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Statistical fluctuations of matrix elements in regular and chaotic systems
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A combination of semiclassical arguments and random-matrix theory is used to analyze transition
strengths in quantum systems whose associated classical systems are chaotic. The mean behavior is
found semiclassically while the local fluctuations are characterized by a Porter-Thomas distribution.
The methods are tested numerically for a system with two degrees of freedom, the coupled-rotators
model. The deviations of the strength distribution from a Porter-Thomas one when the system is
nonchaotic are also investigated. It is found that the distribution gets gradually wider as the classi-

cal system becomes more regular.

The transition of a classical system from regular to
chaotic behavior is fairly well understood.! The manifes-
tations of this classical behavior in the associate quantum
system has been the subject of many investigations in re-
cent years with particular attention given to the chaotic
regime.> The few quantitative results are based either on
semiclassical arguments® or on random-matrix theory.
For nonintegrable systems there is no working scheme for
semiclassical quantization. The Einstein-Brillouin-Keller
quantization breaks down in those regions of phase space
where invariant tori do not exist. On the other hand, the
extent to which random-matrix theory can be applied in
chaotic regions is still not fully understood.*

In this paper we shall argue that a reasonable scheme
for the analysis of a quantum system whose associate
classical motion is chaotic involves a combination of
semiclassical and random-matrix methods. In this
scheme the mean behavior of the respective quantity is
given semiclassically, while the local fluctuations are
reproduced via random-matrix theory. Such a procedure
had been invoked for the energy spectrum. The average
level density is found semiclassically or by an empirical
procedure and the spectrum is then renormalized by di-
viding out the mean spacing. The unfolded spectrum has
then the statistical properties characterizing an ensemble
of Gaussian orthogonal random matrices (GOE), as was
found numerically for several chaotic systems.’ In par-
ticular, a Wigner distribution is obtained for the level-
spacing distribution.

A similar procedure emerges for the mean behavior
and fluctuation properties”® of transition-matrix ele-
ments. In particular transition strength distributions
seem to be characterized locally by Porter-Thomas distri-
butions.® The purpose of this paper is to establish this
procedure for the matrix elements and to study the devia-
tions from a Porter-Thomas distribution as the classical
system becomes more regular. The procedure consists of
two steps. First, the average behavior of the transition
strengths is found semiclassically or empirically. Second,
the actual transition strengths are renormalized by divid-
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ing out their mean behavior and are then subjected to a
statistical analysis. The statistical fluctuations of these
renormalized strengths should be similar to the local fluc-
tuations of transition strengths. We shall also explain
how to determine the energy scale for local fluctuations.
Our conclusions are supported by a numerical study of
the coupled-rotators model.’

Transition-matrix elements offer a more sensitive probe
of chaos than the spectrum alone. Given an operator T
we construct its strength function

S(E,E"=3 [{fITIi)*8(E—E)SE'—E;), (1)
if

where |i) and |f) are eigenstates of the Hamiltonian
with eigenvalues E; and E, respectively. One can easily
show that S is the Fourier transform of the temporal au-
tocorrelation function C(¢) of T

S(E,E' )——f;ﬁ * UEEN/AC(1)dy | 2)
C(t)=Tr[8(E —H)T(1)T(0)] , (3)

where T'(t) is the Heisenberg representation of 7 at time
t.

The first step in our approach involves the calculation
of an average strength function. In practice, this can be
done empirically as is explained below. However, for the
method to have a predictive power and in analogy with
the analysis of energy spectra we would like to establish a
semiclassical (SC) estimate Sgc of the strength function.
For that purpose we replace in (3) the autocorrelation
function C () by its classical analog C(?),
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Here d is the number of degrees of freedom and 7(t) is
the classical trajectory evolving from a point 7(0) in
phase space. In addition the infinite time interval in the
Fourier transform (2) should be replaced by a finite time
which is of the order of the shortest classical period of

ONIT(n(e))T(n(0)) . (4
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the system as is explained later.

If the classical system is ergodic the ensemble average
in (4) can be replaced by a time average along a trajectory
7(t) and®

o= E'—E
#i

where T(w) is the Fourier transform of T(#(t)).

Ssc describes the mean dependence of S on E and E’.
The quantity

SSC(E,EI)/[pSC(E)psc(EI)] ’

with pgc being the semiclassical level density, describes
the mean transition strength per initial state at energy E
and final state at energy E’. In practice® the semiclassical
prediction can be reproduced by an empirically averaged
strength function S, (E,E’) obtained by means of replac-
ing the 8 function in (1) by as Gaussian of width y.

S, (E,E')
pE)p,(E")

S ICFIT]i ) e
i/

— b . (6)
—(E—E.)?/2y* —(E'—E;)?/2?
Se i e 4
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The width yfhas to be chosen properly. It should be
large enough so that the finer structure of the strength S
described by higher-order terms in a semiclassical expan-
sion will not show up. Yet it should not be too large so as
to wash the energy variations of S.

The proper width ¥ has a certain scaling with respect
to #i. This can be derived from a semiclassical expansion
of the level density in terms of closed trajectories.'®
Such a trajectory contributes a term proportional to e™S/%
where S is the action. This is an oscillatory term with
period of AE ~27#/(3S /0E). The largest such AE is
determined by the trajectory with the shortest period
7=08S/9E. To wash that finer structure we need to
choose y 227#i/r. Thus y scales linearly in # while in
units of the mean level spacing D, ¥ /D > O(#'~%). This
is verified later in our numerical model. In practical ap-
plications we use in (6) a constant (energy independent) y.
This is justified if before calculating (6) we unfold the
spectrum with E; —E;psc(E;) where psc=1/D.

In the semiclassical approach the smoothing of S is
achieved by evaluating the Fourier transform in (2) over a
finite time interval. Since the required energy resolution
in Sgc should not be better than 27# /7 we can use the
time-energy uncertainty principle to infer that it is
sufficient to compute the temporal correlation function
over a time of order 7. We have checked that this Sgc
compares reasonably well with S, for an integrable sys-
tem, the two-dimensional rectangular billiard, and for an
ergodic system.®

The second step in the analysis of transition-matrix ele-
ments involves their distribution over an energy band of
order #i. In practice, for a given system, there are usually
not enough levels in such an energy interval to produce
good statistics. To compare transitions belonging to
different regions of energy we define ‘““normalized” inten-
sities y;; by

Sec(E,E")=|T

2
‘ , ®

—(E—E2/2y> —(E'—E;?/2y?
e
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SAE=E,E'=E;)/p (E=E;)p,(E'=E;)
A strength distribution P(y) of y is then constructed such
that P(y)dy is the probability to find the transition
strength in an interval dy around y. In Refs. 8 and 11 it
was argued that for a classically chaotic system that is

time-reversal invariant this distribution should have the
Porter-Thomas!? form

Ysi (7)

P(y)=Q2m{y))~ "% " 2exp(—y /2(y)) . e
The distribution (8) characterizes a Gaussian orthogonal
ensemble of random matrices.!> An alternative deriva-
tion of (9) is based on the maximal entropy procedure.?

As the classical system becomes more regular, we ex-
pect to see deviations from the Porter-Thomas distribu-
tion. In Ref. 8 it was argued that a useful way to describe
these deviations quantitatively is through a y? distribu-
tion in v degrees of freedom
v/2

v yY 2 Vexp(—vy /2{y ))/T(v/2) .

2{y)

P, (y)=

9

For v=1 (9) reduces to a Porter-Thomas distribution (8)
while for vs£1 it has a width which is v~ !/? larger than
that of Porter-Thomas with the same (y ).

To verify our predictions and to study systematically
the deviations from (9) we have used a numerical model,
the coupled-rotators model.’ It describes two angular
momenta, L and M, coupled to an external field and
among themselves according to H=L,+M,+L _M,.
This model has the advantage that for any given values of
L? and M? the space of quantum states is finite and no
truncation is needed for its numerical solution. The mod-
el has been studied extensively both classically and quan-
tum mechanically.® In particular, the regular, chaotic,
and mixed domains of the classical Hamiltonian were
determined as a function of energy for L =M. The nu-
merical calculations presented here were done at
L=M=3.5, for which the system is chaotic for
|E| <6.6, regular for |E|>9.1, and mixed in between. In
the quantum calculations we used / =m =20 so that
#=0.17. As a transition operator we chose T=L,+M,.

For Sgc we have used the empirical smoothing (6).
The behavior of S, (E,E')/p,(E)p,(E') shows an ex-
ponential decay versus IE—E’r. The smoothing width y
is determined as the minimum one needed to make this
decay smooth and monotonic. The distribution of the
normalized strength (7) was then calculated for initial
and final states in a “block” E| <E;; E; <E,. The calcu-
lations were repeated for several values of E, and E,,
moving the block gradually from a completely chaotic re-
gion (top left of Fig. 1) to the completely regular region
(top right of Fig. 1). To each distribution we have fitted a
x? distribution (9) by optimizing v. The fits are shown by
the solid lines in Fig. 1. Notice that we are using a loga-
rithmic scale for y due to the large number of small tran-
sition strengths. The results show that in the chaotic re-
gion the distribution is very nearly Porter-Thomas
(v=1). As the system becomes classically more regular
the deviations from Porter-Thomas (dashed lines) are



376 Y. ALHASSID AND M. FEINGOLD 39

0.08 71— T T T T T T T T T
, AN
0.08 b , T v=o.R P 1
p /
U=0.95 ! .
J !
0.04 -+ / -
' |
0.02 - -+ E
2
P(y) 4 TRt { 1 e T Oy 4 n\\
0.08 T T T T T T T T Tt T T

- -7 -3 ' -1 -7 -3 '

IogIo y

FIG. 1. Four histograms of calculated transition strength dis-
tribution for the coupled rotators model with / =m =20. The
transition strengths were normalized according to (7) with y = 3.
The top left histogram corresponds to a completely chaotic
“block” 1.25<E;, E; =2.56 while the top right is the one ob-
tained from the mostly regular region 6.97<E;, E,<12.11.
The bottom left and bottom right describe intermediate regions
4.05<E;, E;=5.82 and 5.90=E;, E, =8.62, respectively. The
solid curves show the best fit (9) with the optimal v. The dashed
lines are Porter-Thomas distributions. Note that v is gradually
decreasing from 1 as the system becomes more regular. Each
block is 40X 40, so that each histogram samples 1600 strengths.

greater. The general trend is that v decreases towards
zero and that the distribution becomes wider. Indeed,
when the system becomes more regular, there is a larger
number of small matrix elements and few large ones (due
to selection rules) so that the fluctuations around the
average are larger.

If either the initial or final states are in the chaotic re-
gime we find that the strength distribution is also a
Porter-Thomas distribution. Figure 2 (top) demonstrates
that for a strength distribution with E; in the chaotic re-
gion and E; in the regular region. This implies that the
chaotic states are dominant. Moreover, in the analysis of
strengths we can take a fixed initial state and sample only
over the final states. For final chaotic states the distribu-
tion is very nearly Porter-Thomas (see bottom of Fig. 2).
Similar results are obtained for the transition operator
T=(L,+M,>

TABLE 1. Comparison between numerically determined
values of ¥ and the values y, determined from the scaling
y,oc#i”! (for d =2, see text). Various values of / correspond to
different values of # (#=L /[I(I+1)]'/*> with L =3.5). We
have assumed y, =7y at [ =20.
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FIG. 2. Top: histogram for transition strengths in a mixed
block 0.024<E; <1.21 (chaotic); 6.97=< E;<12.1 (regular).
Bottom: strength histogram for a fixed initial state E; =0.34 and
final states in the interval 0<E,;<5.3 (chaotic). Solid and
dashed lines are as in Fig. 1.

To check the scaling of the smoothing width y with #
we have considered other values of # by changing the
values of /=m [such that L*=#%/(l +1) remains con-
stant]. The results are summarized in Table I which
shows general agreement with y /D =0(#" ).

In conclusion, we have observed that signatures of the
classical chaos in the associate quantum system can be
seen not only in the spectral fluctuations but also in the
strength distribution of a generic observable., The “local”
fluctuations are well described by a universal distribution,
that of Porter and Thomas and the mean behavior is
found semiclassically using Egs. (2)—-(5).

It is not clear whether there is a universal distribution
also in the regular limit (the analog of the Poisson distri-
bution for the spectral fluctuations). What does seem to
be universal is the monotonic decrease of v from the
Porter-Thomas value 1 as the system becomes more regu-
lar.
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