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When a quanium system has a classically chaotic analog, the expectation value { E{4A]E) of any dynamical variable A, for an
energy cigenstale |E), tends Lo the classical microcanonical average of the analog variable A, al the same energy £ Some

numerical examples are discussed.

Although there is no consensus on the definition
ornature of quantum chaos, nor even on its existence,
there appears to be a growing body of theoretical [1—
7] and numerical [8—12] evidence in support of the
following property: If a quantum system has a classi-
cally chaotic analog, then, in the semiclassical limit
fi = 0, the energy eigenfunctions fill the entire acces-
sible phase space and, moreover, their Wigner distribu-
tions {13] fluctuate around the classical microcano-
nical phase space density.

The purpose of this Letter is to give additional
support to this conjecture and to base upon it a
simple test for quantum chaos. We also discuss what
happens when regular and chaotic orhits coexist at
the same energy in the classical system.

If a classical system is ergodic (so that its only con-
stant of motion is the energy) the time average 4 of a
dynamical vanable 4 is equal to the microcanonical
phase space average of 4 at that energy.

4=1AW®. )8 [E— H(p, )] dpdq m
S3[E—H(p,q)] dpdg ’

where H is the Hamiltonian, and p and g denote col-
lectively all the canonical variables.

By virtue of the correspondence principle, 1if the
analog quantum system isin a stationary state |E'), the
expectation value (E |4|F) of the operator 4 should
be close to 4 [14—16]. This ought to be a good ap-
proximation in the limit % — 0 or, equivalently, for
large quantum numbers. Notice that (E4|E) is con-
stant, even 1f [ﬁ,ﬁ] =0.
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This conjecture was formally proved by Shnirel’man
[177* 1n the special case of the spectrum of the Laplace
operator on a compact Riemannian manifold. Here,
we shall test it with two physical models known tc be
classically chaotic. In the first model, we take as the
Hamiltonian [18,19]

H=3@2+p2+x2+y%)+0.05x2y2, )

which is known to have a mixed behavior. For low E|
most classical orbits are regular; as the energy increases,
there is a growing proportion of chaotic orbits; and
most orbits are chaotic for £'>> 50, say. There are,
however, islands of stability even for large F (see fig.
2 of ref. [1R]) whose importance will scon be ap-
parent

The Hamiltonian (2) has several discrete symme-
tries (x < —x, y < —y and x < ). "Here, we consider-
ed only the fully symmetric eigenfunctions of H. As
the basis, we took symmetrized products of oscillator
wavefunctions, namely u,,(x)u,() + u, (x)u,, (),
with rm and n even and m +n < 100 (there are 676
functions in that basis).-Taking# = 1, we obtained
230 well converged energy levels and eigenfunctions
(up to £ <70.4). .

As the operator 4 we took (xp, — ¥P,)?% which
hasno matrix element connecting the above symmetry
class with other ones. Fig. 1 is a scatter plot of

I = [ElGxp, — ypx)? IEN2 &)

* We are prateful to J Zak for translating this paper.
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Fig. 1. The values of J, from eq. (3), versus those of E, for
the 230 lowest energy levels. The solid lineis the classical
limit given by eq. (1).

versus E, for the 230 lowest levels. The corresponding
classical result, obtained from eq. (1), is shown as a
solid line. (We plotted J, rather than J2, because the
result is visually nicer. In particular, the classical result
is very close to a straight line.)

Two features are apparent. Obviously, the quan-
tum mechanical results are clustered around the clas-
sical microcanonical average. The correlation 1s even
better if we lump together neighboring quantum
levels, as shown in fig. 2. This should be contrasted
with the situation for a regular quantum system (one
with selection rules, ie. with “good” quantum num-
bers other than the energy). In that case, a scatter
plot such as fig. 1 would display a regular two-dimen-
sional pattem of points [20].

The other remarkable feature of fig 1is a sequence
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Fig. 2. Same as fig. 1, but with the avergge values of £ and J
1n 23 sets of 10 consecutive levels. (This average includes the
levels with anomalously low J.)
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Fig. 3 The regular Ievels, with anomalously low J, have nearly
constant energy spacings. {(Notice that the scales on the axes
do not start at zero.)

of levels having anomalously low J. These levels are
nearly equidistant (see fig. 3), a clear indication of
their regular nature [10,15,21~23]. They correspond
1o the classical islands of stability mentioned above,
namely to classical orbits very close to the x or y axes.
We infer this from the fact that the comresponding
eigenvectors involve mostly very low 7z or n. This co-
existence of regular and chaotic behavior would be
difficult to detect by investigating the energy spec-
trum alone [19], without correlating it to another
variable.

To be sure, the discovery of this repular set of levels
hinges on our choice A= (xpy — ypx)z- Had we
chosen a different 4, these levels could have remained
hidden among the much more numerous chaotic ones.
Conversely, it is not impossible that there are other
sequences of regular levels, but that these sequences
do not stand out in the chaotic crowd with the 4
which we used.

The second model is based on the Hamiltonian
[20]

H=p, +p.+ (L2 —p%)”z(ﬂfz -p22:)”2cosx cosy ;
@
where L and M are constants. It is convenient to de-
fine new variables L; = (§ 2 p%)u2 cosx, L, =
(L2 - p2)2sinx, and Ly =p,,, which satisfy the
same Poisson brackets as components of angular mo-
mentum. Likewise, we define M; = (M2 — p3)1/2cosy,
etc. The Hamiltonian (4) thus becomes

H=Ly+My+L M, , )

and can be interpreted as representing a pair of non-
linearly coupled rotators.

In quantum theory, the constants L and M must
satisfy L2 = h2I(I + 1) and M2 = %2m(m + 1) and the
Hamiltonian (5) is a finite matrix of order (27 + 1) X
(2m + 1). As in our preceding work [12,20,24 25] we
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Fig. 4. The values of P = (E|px + py|E) versus those of £ for
439 energy levels of the Hamiltonian (4). Two additional
points are outside the hmits of the figures £ =+6.80,P =
+4.30. The solid line is the classical limit given by eq. (1).

took I=m =20 and 72 = 0.1707825 (this corresponds
to L =M =3 5). We considered only the invariant
subspace of Hilbert space which is even under x <y
and where (p,. + p_)/# is an even integer. The dimen-
sion of this subspace 1s 212 = 441. The energy spec-
trum is non-degenerate and symmetric with respect
to E=0.

Fig. 4 is a scatter plot of P~ (E'|p, + Py, |E') versus
E. The corresponding classical res.dt, obtained from
eq. (1), is shown as a solid line. (The integrations to
obtain it are somewhat trdcky. It is best to first inte-
grate over x, then over p,., then over Dy and finally
one has to perform a numerical integration over y.
The limits of the various integrals are obtained from
the requirement that expressions under square roots
must be non-negative ) Here again, the quantum
mechanical results are clustered around the classical
microcanonical average *_ There is also a small set of
regularly spaced points for |E| = 9, which cover a reg-
ular region of the classical phase space [12,20,27].

In summary, we have proposed here a positive rest
for quantum chaos Its characteristic feature 1s not
the absence of order, but is a mew order, which is
close to the classical limit: “Though this be madness,
yet there is method in’t” [28].

* This result was predicted by Berry [26]. An interesting prob-
lem, which we did not solve, is to estimate the deviation of
the quantum results from the classical ones. It probably be-
haves as a power of fi.
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