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Abstract. We discuss the differences and similarities in structure between Hamiltonian matrices
of strongly chaotic time-independent systems and the evolution operator matrix for the kicked-
rotor model. Since the eigenvectors of the latter are exponentially localized, we study the
influence of the differences between the two systems on this property. In particular, the Wigner
ensemble is used to show that, for ¯h→ 0, the effect of the slow variation of the diagonal matrix
elements in the Hamiltonian matrices is restricted to the tails of the eigenvectors.

1. Introduction

The quantum mechanical behaviour of strongly chaotic systems [1] is commonly thought
to be of two apparently different types. On the one hand, there is the kicked rotor at
large nonlinearity for which the eigenstates of the one-period evolution operator,U , are
exponentially localized [2]. Due to localization, there is no repulsion between most levels
and the spectrum of quasi-energies is characterized by a Poisson spacings distribution [3].
On the other hand, one has the strongly chaotic time-independent systems, e.g. the coupled
quartic oscillators for some values of the parameters [4], where eigenstates in a phase-
space representation are, on average, homogeneously spread over the corresponding energy
shell. Such states are regarded as extended, leading to strong level repulsion and a Wigner
spacings distribution [5]. We show in what follows that in ordered representations† there
are similarities between the evolution matrix of the kicked rotor,Unm, and the Hamiltonian
matrix of strongly chaotic autonomous systems,Hnm. In particular, both matrices are banded
and have some degree of randomness in their elements. On the other hand, one can also
identify three qualitative differences between the two matrices: (1) the diagonal elements of
Hnm vary slowly unlike those ofUnm that have constant absolute value, (2) the bandwidth of
Hnm also varies while it is constant forUnm and (3) an efficient mechanism that randomizes
the matrix elements ofUnm through the use of two incommensurate numbers is absent in
theHnm matrix. It is the purpose of this paper to study the influence of the first difference
on the behaviour of the eigenvectors and their localization properties. To this end we use
the Wigner ensemble of banded random matrices with linearly growing diagonal elements
whose structure interpolates between that of theUnm matrix and that of theHnm one.
Specifically, the Wigner ensemble models aUnm matrix to which a simplified version of
the first difference has been added. This approach enables us to separate the effect of the
first structural difference on the localization properties of the eigenvectors from the effects
of the other two.

† Ordered bases are composed of eigenvectors of some operator which are arranged in increasing order of the
corresponding eigenvalues.
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A notable difficulty in generalizing the concept of localization to arbitrary bases is
the extent to which the result of this generalization is distinct from the obvious effect of
perturbative localization. In other words, it is clear that in a basis that is composed of the
eigenvectors themselves or of eigenvectors of an operator that is close toH , H + εV , only
a few of the vector components will be significantly different from zero and, moreover, if
the basis is ordered, these will be tightly clustered. However, we show in what follows
that, for fixedε, one can always find a small enough value of ¯h, h̄ε , for which perturbation
theory is bound to fail and, therefore, our study is mostly focused on localization in the
non-perturbative regime, ¯h < h̄ε . In fact, the Wigner ensemble, unifies the descriptions of
both the perturbative and the non-perturbative regimes and also of the transition between
the two into a single model.

It is worthwhile to point out that the physical role of the evolution operator in the case
of the kicked rotor is different from that of the Hamiltonian in a time independent system.
However, since the kicked rotor can be mapped onto an Anderson model whose Hamiltonian
is closely related to the evolution matrix of the kicked rotor, we believe that this difference
will not affect any of our conclusions. An alternative argument for ignoring the physical role
of theUnm andHnm matrices is that, in fact, our analysis of the corresponding eigenvectors
only relies on the structure of these matrices and the behaviour of their matrix elements.

This paper is organized as follows. In order to emphasize the similarities and differences
between theUnm andHnm matrices, in the next section we review the relevant properties of
the kicked rotor and of strongly chaotic autonomous Hamiltonians. In section 3, we present
the Wigner ensemble and the known properties of its local density of states,ρL(E, n). We
then establish the relation betweenρL(E, n) and the shape of the corresponding eigenvectors.
The average eigenvector of the coupled quartic-oscillators model is compared with that of
the Wigner ensemble in section 4. We find poor agreement between the two, suggesting
that the variation of the bandwidth and the correlations in theHnm matrix have significant
effects on the eigenvectors. Qualitatively, however, far within the non-perturbative regime,
the eigenvectors of this model rapidly decay away from the maximum showing, for the first
time, evidence of non-exponential localization in strongly-chaotic autonomous Hamiltonians.
The conclusions are presented in section 5.

2. Structure of matrices

Most of the material in this section has appeared before in various papers [2, 6, 7] and is
reviewed here in order to introduce the necessary notation and to assist the reader. However,
equation (6) was previously incorrectly stated and here we present a modified derivation
that is new. On one side of our comparison we have the kicked rotor

H = p2

2
+ V (q)

∞∑
n=−∞

δ(t − nT ) (1)

whereT is the period of the kicks andV (q) = k cosq, which can be mapped onto an
Anderson model for the motion of an electron on a purely one-dimensional disordered lattice.
This mapping implies that the eigenvectors of the corresponding one-period evolution
operator,Unm, in the basis of momentum states are exponentially localized. A more direct
approach to understanding localization is based on the structure of theUnm matrix

Unm = exp(−ih̄T n2/2)(−i)m−nJm−n(k). (2)

First, it is banded due to the decay of the Bessel functions,Jm−n, as their index grows.
Secondly, for large enoughn’s and values of ¯hT that are incommensurate withπ , the phases
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of the matrix elements in equation (2) are quite close to being uncorrelated random numbers.
Accordingly, the eigenvectors ofUnm are expected to behave similarly to those of a banded
random matrix [8] of the same bandwidth,b. Since the latter can be analysed using a
transfer-matrix formalism, the eigenvectors are exponentially localized with a localization
length,ξ , that is proportional tob2, ξ = γ b2 [7–9].

The kicked rotor was originally introduced as a simplified but representative Poincaré
map of a time-independent system with two degrees of freedom,d = 2, also known as the
standard map. It is, therefore, also natural to expect that its quantum mechanics should be
reminiscent of that of time-independent systems. One obstacle that has prevented the search
for this similarity is the fact that eigenstates of time-independent systems are best understood
in phase-space representations through the Berry–Voros conjecture [1]. However, in order
to obtain an analogous description to that leading to the banded evolution operator,Unm,
a basis with a natural ordering is required. LetH = H0 + V be an arbitrary separation
of H and h̄ be small. Using the eigenvectors ofH0, vn, arranged in increasing order of
the corresponding eigenvalues,E0,n, one obtains forH a matrix representation,Hnm, that
is banded and, moreover, has diagonal elements which vary on classical energy scales.
The latter feature that is related to energy conservation is absent in theUnm matrix where
diagonal elements are of constant absolute value (see equation (2)). On the other hand, the
simple mechanism that generates randomness in theUnm matrix is absent in the case of
Hnm, making the latter significantly less random. This is a direct consequence of the fact
that whileH0 appears in the exponent in theUnm matrix, in theHnm matrix it is simply
added toV .

We now turn to describe the structure of theHnm matrix. Let us assume that all
the relevant operators, namely,H , H0 andV , are well-behaved functions of the canonical
variables,z ≡ (q,p). Then, under quite general conditions, it is known [10] that the energy
average of the diagonal elements is equal to the corresponding microcanonical average, that
is

〈Hnn〉 = {H(z)}E0,n (3)

where for any function,F(z),

{F(z)}E0 ≡
∫

dz F(z)δ[E0−H0(z)]∫
dz δ[E0−H0(z)]

. (4)

Moreover, for real Hamiltonian matrices the variance of the diagonal elements,σ 2
D ≡

〈H 2
nn〉−〈Hnn〉2, was shown [11] to be equal to twice the variance of the off-diagonal matrix

elements that are close to the diagonal,σ 2
O , and correspondingly,σ 2

D = O(h̄d−1). Therefore,
in the semiclassical limit the distribution of diagonal elements has vanishing width whenever
d > 1. As we now show, this fact is extremely helpful in understanding the behaviour of
the off-diagonal matrix elements ofHnm. In the nth row of Hnm, the average distance of
matrix elements from the diagonal measured in units of energy is

(1E0,n)
2 ≡

∑
m(E0,m − E0,n)

2|Hnm|2∑
m(6=n) |Hnm|2

= − ([H0, H ]2)nn

(H 2)nn − (Hnn)2 (5)

and using equation (3)

〈(1E0,n)
2〉 → h̄2 {[H0, H ]2

PB}
{H 2} − {H }2 for h̄→ 0 (6)

where the commutator of equation (5) was replaced by i¯h times the corresponding Poisson
bracket, [. . .]PB. Notice that while equation (3) holds for arbitrary values of ¯h, equation (6)
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only applies for small enough ¯h. The reason is that in equation (6), the l.h.s. is the average
of a ratio of diagonal elements which, in general, differs from the ratio of the averages
on the r.h.s. However, ifd > 1 and h̄ → 0, then the width of the distribution of the
diagonal elements appearing in the denominator of equation (5) becomes vanishingly small
and, therefore, these elements play the role of constants in the averaging.

In order to fully grasp the implications of equation (6), it is necessary to express
〈(1E0,n)

2〉1/2 in terms of the number of states by multiplying it with the mean density
of states,ρ(E0), which is O(h̄−d), such that〈(1N0,n)

2〉1/2 = O(h̄1−d). On the one hand,
for d > 1 andh̄→ 0, 〈(1N0,n)

2〉1/2 diverges. On the other hand, however, the number of
states in any classical energy range which, in turn, corresponds to the size of the truncated
Hamiltonian matrix,N , is O(h̄−d) and, therefore, diverges much faster than the bandwidth.
In fact, 〈(1N0,n)

2〉1/2/N = O(h̄) and accordingly, for small enough ¯h, the Hnm matrix
is banded. Moreover, equation (3) implies that the diagonal matrix elements,Hnn, vary
on average as the volume of the energy shell changes. Both these features are absent in
the traditional random matrix ensembles, e.g. the Gaussian orthogonal ensemble (GOE),
and this lack of structure leads to extended eigenvectors. A random matrix model which
does include a simplified version of this structure is the Wigner ensemble [7, 12] which is
described in the next section.

3. The Wigner ensemble

The Wigner ensemble is composed of banded random matrices of band width,b, with
diagonal elements that, on average, form a ladder of constant spacings,α. Namely
〈hnm〉e = αnδnm, where hnm is the matrix element of the Wigner ensemble and〈. . .〉e
denotes averaging over the ensemble. Moreover,σ 2

nm ≡ 〈h2
nm〉e − 〈hnm〉2e = 1+ δnm for

|n − m| < b and vanishes otherwise. As in the case of the GOE, the matrix elements are
uncorrelated Gaussian distributed random variables.

For α = 0 the Wigner ensemble is equivalent to the banded random matrix ensemble
(BRME) [8] which in turn can be thought of as an Anderson model [13] with random,
long-range hopping. Similarly, it is useful to interpret the Wigner ensemble at finiteα as an
Anderson model under the influence of a constant electric field of strengthα. This approach
enables one to visualize the behaviour of the local density of states which is closely related
to that of the eigenvectors.

In the absence of an electric field, the Anderson model is, on average, translational
invariant. Therefore, the ensemble-averaged local density of states,

ρL(E, n) ≡
〈∑

i

|ui(n)|2δ(E − Ei)
〉
e

(7)

where ui(n) is the nth component of theith eigenvector of the random matrix andEi
the corresponding eigenvalue, is proportional to the average density of states itself,ρ(E).
In particular, for the BRME, bothρ(E) and ρL(E, n) are in the form of a semicircle of
radius 2

√
2b. While turning on the electric field breaks the translational invariance, for

small enough fields the hopping potential varies much faster than the electric one and the
adiabatic approximation that relies on the separation of these two energy scales is known
as thesloping-band picture[9]. In this regime, one expects that at each site theρL(E, n) is
similar to the one at zero field apart from its centre being shifted to include the additional
electric energy which increases linearly along the lattice. This is schematically illustrated in
figure 1 where the allowed region inside the band represents the energy shell of the Wigner
ensemble. While taking a section through the energy band at a fixed position,n, gives the
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Figure 1. The sloping-band picture for the local density of states. The full lines correspond to
the energy band edges. The broken lines indicate a fixedn section which gives the distribution
of the local energies and a fixed energy section which for smallq is equivalent to the average
eigenvector.

distribution of the local energies, a section at a fixed energy is expected to give information
on the behaviour of the average eigenvector. In particular, one expects that the average
eigenvector is constrained to lie within the energy shell. Independently of the sloping-band
picture, theρL(E, n) for the Wigner ensemble was derived in [12] (see also [14–16]). It
was found that

ρL(E, n) = 1

αb
f

(
E − αn
αb

, q

)
(8)

whereq ≡ (α2b)−1. For small electric fields,q � 1, the semicircle behaviour persists

f (x, q) = (4πq)−1
√

8q − x2 (9)

and for large fields,q � 1, the profile is Lorentzian,

f (x, q) = q

π2q2+ x2
. (10)

In fact, equations (9) and (10) only hold forx < 1. For x � 1, f is the solution of an
integral equation for which

f (x, q) ' c exp

[
−2x ln

(
xe−1

√
2q−1 ln(x/

√
q)

)]
(11)

represents an approximate solution [17]. Another approximation leading to equations (10)
and (11), where the discrete index of the matrix is replaced by a continuous variable, fails
whenα becomes of order unity. The behaviour ofρL(E, n) in the limit α � 1 was also
studied [14]. Finally, it is important to stress that theq � 1 regime is of a perturbative
nature and all the corresponding results can be obtained using a perturbation expansion in
the strength of the hopping potential.

We now discuss the behaviour of the average eigenvector, which is defined as the
average variance of the vector component at a fixed distance from the largest component,
g(l) ≡ 〈|ui(n−nmax)|2〉E , wherel ≡ n−nmax and〈. . .〉E denotes averaging over both energy
and the ensemble. Moreover,nmax is the index of the largest component of theith vector
and ignoring finiteN effects〈nmax(i)〉e = i. We find that the tails ofg(l) far outside the
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Figure 2. The numerically obtainedg(l) function for the Wigner ensemble withα = 2 and
b = 14 (q = 0.0179) (♦) is compared with equations (10)–(12) (full curves). Moreover, the
× symbols represent the numerical1

4g(l/4) function for the Wigner ensemble withα = 1 and
b = 56 (sameq), verifying the scaling of equation (12).

energy shell are directly determined by the local density of states,ρL(E, n), (see figure 2)
in the sense that

g(l) = 1

b
f

(
l

b
, q

)
. (12)

As was shown in [17], this directly follows from the fact that perturbation theory gives the
same integral equation forg(l) at l � b as was found by Wigner [12] for the asymptotic
tails of ρL(E, n). On the other hand, inside the energy shell the shape ofg(l) is different
in the large and smallq regimes. At large electric field,q � 1, the disorder is too weak
to localize the eigenvector and accordingly, as in the case of the tails,g(l) is determined
by the local density of states through equation (12) taking on Lorentzian form. For weak
field, however,q � 1, the band is only slightly sloped and, as a consequence, the variation
of the local density of states is slower than the scale on which localization due to disorder
takes place. Thus, the disorder is dominant and in theq →∞ limit the same exponentially
localized shape as in the absence of the electric field is obtained (see figure 3) [18]. The
transition between the two regimes is centred atqc where the hopping range is of the same
size as the spatial energy-shell width. A rough estimate ofqc can be obtained assuming that
the width of the energy shell does not change withα staying 4

√
2b all the way down to

qc. While such an estimate givesqc ≈ 0.125, numerically a value ofqc ' 0.09 is obtained
[15].

In order to establish the correspondence between the various regimes of the Wigner
ensemble and the structure of Hamiltonian matrices, one needs to use the semiclassical
formulae for the parameters of the ensemble. Notice that the variances of the matrix
elements in the Wigner ensemble are O(1) unlike those inHnm and, therefore, the effective
value of the electric field for the Hamiltonian matrix isαeff = α/σO . Accordingly, from
equations (3)–(6) one obtainsq = O(h̄−2) implying that, in the semiclassical limit, theHnm
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Figure 3. The average eigenvector for the coupled quartic oscillators (full curve) is compared
with the corresponding result from the Wigner ensemble (broken curve). The× symbols
correspond to theg(l) of the Wigner ensemble with the sameb but α = 0, indicating that
in this regime,α has almost no influence on the shape of the average eigenvector except for
the sharp drop atl ≈ ±670 due to the energy-band edge. In order to further reduce statistical
fluctuations, the curves in this figure have been smoothed using a running average over 30
neighbouring sites.

matrices are in the disorder-dominated non-perturbative regime. Moreover, the fraction of
the eigenvector that is not influenced by the local density of states, that is, the part lying
within the energy band, extends over a range of sites that is O(

√
bα−1) = O(h̄−d) which

also diverges when ¯h → 0. Accordingly, the Wigner ensemble suggests that for smallh̄

the influence of the diagonal elements ofHnm on the shape of its average eigenvectors is
restricted to the far away tails. Aside from these tails, the extent to which the eigenvectors of
Hnm resemble those of the kicked-rotor evolution matrix is controlled by the energy variation
of the bandwidth and the amount of correlations in theHnm matrix. This is the main result
of the paper. Finally, notice that the spatial width of the energy band is determined by
a classical energy range,δE0. This is the range of energy values ofH0 for which the
corresponding energy shells intersect theH(z) = E energy shell ofH . While for the
Wigner ensembleδE0 is constant, in a generic Hamiltonian model it will vary withE.

4. The coupled quartic oscillators

Let us now examine the extent to which the Wigner ensemble is a good model for a
particular Hamiltonian matrix. Such a study has been previously performed in [17] using
a model of the Ce atom that is quite complicated. In particular, it has 12 degrees of
freedom corresponding to four electrons in three dimensions. Moreover, no analysis of the
classical dynamics was made for this model and, consequently, islands of regular motion
could influence the structure of the Hamiltonian matrix. Despite these apparent drawbacks,
the authors find good agreement with the prediction of the corresponding Wigner ensemble
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for the eigenvector tails outside the energy shell. On the other hand, the value ofq that
they find is close toqc, namelyq ' 0.18. While this is probably due to the fact that their
value ofh̄ is relatively large, it is not far enough from the transition in order to obtain the
behaviour of the eigenvectors in the disorder-dominated regime. In fact, in [17] the authors
have tried to fit the shape of the eigenvectors inside the energy shell to Lorentzians and,
as expected, found poor agreement. Further analysis of the Ce atom eigenvectors showed
[19] that for a global quantity, namely the average localization length the agreement to the
corresponding Wigner ensemble is better than 5% and roughly within the estimated error
bars of the calculation.

In order to have better control over the properties of the model, we study the coupled
quartic oscillators Hamiltonian,

H = p2
1 + p2

2

2
+ bcq4

1 + b−1
c q

4
2 − akq2

1q
2
2. (13)

For bc = π/4 andak = 1.6 we find that the classical dynamics in the Poincaré section
appears to be fully chaotic to a resolution of about 0.4% of h̄ which, in turn, was taken
to be unity. The basis we choose for this study is both the simplest possible and the most
widely used in physical applications, namely that of harmonic oscillators. In other words, we
let H0 be composed of two uncoupled harmonic oscillators with frequenciesw1 = 4.11 and
w2 = 1.3. We then truncate the resultingHnm matrix to the firstN basis states,N = 800,
and calculate the average parameters obtainingαeff = 0.013 andb = 12.9. Accordingly,
q = 446� qc and the matrix is far in the disorder-dominated regime. In figure 3 we show
the correspondingg(l) function as obtained from averaging over all the eigenvectors†. The
prediction of the Wigner ensemble that has the sameα and b = 13 is quite close to the
numerically obtainedg(l) in the neighbourhood of the maximum up tol ≈ ±100. Further
away, however, the Hamiltoniang(l) saturates into broad shoulders that are absent in the
case of the Wigner ensemble leading to significant disagreement between the two shapes.
This saturation is reminiscent of the behaviour observed for the eigenvectors of theUnm
matrix in the limit of smallτ ≡ h̄T where its matrix elements are strongly correlated (see
equation (2) and figure 8 in [20]). A more detailed study is necessary in order to verify
whether the saturation of theg(l) is indeed a consequence of enhanced correlations in the
Hnm matrix and we postpone it for future work. On the other hand, it is natural to assume
that the asymmetry with respect tol = 0 in the Hamiltoniang(l) is due to the energy
variation of the matrix bandwidth distinguishing between the inside and the outside of the
energy shell. Finally, atl+ ≈ 470 andl− ≈ −540 the saturation shoulders abruptly end
in a sharp drop which represents the sole effect of the diagonal elements. The values ofl

where the tails of the Wignerg(l) begin are of the same order as those for the Hamiltonian
g(l). The lack of better agreement is due to the fact that in the Hamiltonian case the energy
shell width varies with energy and, therefore, in some range close tol± the averaging mixes
regions which are inside the energy shell with regions that are outside.

† On the one hand, onlyf ≈ 22% of the eigenvalues of theN × N block are converged within 1% and for
a similar fraction of the individual eigenvectors the firstfN components are equally accurate. We obtainf by
comparing the eigenvalues and eigenvectors resulting from two different values ofN , 800 and 1000. On the other
hand, the truncation errors in the eigenvectors were found to average away such that, practically,g(l), does not
depend onN . Accordingly, we use the entire block in computingg(l). Since the Wigner ensemble itself mimics
the structure of a finite block that is part of a typically infinite matrix, this approach further tightens the analogy
between the random-matrix model and the Hamiltonian system.
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5. Conclusions

In summary, our findings suggest that although eigenvectors of time-independent
Hamiltonian systems are localized inside the energy shell in the ¯h→ 0 limit, the quantitative
behaviour is controlled by the degree of correlation between matrix elements and by the
energy variation of the bandwidth. The way in which these two effects influence the structure
of the eigenvectors is an exciting open question to be addressed in future work. In order to
distinguish between the influence of the correlations and that of the bandwidth variation one
should unfold the structure of the Hamiltonian matrix in a way analogous to the unfolding
of the spectrum prior to analysing the statistics of its fluctuations. In particular, the band
should be stretched in the rows where it is smaller than the average and compressed when
it is larger. Moreover, the diagonal elements should be unfolded to follow the best fitting
straight line and the off-diagonal elements should be normalized to be, on average, of unit
variance. The resulting matrix will have the same structure as the members of the Wigner
ensemble with the addition of the correlations of a Hamiltonian matrix. On the other hand,
one expects that as the basis we use becomes more complex there will be less correlations
in the Hamiltonian matrix. One particularly interesting way of increasing the complexity
of the basis is to chooseH0 such that its classical dynamics is strongly chaotic rather than
fully integrable as in the present study.

The results of this work are important for a wide variety of physical problems.
For example, finding the shape of eigenvectors for a large class of bases would allow
for a statistical analysis of the corresponding dynamics. Moreover, by analogy with
the localization of electrons on random lattices, the localization of eigenvectors in
time-independent Hamiltonian systems is expected to affect the conductance properties
of mesoscopic quantum dots [21]. In contrast to the case of the eigenvectors, the
eigenvalue statistics are greatly influenced by the behaviour of the diagonal matrix elements.
Specifically, a finiteα makes neighbouring eigenvalues correspond to eigenvectors that
strongly overlap and the ensuing level repulsion leads to a Wigner spacings distribution.
Quantitatively, however, the spacings distribution for the Wigner ensemble was found [7] to
depend on a basis dependent scaling variable,y = αb3/2, and this fact casts serious doubts
as to whether this ensemble can be used to model the spectral properties of Hamiltonian
systems.
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