a time of order ~. We have checked that this Ssc
compares reasonably well with S for an integrable sys-
tem, the two-dimensional rectangular billiard, and for an
ergodic system.

The second step in the analysis of transition-matrix ele-
ments involves their distribution over an energy band of
order A. In practice, for a given system, there are usually
not enough levels in such an energy interval to produce
good statistics. To compare transitions belonging to
diff'erent regions of energy we define "normalized" inten-
sities yf; by

the system as is explained later,
If the classical system is ergodic the ensemble average

in (4) can be replaced by a time average along a trajectory
rj(t) and

2E' —ESsc(EE')= T ~=

P,(y) =
2(y )

y' ' ' exp( —vy/2(y ) )/I (v/2) .

(9)

For v= 1 (9) reduces to a Porter-Thomas distribution (8)
while for v&1 it has a width which is v ' larger than
that of Porter-Thomas with the same (y ).

To verify our predictions and to study systematically
the deviations from (9) we have used a numerical model,
the coupled-rotators model. It describes two angular
momenta, L and M, coupled to an external field and
among themselves according to H =L, +M, +L M„.
This model has the advantage that for any given values of
L and M the space of quantum states is finite and no
truncation is needed for its numerical solution. The mod-
el has been studied extensively both classically and quan-
turn mechanically. In particular, the regular, chaotic,
and mixed domains of the classical Hamiltonian were
determined as a function of energy for L =M. The nu-
merical calculations presented here were done at
L =M =3.5, for which the system is chaotic for
~E~ (6.6, regular for ~E~ )9. 1, and mixed in between. In
the quantum calculations we used I =m =20 so that
R=O. 17. As a transition operator we chose T=L, +M, .

For Ssc we have used the empirical smoothing (6).
The behavior of $~(E,E')Ip (E)p~(E') shows an ex-
ponential decay versus ~E E't. The smoo—thing width y
is determined as the minimum one needed to make this
decay smooth and monotonic. The distribution of the
normalized strength (7) was then calculated for initial
and final states in a "block" E, (E, ; Ef & E2. The calcu-
lations were repeated for several values of E, and Ez,
moving the block gradually from a completely chaotic re-
gion (top left of Fig. 1) to the completely regular region
(top right of Fig. 1). To each distribution we have fitted a

distribution (9) by optimizing v. The fits are shown by
the solid lines in Fig. 1. Notice that we are using a loga-
rithmic scale for y due to the large number of small tran-
sition strengths. The results show that in the chaotic re-
gion the distribution is very nearly Porter-Thomas
(v=1). As the system becomes classically more regular
the deviations from Porter-Thomas (dashed lines) are

$&(E =E, ,E'=Ef )Ip&(E =E, )p&(E'=Ef )

A strength distribution P(y) ofy is then constructed such
that P(y)dy is the probability to find the transition
strength in an interval dy around y. In Refs. 8 and 11 it
was argued that for a classically chaotic system that is
time-reversal invariant this distribution should have the
Porter-Thomas' form

P(y)=(2m(y)) '~y '~ exp( —y/2(y)) . (8)
The distribution (8) characterizes a Gaussian orthogonal
ensemble of random matrices. ' An alternative deriva-
tion of (9) is based on the maximal entropy procedure.

As the classical system becomes more regular, we ex-
pect to see deviations from the Porter-Thomas distribu-
tion. In Ref. 8 it was argued that a useful way to describe
these deviations quantitatively is through a y distribu-
tion in v degrees of freedom

v/2
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