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Quantized classically chaotic maps on a toroidal two-dimensional phase space are studied. A 
discrete, topological criterion for phase-space localization is presented. To each 
eigenfunction is associated an integer, analogous to a quantized Hall conductivity, which tests 
the way the eigenfunction explores the phase space as some boundary conditions are 
changed. The correspondence between delocalization and chaotic classical dynamics is 
discussed, as well as the role of degeneracies of the eigenspectrum in the transition from 
localized to delocalized states. The general results are illustrated with a particular 
model. 

I. INTRODUCTION 

In classical mechanics, when an integrable system (Le., 
having as many global independent constants of the motion 
as degrees of freedom) is generically perturbed, some in­
variant tori are broken and replaced by small "stochastic" 
layers where chaotic motion takes place. This process is 
amplified as the perturbation becomes stronger. The way 
this transition occurs is described by the KAM theorem.' 
For a moderate perturbation, these two kinds of motion 
coexist forming an intricate mixed structure in phase 
space. For a sufficiently large perturbation, most invariant 
tori disappear and chaotic motion prevails. 

Quantum mechanically the problem is less understood. 
In the integrable regime the semiclassical eigenstates(when 
represented in phase space) concentrate exponentially 
around the quantized EBK classical invariant tori, where 
the classical trajectories lie, and are small elsewhere. When 
those tori are broken by a perturbation, we expect the 
quantum eigenstates to "delocaIize" and to cover, in a . 
more or less uniform way, a fraction or the whole available 
phase space. The purpose of this contribution is to provide 
a quantum mechanical description of such a transition (see 
also Ref. 2). 

Considering the special case of quantized, area-pre­
serving maps of a phase space having a two-dimensional 
toroidal geometry, we will show how it is possible to asso­
ciate to each eigenstate ,pa of the quantum evolution oper­
ator an integer Ca, the Chern index. This integer charac­
terizes the eigenstates as belonging to two different groups: 
those having Ca = 0, which we shall see are localized states 
and those with Ca""O, the delocalized ones. The integer 
tests the way the eigenfunction explores the phase space as 
some boundary conditions (of a purely quantum mechan-

a)Unite de Recherche des Universites Paris XI and Paris VI Associee au 
CNRS. 

ical nature) of the system are varied. We correlate the 
spectrum of these integers with the associated regular-to 
chaotic classical transition, and show that in the course of 
the transition most states change their character from lo­
calized to delocalized. Degeneracies of the spectrum are 
shown to play a fundamental role in the organization of 
this quantum-mechanical transformation. Comparison 
with classical invariant phase space structures suggests 
that these integers also reflect localization of eigenfunc­
tions by unstable periodic orbits. 

II. QUANTUM MECHANICS ON A TWO-DIMENSIONAL 
TORUS AS PHASE SPACE 

A. Kinematics 

The two-dimensional toroidal phase space (denoted by 
T~) is a periodically repeated cell having sides (Q,P) in 
suitable (q,p) coordinates. Classically the dynamics of the 
system is assumed to be invariant under translations by the 
elementary cell (nQ + mP), where (n,m) are arbitrary in­
tegers. Quantum mechanically, the states of the Hilbert 
space are required to be-under those translations­
periodic functions (up to a phase) 

T11,p) = e'8q ,p), 

T2 11/1) =e'8'11/i), 
(1) 

where T, = expUQPlfz), T2 = exp(iPq/li) , and (8,,82 ) 

are two arbitrary independent phases ranging from ° to 2". 
In order to satisfy Eqs. (1), T, and T2 must commute. 
This imposes that the area of T~ measured in units of 
Planck's constant must be an integer 

QP/21T1i = N. 

Because the dynamics is assumed to be invariant under the 
action of T, and T2 [cf. Eq. (9) below], 8 = (8,,02) are 
good quantum numbers preserved by the dynamics. The 
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126 Leboeuf et af.: Topological aspects of quantum chaos 

Hilbert space iIt' N( 0) hence breaks down into subspaces 
parametrized by 0, and dim ilt'N(O) = N,VO. For a fixed 
area QP, the classical limit ,,~o is equivalent to N ~ 00 and 
corresponds to an increasing number of states supported by 
T;. 

For each K N( iJ) one can define a normalizable basis 
in the q representation through the periodiciz~d sum 

In,O) = v~~ 00 i(v+nIN)O, I [~( n + ;:) + V]Q), 

n =O, ... ,N-1. (2) 

The kets appearing in the rhs of (2) are the standardized 
eigenvectors of the q operator. The states I n,O) satisfy the 
boundary conditions (1); they are the quantum~mechaniw 
cal discretization of the continuous finite interval q:[O,Ql­
the arbitrariness in the boundary conditions can be viewed 
as an arbitrariness under shifts of tJ ( 1/ N) of the position 
of the "comb" of o's in that interval of q. An arbitrary state 
of Y'/, N( 8) will be characterized by if compiex numbers 
1",(0» = ~':;;d"'n(O) In,O) satisfying ~I"'nl' = I. An al­
ternative representation of iIt' N( 0) is in terms of 
coherent-states:3

,4 ",(z,O) = ~':;; d(zl n,O)"'n( 0), where 

r "I_II.T 

(zln,O) = (mi) - !lVnO,IN exp! -;;,. 
[
z' + (n/N + O,/21TN)'Q' 

X 2 

+ 2:~ ) Q]] it3 [i1TN[ (~+ 2:~)~ 
~ 01 v'2z11~Q ,,1 

-'21TN-pJ I' plY J' (3) 

z = (q - ip)/ v'2 is a complex variable spanning T~ and 
it3(uIT) is the Jacobi theta function.' Here, ",(z,O) is an 
analytic function on the fundamental domain [O,Q/ 

v'21 X [O,PI v'21 with its boundary r included and satisfy­
ing the quasiperiodic conditions 

",(z + Q/ v'2,O) = eiO'e~N(QI'P+ {izlP)",(z,O), 

",(z + iP/ v'2,0) = eie2e~N(PI2Q- i,",IQ)",(z,O). 

From these relations it follows that 

(21Ti) - 1 "" ~ -dz=N, 
J[, 1/1 

(4) 

i.e., every state ",(z,O) of iIt' N( 0) has exactly N zeros in 
the elementary cell T~. From multiplication formula of 
elliptic function theory, it is possible to reconstruct from its 
zeros the analytic function 1/J(z/), Thereforej the knowl­
edge of the position of the N zeros of ",(z,O) on 
T~, {Zk( O)} k ~ 1 •...• N' completely determines the state of the 
system. Moreover, the positive periodic real function 

W(q,p,O) = e-U/~I"'(z,O) I' (5) 

is a quasiprobability distribution function on T~ and has 
the same zeros as ",(z,O) (Ref. 4). 

B. Dynamics 

The classical dynamics of a point particle on T~ will in 
general be defined by an area preserving map of T~ onto 
itself 

l
' aXn+11' -- -) 

aXn -, 

(6) 

which depends on some parameter y that typically controls 
a regular~to~chaotic transition of the system. Tpe quan­
tum-mechanical analog of the classical one-step map (6) is 
provided by a one-step unitary matrix U<p,q,y) (Ref. 6) 

(7) 

Eigenstates are obtained through the stationary equation 

UI "'a(O» = eiwa(O) I "'a(O», 

while the evolution operator U(q,p,y) satisfies 

[U,TIl = [U,T,l = 0, 

(8) 

(9) 

insuring the invariance of the dynamics under translations 
by the elementary cell. 

lt is convenient to employ a unitary transformation 

(10) 

which transfers the 0 dependence from the state vectors to 
U itself. Since the action of R over the operators q and pis 
R +qR = q + (O,/21TN)Q and R +pR =p + (01/21TN)P, 
then 

U(q,p,y,O) = R + UR 

(11) 

The spectrum of eigenvalues of U is invariant under 
8 j-8j + 21Tnj_ Thus, the space of boundary conditions 
0= (01,0,) is also a torus, which we denote T~. Note also 
that the classical limit N ~ 00 does not depend on 0, as 
expected. 

III. THE CHERN INDEX 

As shown in the previous section, quantum mechani­
cally the system will have N eigenstates {I "'a ( 0»; 
eiWa(tJ)}a= 1, ... ,N parameterized by the boundary conditions 
O. Generally speaking, there is nothing which sanctifies a 
given set of boundary conditions; in principle, they are all 
equivalent. For that reason, in the following we are going 
to consider aueraged properties of eigenstates over the 
whole set of boundary conditions T~. We shall call that 
ensemble a band. 

Each band a can be characterized by a topological 
invariant Ca 

(12) 

The contour integral is taken along a closed path 9!i' encir­
cling the elementary cell T~ of boundary conditions. Here, 
Ca is known as the Chern number of the band' connected 
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to the mapping of the torus of bonndary conditions T~ 
onto the complex projective Hilbert space. It corresponds 
to the phase acquired by the eigenstate ''''a(O» as it is 
parallel-transported around the closed loop 'tf on T~ [geo­
metrical phases like Eq. (12) have been extensively studied 
in recent years; see Refs. 8 and 9]. In what follows, we will 
sketch some properties of Ca and show why it is a useful 
object when considering the structure of eigenstates of 
quantized classically integrable and chaotic systems. 

The Chern number Ca as given by Eq. (12), is an 
integer. This can be seen as follows. Since the system is 
periodic in ri, I "'a( 0» can only change by an overall 
phase factor when O;~ 0; + 2'1T, 

''''a(0t>2'1T» = ,,"CO,), "'a(et>O», 

''''a(2'1T,O,» = .,xCO,) , "'a (0,0,) ), 
(13) 

where <I> and X are uniform functions of their arguments. 
Using Eqs. (13), Ca can be written 

Ca = 2~( r' <1>' dO, - l'~ X' dO,), (14) 

where the prime indicates derivative. Since <I> (2'1T) 
= <I>(O)mod 2'1T, S6~<I>'dO, measures the number of times 

""CO,) winds around the unit circle on the complex plane as 
0, changes from ° to 2'1T, say n .. times. A similar argument 
holds for X, leading to Ca = na' na = n .. - nx being an 
arbitrary positive or negative integer. 

The only necessary assumptions to get this result are 
Eqs. (13), which hold as long as there are no spectral 
crossings between the band a and the neighboring bands as 
we move on the parameter space T~: the existence of a 
degeneracy will allow the eigenstate not to come back to 
itself up to a phase, as assumed in (13), but to shift, 
through the degeneracy, into a different state. But accord­
ing to a theorem of von Neumann and WignerlO degener­
acies have generically codimension three, and therefore 
they will typically not be encountered in the two-dimen­
sional torus T~, and Ca will generically be an integ.!:r. 

In terms of the transformed eigenstates ''''a(O» 
= R + ''''a(O», the Chern index (12) can be written 

i f - - I Ca = - <"'a(O) ,ao"'a(O»·dO + N 
2'1T '{/ 

(15) 

or, using Stoke's theorem 

(16) 

It follows fro~ the antisymm~try ofJhe ten~or €jk and the 
fact that (au+ laO;) = - u+ (aUlao;) U+ that ~<Ta 
= 0, and therefore 

N 

r Ca = 1. (17) 
a=l 

In the context of the quantum Hall effect, quantities 
like Ca have been introduced by Thouless et a/." in their 
study of the conductance of electrons in two-dimensional 
periodic potentials and strong magnetic field. There, Ca is 
known as the TKN' integer of the band, its quantization 
being associated to the fact that each filled (sub)band con­
tributes an integer to the electrical conductance. States 
having nonzero Chern number are associated to conduct­
ing states, as opposed to localized states with Ca = ° 
(which do not contribute to the Hall conductance). 

A different interpretation of this delocalization was 
givenl2,13 in terms of the coherent state wavefunctions 
"'a(z,O). As explained in the previous section, "'a(z,O) is an 
analytic function having N zeros on T;. These zeros re­
spond to changes in the boundary angles 0, 
{z%(O)h~ ', .... N. For states having Ca#O, the zeros com­
pletely cover the phase space as one spans the 0 torus. The 
Chern number measures how many times the surface 
spanned by the zeros winds around the phase space torus: 
a large Ca implies a high mobility of the zeros and conse­
quently a pronounced sensitivity of the wave function to 
changes in the boundary conditions. If, on the contrary, as 
we change the boundary conditions there is a point Zo for 
which "'a(ZO,O) never vanishes, the Chern number Ca is 
zero-the set of points satisfying this condition being in­
terpreted as the localization domain ~. This follows from 
the fact that in the latter case the existence of points such 
as Zo guarantees that a global choice of phase over T~ can 
be made. If that global choice is possible, then we can set 
<1>(0,) = ° '<f0" X(O,) = 0 '<fe, in Eq. (13) and, by Eq. 
(14), we get Ca = O. 

This interpretation of delocalization introduces a no­
tion of "ergodicity" in Hilbert space: Ca is different from 
zero if, as we explore the whole parameter space, ''''a( 0» 
becomes orthogonal to all the rays in the projective Hilbert 
space. This insures that a global and uniform choice of 
phase cannot be made, leading to Ca#O. 

Having in mind the above interpretation of the Chern 
index in terms of the covering of phase space by the zeros, 
let us now concentrate on the eigenstates of classically in­
tegrable and chaotic systems. In the former case, the quan­
tum phase space distributions Wa(q,p,O)a = I, ... ,N asso­
ciated to the eigenstates are, in the semiclassical limit, 
exponentially concentrated around the quantized EBK 
classical invariant tori'4 (for one-dimensional conservative 
systems the classical invariant tori are just labeled by the 
energy), 

JY' [2 (H(q,P) - Ea)'] 
Wa(q,p,O) = v(q,p) exp N v(q,p) , (18) 

where Ea, v(q,p), and H(q,p) are the energy of the quan­
tum eigenstate a, the phase space velocity of the classical 
trajectory having energy EO' and the classical Hamiltonian, 
respectively. Such states have an exponentially small sen­
sitivity to changes in the boundary conditions, and Eq. 
(18) defines a region surrounding the quantized classical 
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invariant torus where the zeros-in their motion as a func­
tion of the boundary conditions-cannot enter for any IJ. 
Thus eigenstates of quantized classically integrable systems 
will generically have zero Chern index. 15 As we will show in 
the next section, for integrable systems the sum rule (17) 
will be fulfilled by eigenstates that are not associated to 
invariant tori but to separatrices. 

Quite the opposite happens with the completely cha­
otic systems, i.e., those for which a typical orbit completely 
fills the entire phase space T~. The correspondence princi­
ple suggests in this case that Wa(q,p,IJ) must tend, in the 
semiclassical limit, to the microcanonical uniform distribu­
tion on T;. However, the mere presence of the zeros pre­
vents that from being the case.' But we do not expect 
distribution of zeros in T~ for a particular IJ to be privi­
leged over others, and compatibility with the uniform mi­
crocanonical measure suggests a covering of T; as the 
whole T~ is explored, recovering in this way the uniform 
measure in an averaged sense. As opposed to the result 
obtained in the integrable case, we thus except eigenstates 
with support in chaotic regions of phase space to have a 
nonzero Chern index. 

We shall now focus on the transition between these 
two kinds of eigenstates. Before that, we introduce an al­
ternative interpretation of the Chern index and of its quan­
tization which will make the following discussion easier. 
Using Stokes's theorem, the Chern index was written in 
(16) as the flux of a certain vector field over the closed 
surface T~, Sf r2:,Va'dS. M:. V. Berry, in his study of the • adiabatic quantum phases,8 has demonstrated that away 
from degeneracies the vector field Va has zero divergence. 
By Gauss's theorem, the integral over T~ can be reduced, 
interpolating T~ to a three-dimensional "filled torus," to a 
sum of integrals over small spheres enclosing the degener­
acies contained inside T~. Each degeneracy has an integer 
"charge," since the integral over the sphere counts the 
number of times the phase acquired by the eigenfunction 
over a closed path in parameter space winds around the 
unit circle as the path is deformed from one point to an­
other tracing out the sphere in between. 16 The Chern index 
is then the total charge enclosed by T~ 

If we take into account the parameter Y controlling the 
dynamics, the system depends on three parameters 
(1i1,1i2,y) [cf. Eq. (11)]. Then T~ is a two-dimensional torus 
embedded in that three-dimensional space. According to 
the theorem of von Neumann and Wigner mentioned 
above, degeneracies are isolated points in that parameter 
space. 

Let us assume that for a certain Yo the system is clas­
sically integrable. Eigenstates associated to quantized in­
variant tori have Ca = O. As r is varied, T~ "expands" in 
the full parameter space. As long as we do not encounter 
degeneracies, the charge inside the torus T~ remains con~ 
stant. As opposed to classical mechanics where as soon as 
we perturbed an integrable system we have small chaotic 
layers whose volume increases as the perturbation in­
creases, the perturbation of a quantized classically integra­
ble system causes no immediate dramatic change in the 
eigenfunctions (at least as far as the Chern indices are 

concerned), and Ca remains zero. This can be understood 
from semiclassical arguments: since each state occupies a 
volume 27rli in phase space, we do not expect a variation of 
the Chern index as long as the volume of the chaotic layers 
do not reach that size. 

Changes in Ca only happen when a degeneracy with 
another band [3 is met as the torus T~ expands in the y 
direction. Then the Chern index of both bands changes 
according to the charge of the degeneracy encountered. 
Equation (17) implies that if Ca changes by tJ.C, Ce must 
change by - tJ.C, tJ.C being the integer charge associated 
to the degeneracy. A generic conical intersection has an 
associated charge of tJ.C= ±I (Ref. 8). Higher-order de­
pendences on the parameters (like quadratic glancing in­
tersections) can however lead to higher-order charges for 
the degeneracies. 

The quantum transition from a localized regime to a 
delocalized one is thus organized by the location and 
charge of the degeneracies of the spectrum. As y is 
changed and the classically chaotic layers increase their 
size, we expect more and more states to become delocal­
ized, and to arrive eventually at a certain critical y for 
which most states have Ca~O. In this way the classical 
continuous transition is, at the quantum level, discretized, 
the fraction of quantum states having Ca~O increasing by 
small steps from zero to one. 

iV. THE KiCKED HARPER MODEL 

Some of the points made in the previous section may 
now be illustrated by a time-dependent version of the 
Harper Hamiltonian, 

H(p,q;t) = - V2 cos(271"pIP) - VI cos(271"qIQ)K(t), 

K(t) = r I /j(t - nr), 
(19) 

n 

describing a particle subjected to a periodic impulse whose 
amplitude depends on the particle position itself. In terms 
of the dimensionless coordinates x = qlQ andy = piP and 
parameters y;= 271"V[1/PQ, the classical map obtained by 
integrating the equations of motion between successive 
kicks is 

Xn+ I = xn + Y2 sin(271"Yn+ I) 

Yn + I = Yn - YI sin(271"xn)· 
(20) 

In the limit 7_0 we recover the continuous time evolution 
for the integrable Harper Hamiltonian [i.e., K(t) = I], 
while for finite r the motion is chaotic. This transition is 
shown in Fig. I for differing values of y (in the following 
we consider the special case YI = Y2 = y). For y;:: 0.63 the 
dynamics is dominated by chaotic orbits. The map (20) 
has at least four simple periodic orbits of period one, ex­
isting 'Vy: (x,y) = (O,O),(W,(O,~), and (j,O). The first 
two orbits are stable for y< 1/71"",0.318 and unstable oth­
erwise, while the other two orbits are always unstable. 

The quantized system is described by the time evolu­
tion operator 
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(a) 

(c) 

o x 1 

FIG.!. The map of Eq. (20) for (a) r = 0.00063. (b) r= 0.31. (c) 
r=0.565. and (d) r=0.63. 

U = exp[iNy, cos (217X) ]exp [iNrz cos (21TJ'J ]. (21) 

(x = qlQ. y = piP) which we diagonalize numerically to 
obtain the eigenstates l,pa(O» and eigenangles «Ja( 0) [cf. 
Eq. (8)]. This evolution operator has certain nongeneric 
symmetries. For N even, the spectrum is complex-conju­
gation invariant; for N odd, the spectrum is invariant un­
der the combination of complex conjugation and 
(li,,02) - (0, + 17.02 + 17). When y, = Y2. additional sym· 
metries are present. These symmetries guarantee that 
CN + l-a = Ca· 

In Fig. 2 we display the evolution of the {Ca} a = , ..... S 

for N = 9 as a function of y. For vanishingly small y. we 
recover the usual integrable Harper Hamiltonian. In that 
limit. the Chern indices were studied by Thouless et al." in 
the context of the quantum Hall effect. Classically the 
phase space is filled by invariant tori (except for the sepa· 
ratrix) and eigenstates associated with them have zero 
Chern index. The only classical orbit that winds around 
the phase space torus is the separatrix. The symmetry of 

c, =~===========_---C-LJJI . .L: ILL' ,---'-----"lu,T"~' 
C, -''--------i''''r---'---..L--'',,--r.,LI ",_ 
c, ~ _____ ~I~I ___ i'~'-~-'~'L'LI--, 
c, - 'II I c,-"~----------y'---~-~--2 

~~.J ,~~~, o,~ 
o 0,2 

~~-~-~" 
0.6 0.0 

r 

FIG. 2. Evolution of the Chern numbers for N = 9 as a function of r. 
Horizontal lines correspond to bands; vertical lines indicate the existence 
ofa degeneracy in the 0 plane for that value of y. The Chern numbers for 
a> 5 are symmetric with respect to a = 5. 

the model guarantees that for N odd the central band will 
be on the separatrix (cf. Fig. 2). The band related to that 
orbit is a conducting one. having Ca = 1 because of (17).17 

As y increases and as the classical invariant tori dis· 
appear. we encounter degeneracies and the spectrum of 
Chern numbers changes. Because of the symmetry. the 
central state crosses with two adjacent levels and its Chern 
number changes in multiples of two. For N = 9, additional 
nonzero Chern numbers appear in the interval 
0.3 :5y:50.6. This transition is associated with the break' 
down of the classical separatrix and emergence of stochas· 
tic domains. As expected from semiclassical arguments, 
the value of y at which this first occurs decreases with 
increasing N. The fraction of states with nonzero Ca and 
the fluctuations in the Ca themselves increase as yin. 
creases. [For example, for N = 3 and y = 20 we find 
C,= -16 and C,=33; for N=9 and y=2 we find 
C, = - 4. C2 = 2, C3 = 3, C4 = 4. and Cs = - 9.] At Y 
",,0.65, all states have Ca=l=0. 

States having Ca = ° for y <: 0.65 are localized states 
lying in chaotic regions of phase space. The analysis of the 
quasiprobability distributions Wa(x,y,lI) shows that their 
localization domain (Le., the region of T; where the zeros 
never enter as the boundary conditions are changed) is 
located around unstable periodic orbits. This makes the 
connection between localized eigenstates in fully classically 
chaotic regions and what is often referred to as scars. 

We stress that the large y limit of our problem is quite 
different from the generic case of the quantum Hall effect 
in random potential, whose classical limit is not chaotic. In 
the Hall effect problem. 13 subbands with energies in the 
tails of the Landau levels always have zero Chern number, 
for they correspond to semiclassically localized states liv· 
ing on the peaks or in the valleys of the random potential. 
The fraction of states which are extended is believed to be 
vanishingly small in the thermodynamic limit. By contrast, 
in our model. when y becomes large. all the states are 
delocalized. 

In order to make more clear the connection between 
the Chern numbers and the classical invariant sets. we 
show some phase space quasiprobability distributions 
Wa(x.y,O) for y = 0.565. N = 9, at the special point 0 
= (0,0). States a = 1,2.8.9 all have zero Chern number, 
while states 3.4.5.6,7 give Ca = - 1,1,1,1, - I, respec· 
tively (see Fig. 2). In Figs. 3(a) and 3(b) we plot Wa(x,y) 
for states 8 and 9, which are both localized. The plots use 
a linear density scale stressing in black the peaks of the 
distribution. While state 8 is located in a regular region of 
phase space (a "regular" state with support on a classical 
invariant torus), state 9 lies in a chaotic region of phase 
space, and localizes about the unstable period I orbit at 
(x,y) = (M). These distributions are relatively insensitive 
to changes in the boundary conditions and both states pos· 
sess a localization domain as defined above. Similar results 
hold for states I and 2. 

Some states with C=I=0 were seen to be highly concen· 
trated. for certain values of II, about an unstable periodic 
orbit. but as 0 was varied they spreaded out over the cha· 
otic domain. This is in particular the case of the state a = 5 
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FIG. 3. Phase space distributions W'a(x.y~6 = 0) for N = 9 and r 
= 0.565. (a) a =:= 8 (localized on a torus), (b) a = 9 [localized about an 

unstable periodic orbit, cf. Fig. 1 (c)1. (e) a = 4 (delocalized), (d) a = 5 
(delocalized) . 

shown in Fig. 3(d). This emphasizes the fact that an ex­
amination of any state at a particular value of (J may not 
necessarily be illuminating; generally there is nothing 
which sanctifies a given set of boundary conditions, and it 
is the average over all boundary conditions, embodied by 
the formula of Eq. (12), which is relevant. In Figs. 3(c) 
and 3(d), we plot the Husimi distributions for a = 4 and 
a = 5, two delocalized states. 

V. CONCLUSION 

In conclusion, we have identified a criterion for phase 
space localization in two-dimensional quantized maps. To 
each state-more precisely to each band of states parame­
trized by two phase space boundary angleg~we associate 
an integer topological invariant, in precise analogy with the 
TKN2 analysis of the quantum Hall effect." Unlike the 

integrable case, quantum systems whose classical limit is 
dominated by chaos are distinguished by a large spectral 
fraction of nonzero Chern numbers. In analogy to the clas­
sical route to chaos through overlapping of resonances, the 
quantum path was shown to be intimately related to the 
degeneracies of the eigenspectrum. Although we have em­
phasized the connection with classical mechanics, the 
Chern index is a fully quantum object reflecting some 
structural properties of eigenstates. It will be useful to gen­
eralize this concept to arbitrary systems not initially for­
mulated in a toroidal geometry. 
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