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Abstract. - The average density of states for a large class of N x N banded and sparse random 
matrices is shown to obey a semi-circle law. The banded matrices belonging to this class are 
restricted in several ways: 1) they are both real and symmetric, 2) matrix elements are 
independent random variables with zero average, 3) the variance of the matrix elements, U$, 
decays monotonically away from the diagonal, 4) uzj depends on ( i  - j i  alone and the range over 
which it significantly varies, 6y, satisfies 1 << 6y << N.  On the other hand, the sparse matrices for 
which this results, are obtained by permuting the variance in each of the rows of the banded 
matrices. 

In a multitude of physical situations the microscopic many-body interactions are 
extremely complex and quite often, only partially known. Accordingly, it is useful to search 
for properties of such systems which do not depend on the detailed structure of the 
corresponding Hamiltonian. Following a similar approach to that of statistical mechanics, it 
has been suggested that the Hamiltonian matrix can be modelled by an ensemble of matrices 
with random elementsrl]. In fact, such models represent a further step of simplification 
over statistical mechanics as for the latter, the Hamiltonian is precisely known and only the 
initial conditions are left unspecified. In conceiving the appropriate random matrix model for 
a particular physical problem one has to compromise between two contradicting require- 
ments. While it is desirable to maintain part of the symmetry and structure of the original 
problem, the resulting ensemble should be, as much as possible, tractable by analytical 
tools. 

While models of this type have been employed in various fields, in both nuclear [2] and 
solid-state [3] physics they play an important role. In nuclear physics, the attention was 
focused on the statistical properties of spectra which therefore lead to ensembles invariant 
under a change of representation. Only information on symmetry with respect to time- 
reversal of the original problem appears in the corresponding random matrix model. For 
example, systems invariant under time-reversal are represented by an ensemble of N x N 
real, symmetric matrices. Their elements are independent, normally distributed random 
variables with zero average and variance 2, except for the diagonal where the variance is 
25'. This model is known as the Gaussian orthogonal ensemble (GOE). On the other hand, in 
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tight-binding models for single electrons in disordered lattices, the principal question is 
directed to the structure of the eigenvectors in the Wannier functions representation. 
Accordingly, the corresponding random matrix model has significantly more structure than 
the GOE and only part of the off-diagonal elements, the hopping probabilities, are finite. In 
particular, for a one-dimensional problem with only nearest-neighbour hopping, the 
ensemble is composed of tridiagonal matrices. For general types of hopping, one has instead 
ensembles of banded matrices. These are characterised by off-diagonal matrix elements, hij, 
which decay as a function of Ji - j l  over an interval smaller than the matrix size, N .  
Translational invariance together with the fact that matrices are symmetric imply that the 
hij.'s are a function of li - j l  alone. 

One of the first properties of random matrices to be studied in details was the average 
density of states, &E). For the GOE, Wigner [4] has shown that in the limit of N + 00, p(E) 
is given by the semi-circle law. Using the notation @(E) = (*) f ( E / m ? ,  Wigner's 
result takes the form 

The purpose of this paper is to show that this result can be extended to a large class of 
banded and sparse random matrices. In particular, an ensemble with independent, random 
matrix elements with distribution functions, P&), is considered [5],  such that ( hij) = 0 and 
Var(hij) = a ( ~ ) ~ ,  where (...) stands for the ensemble average, Var denotes the variance 
and y = li - j l .  Assuming that a(y) is monotonically decreasing and that the range over 
which it significantly varies, ay, satisfies, 1<<6y<<N, it will be shown that @(E)= 
= (N/*) g(E/@) ,  where I = 1 4y)'dy and (l) 

m 

0 

The importance of eq. (2) is greatly enhanced by its being invariant under arbitrary 
permutations of the matrix elements in each row, as long as the new positions of the Pij(h)'s 
are fixed for an individual ensemble. Such permutations transform a banded random matrix 
into a sparse one of quite general form. 

For a start, eq. (2) will be derived along the same lines as in ref. [4] for the banded case 
with a(y> = 1 for y < b and vanishing otherwise [6]. Notice that here, I =  b. In order to 
obtain the density of states, one calculates the moments of p(E), M,, 

~ 

(') Since Sy >> 1, the variable y is interchangeably allowed to be either discrete or continuous. 
Corrections due to this approximation are of lower order in Sy than the leading term and are 
accordingly neglected. It should be stressed, however, that in fact I is the sum of the variances and the 
integral form is merely a useful approximation. Notice that the exact I is invariant under permutations 
of the matrix elements in individual rows. This suggests that the densities of states for the permuted 
ensembles and the unpermuted ones are exactly equivalent rather than only to lowest order in Sy. I 
have not yet managed to prove this conjecture. 
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Therefore, this becomes a combinatorial problem of counting sequences of n steps in index 
space (il, i2, is, ..., in), such that 

If a particular matrix element appears only once in eq. (4), the corresponding term vanishes 
due to ensemble averaging. Accordingly, M, = 0 for odd n. For even moments, n = 2u, a 
sequence of steps gives a finite contribution only if each step, counted together with its 
inverse, appears an even number of times. The largest contribution comes from sequences in 
which all steps appear in groups of exactly two. It is t,N(2b)’, where t, is the number of ways 
in which indices in a sequence of n steps can be paired. If instead a group of four indices are 
paired up together, then there will be two less indices which are free to take any one of the 
2b - 1 allowed values. The corresponding contribution will only be 0(N(2b)v-2>. On the other 
hand, since the sequence (il, &, ..., 

In order to calculate t,, one defines the number of unpaired steps up to (and including) the i-th 
step, qt. Clearly, q1 = 1, q, = 0 and t, is given by the number of different q-sequences. More- 
over, t,-l is equal to the number of q-sequences of length n such that qi > 0 for all i < n, t:. In 
order to obtain this equality, one should delete q1 and qn from the latter sequences and replace 
all the remaining qi)s with qi - 1. In general, sequences of length n can be classified according 
to the position of the first vanishing qi, 1. Thus, summing over all possible values of I 

. . .  z,, kTl, ..., &, il) is of leading order, t ,3 1. 

Notice that if U = 0, eq. (5) fails and instead, to = 1. Since the generating function, 

t(x) = t,z’, satisfies 
m 

.=O 

t(z) = 1 + xt(x)2, (6) 

one obtains 
(2v)! 

v!(v + l)! ’ t, = 

In the notation of eq. (2) 

(7) 

where J1 is the Bessel function of order 1. Finally, using the relation 

Jl(x) = / exp [ i x ~ ] ( l -  w2)m do , (9) 
x-l 

one obtains the result stated in eq. (2) for the case of a banded matrix with constant 
variance. 

It is worthwhile to notice that this argument makes no use of the fact that all the finite 
matrix elements are located in a band around the diagonal. In particular, if a new ensemble 
is defined by arbitrarily changing the positions of the nonvanishing elements subject to the 
constraint that there are 2b - 1 in each row, its average density of states will be given by 
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eq. (21, as well. This is a consequence of the factthat neither the number of values that each 
index can take, 2b - 1, nor the number of ways in which indices can be paired, t,, depend on 
the actual locations of the elements in the row. While performing different permutations on 
each row does not affect the behaviour of M,, it will in general lead to nonsymmetric 
matrices which, in turn, lie outside the scope of this work. 

In the following, it will be shown that the foregoing argument can be generalized to yield 
eq. (2)  also for the case of varying ~ ( y ) .  Consider an ensemble for which Var (hq) is C T ~  when 
li - j l  < bl, is LT: for b, S / i  - j l  < bz and vanishes otherwise. Moreover, it is assumed that 
1 << bl << N and 1 << (b,  - bz) << N .  Here, the contributing sequences of indices can be mixed 
such that m pairs lie in the first strip (the q-strip) and v - m pairs in the second one. For 
each q-sequence, the pairing of indices is completely determined. However, one still has the 
freedom of choosing which pairs will lie in either strip. If there are m pairs in the first strip, 
the contribution from each individual q-sequence to Mzv(2) ,  C,, is 

Summing over all possible values of m, one obtains 

Since the number of q-sequences is the same as before, p(E) is once more that of eq. (2).  I t  is 
straightforward to further generalize eqs. (10) and (11) to the case of I strips of width, Abi, 
such that Abi>> 1 for all i and also b,<< N .  In this case, eq. (10) becomes the term of a 
multinomial expansion rather than a binomial one. For large I and if such a 
sequence of constant Q strips becomes an arbitrarily good approximation to a slowly varying 
continuous function, ~ ( y ) .  

As was already pointed out before, the actual ordering in the row of the matrix elements 
with particular value of Q does not affect the result of eq. (2). For example, one can reorder 
an l-strip matrix with s = Abi = Abj for all i, j into a block matrix with s x s blocks. In this 
form, eq. (2)  represents a generalization of a result by Wegner for an s-band d-dimensional 
tight-binding model with long-range hopping and s + 01 [7]. For d = 1, Wegner’s model 
takes the form of a matrix of s x s blocks such that the variance of the elements in each block 
is constant and depends only on the difference in the block indices with respect to the 
primary matrix. Block random matrices of this type were also used to study the spectral 
properties of Hamiltonian systems with mixed classical dynamics (chaotic and regular) [81. 

The behaviour of the average density of states was checked numerically for both the 
banded case with constant variance (fig. 1) and for a Gaussian profile (fig. 2) ,  dy)= 
= exp [- y2/2B2]. For I = 20 and N = 400, excellent agreement between numerical experi- 
ment and eq. (2)  is found. At large energies, IE 1 ,  deviations from theory appear in the form 
of band tails and are due to violating the Abi >> 1 assumption. Close to the centre of the band 
(small /El) ,  the value of the numerical maximum tends to be slightly higher than the 
theoretical prediction. In the case of fig. 2,  this is a consequence of ~ ( y )  varying too fast. 
Violating the bl << N assumption leads to the same sort of effect. 

In summary, it was shown that the average density of states obeys the semi-circle law for 
a large class of structured random matrices. It seems that using similar methods, one could 

(2) One has to count the number of ways in which the m pairs can be chosen out of the total of v 
pairs. 
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Fig. 1. Fig. 2. 

Fig. 1. - The form of g(Z) as obtained from numerically averaging over 250 matrices of size N = 400 
with ~ ( y )  = 1 for y < 20 and vanishing otherwise (histogram) is compared with the prediction of eq. (2) 
(dashed). 

Fig. 2. - Same as in fig. 1 only that here ~ ( y )  is a Gaussian with I = 20 and r(0) = 1. 

approach both the case of small b and that of ( hij) # 0 which are in turn interesting in the 
context of more realistic tight-binding models. 

* * *  
The author is grateful to R. GRANEK for many discussions and to M. WILKINSON for both 

reading the manuscript and many important suggestions. After the completion of this work 
we were informed that Casati et al. have independently obtained numerical evidence for 
eq. (2) in the case of constant u(y> [9]. Moreover, using methods different than ours, eq. (2) 
was independently derived by both Kus et al. [lo] and Casati and Girko [ll]. 
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