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When a quantum system has a ciassieally chaotic analog, the expce~atlon value (E[AlE> of any dynamical variable A. for an 
energy eigenstare IE). lends to tie ciassiul microcanonical average of the analog variable A. 01 the Same energy E Some 
numerical examples are discti. 

Although there is no consensus on the definition 
ornature ofquantum chaos, nor even on its existence, 
there appears to be a growing body of theoretical [l- 
71 and numerical [S-12] evidence in support of the 
followmg property: If a quantum system has a classi- 
cally chaotic analog, then, in the semiclassical limit 

fi --f 0, the energy eigenfunctions fill the entire acces- 
sible phase space and, moreover, their Wigner distribu- 
tions [13] ffuctuate around the classical microcano- 
nical phase space density. 

The purpose of this Letter is to give additional 
support to this conjecture and to base upon it a 
simple test for quantum chaos_ We also discuss what 
happens when regular and chaotic orbits coexist at 
the same energy in the classical system. 

If a classical system is ergodic (so that its only con- 
stant of motion is the energy) the time average2 of a 
dynamical vanable A is equal to the microcanonical 
phase space average ofA at that energy. 

(1) 

where N is the Hamiltonian, and p and q denote COB- 
lectively aU the canonical variables- 

By virtue of the correspondence pticlple, if the 
analog quantum system is in a stationary state IE), the 
expectation value CE IJ$ IE) of the operator A should 
be close to 3 [14---163 _ Tim ought to be a good ap- 
proximation in the limit Z * 0 or, equivalently, for 
large quantum numbers. Notice that CEI,&5’) is con- 
stant, even if [A,m = 0. 
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This conjecture was formally proved by Shnirel’man 
[ 17]* U-I the special case of the spectrum of the Laplace 
operator on a compact Riemannian manifold. Here, 
we shall test it with two physical models known tc be 
classically chaotic. In the first model, we take as the 
Hamiltonian [18,19] 

~=~~~+p,2+~~+y*)+o.o5x*~~. (2) 

which is known to have a mixed behavior_ For low E, 
most classical orbits are regular; as the energy increases, 
there is a growing proportion of chaotic orbits; and 
most orbits are chaotic forE > 50, say. There are, 
however, islands of stability even for large E (see fig. 
2 of ref_ [18]) whose importance will soon be ap- 
parent 

The Hamiltonian (2) has several discrete synune- 
tries (x * --w, y * --y and x *y).‘Here. we consider- 
ed only the fully symmetric eigenfunctions ofg_ As 
the basis, we took symmetrized products of oscillator 
wavefunctions, namely u,(x)u&) + u,(x)u,Cy), 
with m and n even and m +n G 100 (there are 676 
functions in that basis);Taking3 = 1, we obtained 
230 well converged energy levels and eigenfunctions 
(up to E < 70-4). 

As the operator 2 we took (xp - yp.J2 which 
hasno matrix element COMeCthIg he above symmetry 
class with other ones. Fig. 1 is a scatter plot of 

J = Wl(xp, - 3~~)~ IS>] l/2 (3) 

* We are grateful to J Zak for translating this paper. 
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Fig. 1. The values ofl. from eq. (3). versus those of.!?, for 
the 230 lowest energy levels. The solid lineis the clinical 
limit given by eq. cl)_ 

versus E, for the 230 lowest levels. The corresponding 

cIassical result, obtained from eq. (l), is shown as a 
solid line. (We plotted J, rather than J2, because the 
result is visually nicer. In particular, the classical result 
is very close to a straight line.) 

Two features are apparent. Obviously, the quan- 
turn mechanical results are clustered around the clas- 
sical microcanonical average. The correlation rs even 
better if we lump together nei~bo~g qu~tum 
levels, as shown in fig. 2. This should be contrasted 
with the situation for a regular quantum system (one 
with selection rules, i-e. v&h “good” quantum num- 
bers other than the energy). In that case, a scatter 
plot such as fig. 1 would display a regular twodimen- 
sional pattern of points [ZO] _ 

The other remarkable feature of fig 1 is a sequence 

Fw. 2. Same as Gg_ 1. but with the average values ofl? and J 
III 23 sets of 10 consecutive levels. (This average includes the 
Ieveis with anomalously IoWJJ 

2.D 

19. 

1e-l 
20 40 60 E 

Fig. 3 The regular levels, with anomalously low r, have nearly 
constant energy spacings. (Notice that the seles on the axes 
do not start at zero.) 

of levels having anomalously low J. These levels are 

neady equidistant (see fig. 3), a clear indication of 
their regular nature [10,15,21-231. They correspond 

ro the classical islands of stability mentioned above, 
namely to classical orbits very close to the x ory axes. 
We infer this from the fact that the corresponding 
eigenvectors involve mostly very low m or n. This co- 

existence of regular and chaotrc behavior would be 
difficult to detect by investigating the energy spec- 
trum alone [ 191, without correlating it to another 
variable. 

To be sure, the drscovery of this regular set of levels 
hinges on our choice A = (xp,, - y&2_ Had we 
chosen a different 2, these levels could have remained 
hidden among the much more numerous chaotic ones. 
Conversely, it is not impossible that there are other 
sequences of regular Ievels, but that these sequences 
do not stand out in the chaotic crowd with the A 
which we used. 

The second model is based on the Hamiltonian 
PO1 

H=p,~p,+(L2-p~}~J2(~~2-p,2)1~~,s,cosy j 

where L and M are constants. It is convement to de- 
fine new variables L I = (L2 - p$u2 cosx, L2 = 

(L2 - pz)ln sinx, and L, = px, whrch satisfy the 
same Poisson brackets as components of angular mo- 
mentum.Likewise,wedefineNr =(&f2-p~)1/2cosy, 
etc. The Hamiltonian (4) thus becomes 

~=L~i~~~L~~~, (5) 

and can be interpreted as representmg a pair of non- 
linearly eoupled rotators_ 

In quantum theory, the constantsL andMmust 
satisfy L2 = fi21(l + 1) and M2 = A2m(m + 1) and the 
Hamiltonfan (5) is afir&e matrix of order (21+ 1) X 
(2m + 1). As in our preceding work [12,20,2425] we 
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Fg. 4. The values ofP = (Elpx +p,,lE) versus those ofE for 
439 energy levels of the Hamiltonian (4)_ Two additional 
points are outside the hmits of the figures E = *6_8O,P = 
*4.30. The solid line is the classicallimit given by eq. (1). 

took I = m = 20 and A = 0.1707825 (this corresponds 
to L = M = 3 5)_ We considered only the invariant 
subspace of Hilbert space which is even under x *y 
and where @, + p,,)/ti is an even integer. The dunen- 
sion of this subspace 1s 212 = 441_ The energy spec- 
trum is nondegenerate and symmetric with respect 
toJY=o. 

Fig_ 4 is a scatter plot ofP - E lp, + p,, IE) versus 
E. The corresponding classical res.dt, obtained from 
eq. (1) is shown as a solid lme. (The integrations to 
obtain it arc somewhat tricky. It is best to first inte- 

grate over x, then over px, then over pr and finally 
one has to perform a numerical integration overy. 
The limits of the various integrals are obtained from 

the requirement that expressons under square roots 
must be non-negative_) Here again, the quantum 
mechanical results are clustered around the classical 
microcanonical average +. There is also a small set of 
regularly <paced points for IEl 2 9, which cover a reg- 
ular repon of the classica: phase space [ 12,20,27] _ 

In summary, we have proposed here a positive rest 

for quantum chaos Its characteristrc feature 1s not 
the absence of order, but is a new other, which is 
close to the classical limit: ‘Though this be madness, 
yet there is method in’t” [28]. 

* This result was pre&ctcd by Berry 1261. An interesting prob- 
lem, which we did not solve, is to estimate the deviahon of 
the. quantum results from the classical ones. It probably be- 
hawx as a power of 7l_ 
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