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Quantum-mechanical propagators of regular and chaotic systems are qualitatively different. The
rms time average of a chaotic propagator is uniformly spread over the entire Hilbert space, while
that of a regular propagator is large in some domains and small in others. Moreover, the instantane-
ous (complex) value of the propagator appears to follow a regular pattern for regular systems and is

“random” for chaotic systems.

Classical Hamiltonian systems have two types of quali-
tatively different orbits.’> Those of integrable systems
are multiply periodic in time and are constrained to lie on
n-dimensional tori in the 2n-dimensional phase space.
They are called “regular.” On the other hand, the orbits of
a nonintegrable system explore part or all of the energy
surface, which is (2n —1)-dimensional. They are called
‘“chaotic” because any small deviation from the initial
data grows exponentially. Even when the initial data are
perfectly known, the motion is unpredictable for long
times, if we use a finite computer.® Intermediate cases
also exist. In particular, there are systems having mostly
regular orbits in some regions of their phase space, and
mostly chaotic orbits in other regions.*—¢

These properties are reflected in various ways in the
quantum analogs of these Hamiltonian systems. If we use
a “reasonable” basis in Hilbert space (i.e., a basis consist-
ing of eigenfunctions of reasonable operators”® such as
position, momentum, angular momentum, etc.), then the
eigenfunctions of a regular Hamiltonian are “localized.”
Most of their components (in the above basis) are vanish-
ingly small. Only a small minority of the components are
large. This is related to the existence of selection rules.
On the other hand, the eigenfunctions of a chaotic Hamil-
tonian have many small “random” components. The cor-
responding Wigner functions® occupy the entire available
phase space, with an amplitude roughly proportional to
the microcanonical probability density at the correspond-
ing energy. These properties, first conjectured by Per-
cival,!® are now firmly established by a large body of
theoretical arguments!'~'® and numerical simula-
tions.!”—2!

In this paper, we show that there are, not unexpectedly,
significant morphological differences in the propagators
(Green’s functions) of regular versus chaotic systems. The
propagator G,,,(t) is defined (in any arbitrary basis) by

Goun ()= ugnup,e E/%, (1)
E

In Eq. (1) the sum is taken over all the energy levels of the
Hamiltonian (its spectrum is assumed discrete, for simpli-
city) and the up,, are the corresponding normalized eigen-
functions:

szmuEm =EuEk . (2)
m

The name ‘“propagator” is due to the fact that an arbi-
trary initial state vector ¥,,(0)= 3, cgUg, evolves into

Um(t) = cpugme "E/% _ (3)
E
=3 G (09,00 . @)

In particular, we have the combination law

> Gun ()G (t"") =G (t' +1") . ®)

Notice that

G (1) = (v, 0~ H Py, ) (6)

is equal to the “survival” amplitude, after a time ¢, of a
state initially equal to the basis vector v,.

The difference between regular and chaotic propagators
arises from the fact that in the regular case the unitary
matrix ug,, is sparse (most elements are very close to
zero, only a few are large) while in the chaotic case it is
pseudorandom.22 (It is not truly random, of course, be-
cause of the orthonormality constraints.) By virtue of Eq.
(1), the same properties are likely to hold for G,,,(2), as
soon as t is large enough so that the initial constraint
Gn(0)=38,,, is washed away by the dephasing of the
various components.

This is best seen if we consider the time average of
| G | 2, which we shall denote by angular brackets. As-
suming for simplicity that the energy levels are not degen-
erate, we have

<]Gmn'2):2|uEm|2luEnlz- (7)
E

This expression was first obtained by Nordholm and
Rice'” who called it P,,. Its properties were further dis-
cussed by Heller'* who denoted it as P(m |n). Notice
that

2<|Gmnlz>=1- (8)
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Thus, if many |ug, | have roughly the same order of

magnitude (in a chaotic system) so do the { | G,,, | >) and
their value is roughly the inverse of the number of energy
levels involved. On the other hand, if the system is regu-
lar and therefore subject to selection rules, |ug, |% and
| ug, |2 will rarely both be large for the same E, therefore
most { | G, |2) will be very small. A few of them must
of course be large, because of (8).

Here, it should be pointed out that even in the chaotic
case, the |ug, |> may be pseudorandom only for a limit-
ed range of values of E (roughly, within a standard devia-
tion from the expectation value of E). This point was dis-
cussed in great detail by Heller'* who introduced the no-
tion of “spectral envelope.” However, in the example
given below, the chaotic state which we consider has a
spectral envelope which is nearly flat over the entire ener-
gy spectrum, so that this question does not come up.

To illustrate these properties, we used the coupled-
rotators model, with Hamiltonian®?2!
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FIG. 1. Time average of the propagator from a chaotic state.
The initial state is |c¢)=|0,0). The area of each circle is pro-
portional to ( | G | 2).
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H=Lz +Mz +LxMx . ' (9)

Here, L and M are two independent angular momenta.
The constants of motion of this system are H, L2, and
M?. For some values of these constants, the classical sys-
tem with Hamiltonian (9) is regular, for other values it is
chaotic.® These properties are reflected in the quantum-
mechanical spectrum?>?* and matrix elements.2!

For given values of L2=#*(I+1) and
M?*=#*m(m +1), the Hamiltonian (9) is a finite matrix
of order (2/+1)(2m +1). It is convenient to use a basis
|j,k) labeled by j=(L,+M,)/# and k=(L,—M,)/#%.
If I=m, the Hilbert space splits into four disjoint sub-
spaces, with j even or odd, and with states even or odd
with respect to k— —k. The Hamiltonian (9) has no ma-
trix elements connecting these subspaces. In the following
numerical example, the discussion will be restricted to the
even-even subspace.

As in previous work,2?2* we took /=m =20 and

#=0.1707825. (This corresponds to L =M=3.5)
i
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FIG. 2. Time average of the propagator from a regular state.
The initial state is |7 )= |40,0). The area of each circle is pro-
portional to { | G, | 2), with the same scale as in Fig. 1.
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Under these conditions, it was found?® that some basis
vectors, for example |0,0), have chaotic dynamics, name-
ly, e ~H*/%|0,0) is very sensitive to a small perturbation
of H. Other basis vectors, such as |40,0), which are
mostly localized in the regular part of the classical phase
space, have an evolution e ~“#*/%|40,0) which is much
less sensitive to small perturbations of the Hamiltonian.?
In the present paper we shall compare the propagators
G,nc(t) and G,,,(t), where |c)=|0,0) and |r)=|40,0)
are the two basis vectors mentioned above, and
|m)=|j,k) runs over the entire Hilbert space (that is,
its even-even subspace, having dimension 212=441).
From this point, m represents the pair of indices j and k.

First consider the time averages (|G, |%) and
(| Gy | ?). They are shown in Figs. 1 and 2, respectively.
As expected, the chaotic propagator is, on the average,
nearly uniformly spread over the entire Hilbert space.
This property is analogous to classical ergodicity. On the
other hand, the propagator from a regular state is local-
ized in a subset of states. It almost does not reach other
parts of the Hilbert space.

Additional insight is obtained by comparing G,,.(¢) and
G,,,(t) themselves, rather than their time averages. Fig-
ure 3 shows the absolute values of the survival amplitudes
G, () and G, (z). At first sight, it is surprising that the
two curves are so different, since they refer to two states
of the same system, i.e., to the same frequency spectrum.
However, there are important differences in the way this
spectrum is populated: Most components ug, (.e.,
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TABLE 1. The most populated energy levels of the initial
states.

|40,0) [0,0)

E | Ugr l 2 E | UEe ‘ 2
6.801926 0.3819376 +1.074 954 0.023 5378
6.994 843 0.1533781 +11.05602 0.017808 1
7.019 689 0.114 1855 +11.57516 0.014 828 6
6.581356 0.078 7247 +2.298 508 0.0132517
6.791 842 0.0601146 0 0.0120875

|7)=40,0) and all values of E) are very small. The
few large ones, shown in Table I, have nearly equidistant
values of E (they are all within 0.2% of
E=6.79440.213n, with n=0,%1). As a consequence,
the motion is approximately quasiperiodic, as expected
from the correspondence principle.?>? On the other
hand, all the components ug, (for |c)=|0,0)) are small
and their energy differences do not lead to any quasi-
periodicity.

We now turn to compare the time dependence of G,,.(t)
and G,,(t). Figure 4 shows G,,(¢t) for t+=31.326 (this
value of ¢ was chosen because it corresponds to a
minimum of |G, |). Regular patterns are easily seen:
The amplitude and phase of G,,, vary smoothly with the
Hilbert space index m (i.e., with j and k).

On the other hand, Fig. 5 shows G,,.(¢) for t=3.045,
corresponding to a minimum of G,. The result looks

I T T T
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FIG. 3. The survival amplitudes | G,,(¢)| and | G () |. (The figure shows only the absolute values.)



FIG. 4. The regular propagator G,(t) for t=31.326. (Each
arrow represents a complex number, as is usual.)

completely random. The only apparent regularity is a re-
flection symmetry

G_jc=(=DI+2G5 (10

which is due to the fact that the spectrum of the Hamil-
tonian (9) consists of pairs of opposite eigenvalues (E and
— E). This can be seen by considering a unitary transfor-
mation of H generated by a combined rotation of 180°
around the L, axis and the M, axis® (Ly——L,,
L,—~—L, M,——M,, and M,——M,). This rotation
makes H— —H so that the spectrum must be symmetric
with respect to E=0. As the initial state |c¢)=|0,0) is
invariant under the above combined rotation, it follows
from time-reversal symmetry that G _j . must be propor-
tional to Gj"}m. The proportionality constant (— 1)V +k72
cannot be derived from symmetry arguments alone, since
it depends on an arbitrary choice of phases.

Finally, let us consider the fluctuations of |G,,,(?)|?
around its time average { | G, | 2), which is given by Eq.
(7). Their rms average F is given by
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FIG. 5. The chaotic propagator G.(t). Except for the sym-
metry discussed in Eq. (10), no regularity is apparent.

F2={(| Gy | *={ | Gy | 2))?)
=(|Gpn | )= | Gpmn | D)?*. (11)

The first term in the right-hand side (rhs) contains expres-
sions such as exp[i(E\—E,+E;—E,)t/#i]. If there are
no “accidental” degeneracies of energy-level differences,
these expressions have a nonvanishing time average only
if E,=E; and E;=E,4, or E;=E, and E,=E,. Collect-
ing all the nonvanishing terms, we obtain

2
2"“Em|2|uEn|2 =<]Gmni2)2, (12)
E

(Fnd)2:

where the label “nd” means “no degeneracy.” In other
words, the first term in the rhs of (11) is equal to twice
the second term. We thus get the remarkable result that,
if there is no degeneracy in the energy-level differences,
the rms fluctuation of |G,,,(¢)|2 is equal to the time
average | Gy | 2).
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If, however, some energy differences are equal, there
will be additional terms for which E; —E, +E;—E;=0.
In that case, the fluctuations will be larger. For example,

in the double-rotator model, we may have
El +E3 =E2 +E4 =0. It follows that
2
F2=(Fpq)*+ | 3 upmUint —gmt™ gn | - (13)

E

Here, again, there is an essential difference between regu-
lar and chaotic states. If |n) is a regular state, so that
most ug, are small (and very few are large) it is very un-
likely to find any E for which both ug, and u_g, are
large. Therefore the second term in the rhs of (13) is van-
ishingly small. On the other hand, if |n) is a chaotic
state, all the ug, are more or less of the same order of
magnitude, and the second term in the rhs of (13) may be
comparable to the first one (it cannot exceed it, however,
because of Schwarz’s inequality). Numerical tests indeed
confirm these qualitative predictions.

Although we tested these properties only for a particu-
lar model, they are likely to hold in general in the statisti-
cal mechanics of systems having discrete symmetries. For
example, the reader is referred to a recent work of Davis
and Heller?’” who investigated the dynamics of Gaussian
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wave packets and made a detailed comparison with the
classical results. These authors denote |G,,,(t)|? as
P,.(1).

In summary, we have found the following qualitative
difference between regular and chaotic propagators,
Gp(t) and G, (1), respectively. The time average
(| Gy | ?) is spread nearly uniformly over the entire Hil-
bert space, while ( | G,,, |?) is restricted to some parts of
that space. This is quite analogous to the situation in
classical physics: Chaotic orbits explore the entire acces-
sible phase space, while regular ones are constrained to
Kolmogorov-Arnol’d-Moser tori.’2  Moreover, at any
given instant, the amplitude and phase of G,,,(?) depend
rather smoothly on the Hilbert space index m—provided,
of course, that the latter is a smooth function of the corre-

‘sponding classical variables. (In our example, we took m

as the pair jk, where j and k have elementary classical
analogs.) On the other hand, G,,(#) does not show any
simple dependence on m, other than the one required by
symmetries of the Hamiltonian.

This work is part of a thesis by M.F. It was supported
by the Gerard Swope Fund, the Lawrence Deutsch
Research Fund, and the Fund for Encouragement of
Research at Technion.
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