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Abstract 

Global aspects of the motion of passive scalars in time-dependent incompressible fluid flows are well described by 
volume-preserving (Liouvillian) three-dimensional maps. In this paper the possible invariant structures in 
Liouvillian maps and the two most interesting nearly-integrable cases are investigated. In addition, the fundamental 
role of invariant lines in organizing the dynamics of this type of system is exposed. Bifurcations involving the 
destruction of some invariant lines and tubes and the creation of new ones are described in detail. 

I .  Introduction 

The dynamics of deterministic passive scalars 
suspended in incompressible fluid flows has very 
different characteristics as the dimensionality of 
the flow varies. In the most general formulation 
of the problem, we are interested the study of 
the trajectories given by the following set of 
differential equations: 

i" = u(x,  y,  z ,  t ) ,  (1) 

where the velocity field u(x,  y,  z, t) satisfies 

v . u  = 0 .  (2) 

Several simpler instances of the problem have 
been investigated thoroughly in the past decade 
[1]. Let  us quickly review some of them. 

When the flow is two-dimensional and station- 
ary, Eq.  (1) implies that the velocity field u(x, y)  

can be derived from a stream funct ion ~(x,  y),  

u x =  Oy ' U y -  Ox " (3) 

In this case the equations of motion have a 
Hamiltonian structure with ~ playing the role of 
the Hamiltonian. Hamiltonian systems with only 
one degree of freedom are always integrable. 
For  bounded systems, this means that all the 
trajectories in the phase space are closed curves. 
Accordingly, trajectories of passive scalars in 2D 
steady flows will have the same topology. 

Next in order  of increasing complexity comes 
the class of time-periodic 2D flows [2-5]. Here  
the stream function becomes t ime-dependent  
and the system is equivalent to a non-autonom- 
ous Hamiltonian one. In this case, only integra- 
bi t  systems show a phase space completely 
foliated into invariant tori as in the previous 
case. However ,  the KAM theorem states that a 
measurable portion of these invariant tori persist 
in phase space even for finite departures from 
integrability. These invariant surfaces are rel- 
evant for passive scalar applications since they 
represent dynamical barriers for transport  across 

space. 
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Steady 3D flows are somewhat equivalent to 
the case described in the previous paragraph. 
Arnold [6] has shown that the motion of passive 
scalars in steady inviscid fluid flows is integrable 
if to = V x u is almost nowhere parallel to u. On 
the contrary, if the Beltrami condition to = hu is 
satisfied in an open region, it has been found [7] 
that trajectories which are chaotic coexist with 
regular ones. The regular trajectories cover two- 
dimensional surfaces which are invariant under 
the time evolution of the passive scalar. In turn, 
the invariant surfaces separate the available 
space into disconnected regions which confine 
the chaotic trajectories. 

Next in complexity is the case of 3D flows with 
periodic time dependence. In this case, the form 
of the equations of motion is no longer Hamilto- 
nian. However, the stroboscopic maps of such 
systems are three-dimensional and, by virtue of 
Eq. (2), volume preserving. In the following we 
will refer to these maps as 3D-Liouvillian [8] or 
in short, 3DLM. The invariant structures dis- 
played by these maps in the nearly integrable 
regime have been investigated in detail in the 
past [9-13] because of their relevance to the 
mixing efficiency [2,3] of fluid flows. In par- 
ticular, we found one class of 3DLM where these 
structures divide the space into separate regions, 
preventing a single deterministic passive scalar 
trajectory from reaching the whole space. In 
another class of 3DLM, however, unbounded 
deterministic diffusion has been found arbitrarily 
near the corresponding integrable map. 

We have also conjectured that the objects 
organizing the dynamics of 3DLMs are one-di- 
mensional quasiperiodic orbits which we name 
invariant lines. In this paper we review the 
former results and provide further evidence to 
support this picture. 

Section 2 is devoted to the nearly-integrable 
behaviour of the 3DLM referred to above. In 
Section 3 we study the evolution of the structures 
related to invariant lines and tubes around them 
as the parameters of the maps are varied. We 
show that the disintegration of an invariant line 

into fixed points or periodic orbits at parameter 
values that make the line strongly resonant is 
accompanied by the birth of a new invariant line. 
The ubiquity of invariant lines is shown to follow 
from the generic topology of the invariant mani- 
folds of the periodic orbits. Finally, in the 
concluding Section 4 we summarize our results 
and discuss some problems for future research. 

2. Three-dimensional maps and their invariant 
structures 

Xl ~ X  

y ' = y  

Z ' = Z  

where 
circle. 

We concentrate our attention on volume-pre- 
serving maps L:~3"-"~] ]  -3 o n  the three-dimen- 

sional torus of the form 

(x', y', z ' )  = (x + u(x, z) , 

y + v(x', z), z + w(x', y ' ) ) ,  (4) 

where u, v, and w are doubly periodic functions. 
In particular, we shall investigate the following 
truncation of the Fourier expansions for these 
functions: 

+ A 1 sin z + C z cos y (mod 2"rr), 

+ B 1 sinx' + A 2 cosz (mod 2"rr), 

+ C~f(y ' )  + B2g(x' ) (mod 2¢r), (5) 

the functions f and g are smooth on the 

In general we call integrable a map L ° for 
which a set of variables I ~ ~k, 0 ~ -~-3-k can  be 
found such that 

I ' = I ,  O ' = O + t o ( / ) .  (6) 

Clearly, the variables I, which we call actions by 
analogy with Hamiltonian dynamics, parametrize 
a family of ( 3 -  k)-dimensional geometrical ob- 
jects that are invariant under the dynamics. In 
turn, the 0 variables specify the position of a 
point on a given invariant objects. At each 
iteration the angular variables rotate by an angle 
given by the corresponding component of the 
( 3 -  k)-dimensional vector to. This angle might 
in general vary from one invariant set to 
another, but remains constant for all the points 
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on each of these sets. Let  us describe the four 
possible cases: 

(a) k = 0 .  Since there are no actions, the 
f requency vector to is constant and this integra- 
ble case corresponds to a uniform rotation on q1-3. 

(b) k = 1. The motion takes place on two- 
dimensional tori defined by I =  const, and a 
point on one of these tori is specified by the 
values of two angles 01,02 . Therefore ,  the mo- 
tion on these two-tori is a uniform rotation for 
which the frequency depends only on the value 
of the action. 

(c) k = 2. In this case, there are two actions 
11, I 2 which parametrize a family of invariant 
circles (one-dimensional tori). The angular vari- 
able rotates with a frequency tO(I~, I2). 

(d) k = 3. In this case, the map in Eq. (6) is 
the identity and each point of the space (parame- 
terized by 11,12 and 13) is invariant. There  are no 
angles in this problem. 

For  case (a) the results of Ruelle and Takens 
[14,15] indicate that small perturbations of the 
integrable system will produce completely cha- 
otic maps. Although the implication of volume 
preservation for these results is a very interesting 
problem, it lies outside the scope of this work, 
which aims towards the understanding of lower- 
dimensional invariant objects. At the opposite 
extreme,  k = 3, the nearly integrable systems are 
small perturbations of the identity I '  = I + eF(1 )  

or A / =  eF(1 ) .  In the e --~ 0 limit, the dynamics of 
this system can be described by a set of three 
autonomous differential equations after an 
appropriate rescaling of the time. This case (d) 
also lies outside the interest of the present paper. 
Therefore ,  we shall consider only small perturba- 
tions L 1 and L 2 around the respective integrable 
maps L 0 and L 0. 

An example of nearly-integrable maps with a 
single action is the map L 1 given by the following 
restriction of Eq. (5): 

x '  = x  + A sinz + ~cCOS y ,  

y '  = y  + ean sinx + A c o s z ,  

z '  = z + ea  c sin y '  + can cos x ' .  (7) 

At  e = 0 this map is integrable with only one 
action variable z. The motion in this limit takes 
place on the surfaces of constant z, and the 
angular variables x and y rotate at each iteration 
by constant angles tox = A sin z and tOy = A cos z 
respectively. The map in Eq. (7) corresponds to 
a discretization of the ABC model proposed by 
Arnold [6] as an example of chaotic streamlines 
in a stationary 3-dimensional flow, and exten- 
sively studied by Dombre  et al. [7]. The discreti- 
zation is equivalent to the addition of periodic 
time dependence to the flow. 

In order to investigate the effect of a small 
non-integrable perturbation of amplitude e on 
the form of the invariant surfaces, we implement 
a perturbative scheme. The condition for a 
surface defined by the equation r = r(t, s) (where 
r - - ( x ,  y, z) and t, s are parameters) to be in- 
variant is 

Ll(r(t  , s)) = r(t ' ,  s ' ) .  (8) 

We start with the invariant surface z = z 0 of the 
integrable case and suppose that the per turbed 
surface can be written in the form z = z  o +  
E enHn(x ,  y ) .  Here  the parameters  t and s are 
identified with the coordinates x and y. Inserting 
this expression into the invariance condition, we 
obtain an infinite system of linear functional 
equations for the unknown functions H a that in 
principle can be solved order  by order.  The first 
step in this expansion leads to 

z '  = z o + EHI(X' ,  y ' )  + 0(~  2) 

= z o + e H l ( x  + A sin Zo, y + A cos Zo) + 6(e 2) 

= z o + e H l ( x ,  y )  + Ea c sin(y + A cos Zo) 

+ ea B cos(x + A sin z0) + O(e2). (9) 
Consequently, H i ( x ,  y )  satisfies the linear func- 
tional equation 

Hl(X  + A sinz o, y + A cos Zo) 

= H i ( x ,  y )  + a c sin(y + A cos Zo) 

+ a B cos(x + A sin z0) . (10) 

The previous equation can be easily solved by 
expanding H i ( x ,  y )  in a double Fourier  series. 
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Setting n l ( x  , y)  = Eamn e i(mx+ny) in (10) we ob- 
tain 

" i (mAs inz°+nAc°sz° )  1) 
amn ~e 

O/C e - iA cos z 0 eiA cos z0) = i- -~-  (6 -1 , .  - -  (~1 , .  (~0, ra 

+ --~ (61,m eiA sin z0 + (~- 1,m e - ia  sin Zo)60,.. 

(11) 

Notice that the coefficients amn in Eq. (11) 
remain undefined if the resonance condition 

m A  sin z o + n A  cos z 0 = 2-rrk (12) 

is satisfied for (m, n, k) = (--- 1, 0, k), (0, -+ 1, k). 
However ,  they can be uniquely determined by 
requiring that the amn'S be continuous functions 
of z. Thus, the only four non-zero coefficients in 
HI(X , y) are a0._+ 1 and a~l.0. This is, however,  a 
peculiarity emerging from the form of the non- 
linear terms in the equation for the action z. If 
higher-order Fourier components  were consid- 
ered in the original map, then more non-zero 
coefficients would appear in the expression for 
H 1. Also, in our case, when the expansion is 
carried over  to higher orders in e, the corrections 
H~ will contain correspondingly higher-order 
Fourier  coefficients. 

Eq.  (12) has stronger consequences when it 
holds for (m, n, k) = (-+1, 0, k) and (m, n, k) = 
(0, -+1, k). Namely,  the values of a0._+ ~ and a+l, 0 
respectively are diverging. This occurs, of 
course, only for few special values of z 0. The 
invariant surfaces where the condition (12) is 
satisfied, are called resonant.  It is clear from the 
perturbative arguments that these resonant sur- 
faces will exhibit a strongly singular behaviour at 
finite E. To understand this special behaviour 
notice first that integrable motion on a resonant 
surface is such that each individual trajectory is 
not  dense on the surface but rather fills an 
invariant curve contained in it. For  ~ = 0 there is 
a continuous family of such invariant lines cover- 
ing the entire surface. At  E ~ 0 however,  only a 
finite (and even) number  of such lines survives 
the presence of the non-linear perturbation. This 

occurs by a mechanism similar to the Poincar6-  
Birkhoff  phenomenon for periodic orbits in 2D. 
Moreover ,  as in the latter case, it turns out that 
half of these lines are stable (elliptic) and the 
other  half, unstable (hyperbolic). In the next 
section we will illustrate the origin of such 
behaviour  with a perturbative calculation. At 
non-zero perturbation strength E a family of 
elliptic invariant tubes is formed around the 
stable lines. Similarly, associated with the un- 
stable lines an H-shaped chaotic slab emerges. 
This scheme is repeated for higher-order reso- 
nances at the corresponding order  of the per- 
turbation expansion. 

For  the surfaces where the frequencies to are 
far from satisfying the resonance condition, we 
might expect that some version of the KAM 
theorem will hold and that slightly-deformed 
invariant surfaces will persist if e is not too big. 
Actually, there is extensive numerical evidence 
in favour of such a conjecture. In Fig. 1, the 
various types of trajectories are shown for the 
map of Eq. (7). 

By comparing this picture with the analogous 
one for 2D-Hamiltonian systems, one is tempted 
to conjecture that the organizing role played by 
the periodic orbits in the latter should be as- 
signed here to the invariant lines. In fact, in the 
same way that invariant tori of the 2D case can 
be systematically approached with sequences of 
periodic orbits, in our  case a similar (but un- 
fortunately not so systematic) approximating 
strategy can be designed by using invariant lines 
instead. In Section 3 we will see that one-dimen- 
sional invariant objects pervade the phase space 
of these systems and their presence seems to be a 
robust property.  

The reader  can easily recognize that the pre- 
served invariant surfaces are barriers through 
which a chaotically moving particle cannot pene- 
trate. In other  words, diffusion of an individual 
trajectory throughout  the entire space is not 
allowed. We will show, however that the oppo- 
site holds for L 2 maps. 

Let  us now consider the maps close to the 
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Fig. 1+ Numerically obtained invariant surfaces and chaotic 
volumes. The parameter values in Eq. (7) are A = 1.5, 
a~=l, c+ c=2 and •=0.1.  (a) In order of increasing z: 
non-resonant surface (x o = 0, Yo = 0.56, z 0 = 0.11) and tubu- 
lar surfaces around the (1,-1,0) ,  (1,0,0) and (0,1,0) 
resonances (x o = 0, Yo = 0.9, z o = 0.395), (x o = 0.75, Yo = 0, 
z o = 0.4626) and (x o = 0, Y0 = 0.5, z 0 = 0.828) respectively. 
(b) H-shaped chaotic volume associated with the hyperbolic 
line of the (0, 1,0) resonance (x o = 0, Yo = 0.5 and z o = 0.24). 
All the initial conditions are indicated in fractions of 27r and 
the box represents the [0, 2~r] 3 region. 

in tegrable  case with two a lmost -conserved  quan-  
tities, L2: 

I; = It + ePx(I2, 0 ) ,  I ;  = I 2 + eP2(l'l, 0 ) ,  

0 '  = 0 + ~o(I'1, I ; ) .  ( 1 3 )  

A t  e = 0 the mot ion  takes place on lines 1 = 

f i t ,  1 2 ) =  const.  We could examine the per turba-  
tive behav iour  of  those invariant  lines with the 

h o p e  of  finding some sort of  K A M  result for  

them.  H o w e v e r ,  by a mechan i sm similar to the 

one  responsible  for  breaking  the resonant  sur- 

faces in L 1 maps,  all the invariant  lines are 

des t royed  to first o rder  in e. Later ,  we shall 

illustrate this process with a part icular  example.  

In  fact,  we can unders tand  the origin of  the 

singulari ty of  this integrable case by means  of  the 

fol lowing a rgumen t  based on an adiabatic ap- 

proximat ion .  Suppose  that  w(l)  is irrational for  

some  given values of  the arguments .  In the limit 

of  e ~ 0, we can assume that  before  I changes 
significantly, the angle 0 covers uni formly the 

ent ire  (0,2rr)  interval. U n d e r  these circum- 

stances,  the var ia t ion of  I can only be sensitive to 

averages  of  P = ( P 1 ,  P2) over  all the possible 

values of  8. There fo re  

AI = ~(P(I, 0 ) )  0 = eft(1),  (14) 

where  ( )0 stands for  the P-average.  Thus ,  the 
dynamics  of  the act ion variables decouples  f rom 

0 for  non- resonan t  to. Eq.  (14) leads in the limit 

e--* 0 to a system of  two ord inary  differential  

equat ions  

d /  
d--t- = / ~ ( I ) ,  (15) 

where  the identification ~ = At was made .  This 

system can be easily in tegra ted  by variable 

separat ion.  Its t rajectories  l(t) satisfy 

12 11 

f /3t(I) d l -  f P2(I) d l = W ( I a , I 2 )  =cOnst" 
0 0 

(16) 

In  o ther  words ,  in the e - + 0  limit, the act ion 
variables slowly evolve along the curves defined 

by Eq.  (16). Including the fast mo t ion  in the 0 
direction,  we infer that  the originally invariant  
lines parallel to  the 0 axis coalesce in invariant  

surfaces ~ defined by the condi t ion W(I 1, I 2 ) =  
ft. A typical t ra jec tory  will densely  cover  such 
surfaces ra ther  than move  on an invariant  curve.  
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The adiabatic approximation is exact in the limit 
e----> 0. One is then tempted to conclude that the 
situation is similar to the one described for one- 
action maps in the sense that the adiabatic 
invariant surfaces can survive when finite non- 
linearities are present. However ,  a new and very 
interesting phenomenon  appears in L 2 maps. We 
first notice that the adiabatic approximation is 
bound to fail whenever the resonance condition 
to ( I i , I2 )=21rk /n  is satisfied. Moreover ,  this 
condition defines a family of surfaces which in a 
generic case does not coincide with the family of 
invariant surfaces. As a consequence, each in- 
variant surface will intersect at least one reso- 
nance sheet. At  the intersections, the adiabatic 
approximation is spoiled and so is the smooth- 
ness of the invariant surfaces. Far from the 
intersection, however,  one expects that trajec- 
tories evolve on surfaces which are slight de- 
formations of the ones given by Eq. (16). In 
order  to exemplify the characteristic behaviour 
of L 2 maps, we use an appropriate restriction of 
the family of maps defined in Eq. (5): 

X '  = X + eOtrA i sin z + eac~ cos y ,  

y '  = y  + EaSl s inx '  + eaa2 COSZ, 

z '  = z + C l f ( y '  ) + Bzg(x'  ) . (17) 

For  • = 0, the map in Eq. (17) is integrable and 
has the form of Eq. (13). In this case the lines 
corresponding to constant values of x and y are 
invariant. A search for invariant lines of the 
form (x, y) = (x 0, Y0) +E (X,(z) ,  Y , ( z ) ) •" ,  in the 
nearly-integrable case can be performed per- 
turbatively. The order  e calculation leads to the 
following couple of functional equations: 

X ( z  + C~f(yo) + B2g(Xo) ) 

= X(z )  + aA~ sin z + ac2 cos Y0, (18a) 

Y(z  + C , f ( yo )  + B2g(Xo) ) 

= Y(z)  + aBa sin x o + OlA2 COS Z • (18b) 

Clearly, the constant terms containing x 0 and 
Y0 in Eq. (18) lead to the divergence of the 
zeroth-order  Fourier  coefficient of the X(z)  and 

0 I 
0 1 

Fig. 2. A few members  of  the  family of surfaces defined by 
Eq.  (17) for aB1 = 1.5 and ac2 = 2  projected down to the  
z = 0  plane.  For comparison,  the  dashed curve is the  first 
turn of the trajectory depicted in Fig. 3. 

Y(z)  functions. Since (sin Z)z = (c°s z )z = 0, the 
adiabatic invariant surfaces Ea of Eq. (16) be- 

come 

Wo(x , y) = ac2 sin y + aB1 cos x = fl . (19) 

Fig. 2 shows some of these surfaces projected 
down to the z = 0 plane. To illustrate the effect 
of the resonances, we plot in Fig. 3 a trajectory 
of the map in Eq. (17) for a non-zero but very 
small value of E. The location of the lowest-order 
resonance to = 0 for a particular election of the 
functions f and g is indicated by the dashed line. 
Close to this line, the trajectory oscillates wildly 
and jumps from one adiabatic surface to 

another.  
To  depict this behaviour in a different way, we 08 ! 

Y/2"n" 
0. '7 

0.4 0.6 

x/2 "n" 
Fig. 3. One  trajectory of the map  in Eq.  (17) for ~tA1 = 1, 
aa2 = 2.5, C 1 = B 2 = 4 and ~ = 0.001, f = cos and g = sin. as1 
and ac2 are the  same as in Fig. 2. The  dashed line indicates 
the  location of the lowest-order resonance.  
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Fig. 4. Wo(x,, y,)  (Eq. (19)) vs. n. The map and parameter 
values are the same as in Fig. 3. 
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show in Fig. 4 the t ime evolut ion of  the value of  

14/0, which would  be constant  if the adiabatic 

app rox ima t ion  were  exact. One  can easily recog- 

nize intervals where  W 0 is almost  constant  fol- 
lowed  by relatively short  per iods of  oscil latory 

behaviour .  Natural ly ,  these oscillations occur  
w h e n e v e r  the t ra jec tory  crosses the first-order 

resonance .  Not ice  tha t  as a consequence  of  these 

oscillations,  W 0 r andomly  jumps  f rom one  

asymptot ica l ly  cons tant  value to another ,  corre-  

sponding  to two different  adiabatic surfaces. 
O n e  striking consequence  of  this dynamical  

behav iou r  is that  a single t ra jec tory  can in 

principle visit the entire region of  space where  

the  adiabat ic  surfaces which intersect  with the 

f i rs t-order  resonance  reside. The  size of  this 

region can be control led  by choosing the func- 
t ional  fo rm of  the f requency  to. In  Fig. 5 we 
show two near ly-ex t reme cases. In  the first one  

(Fig. 5a), a case where  the resonance  condi t ion 

a lmost  coincides with one  o f  the adiabatic in- 
var iant  surfaces is shown.  Several initial con- 

di t ions have been  used to genera te  this picture.  
Not ice  that  mos t  of  the trajectories evolve on 
s m o o t h  surfaces which are roughly  the same as 
those  shown in Fig. 2. In addit ion,  one  can 
observe  a small region of  chaot ic  t rajectories 
associated with the invariant  surfaces intersecting 
the  f irst-order resonance  condit ion.  Of  course,  
h igher -o rde r  resonances  have similar effects in 
o the r  regions of  the space,  but  these are not  

(b) 

1.0 
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0.2 

0 
0 0 .2  0 .4  0.6 0.8 1.0 

x/2 r 

Fig. 5. Iterations of the map in Eq. (17) lying in the slice 
0--z-< 0.01. The dashed lines indicate the location of the 
lowest-order resonances. (a) C] = 2.5, B 2 = 4, f = sin, g = cos 
and the remaining parameters are as in Fig. 4. Several initial 
conditions distributed along the y-axis and the x = ~r line 
were necessary to obtain this picture. (b) f, g and all the 
parameters are the same as in Fig. 3. Only one initial 
condition is required to generate this picture. 

evident  on  the t ime scale of  the picture.  O n  the 
o the r  hand,  Fig. 5b shows the opposi te  extreme.  

H e r e ,  the first-order resonance  indicated by the 
dashed  line intersects a lmost  all the surfaces of  
Eq .  (19). In  this figure, the i terat ions of  only one 
t ra jec to ry  are shown.  It is now apparen t  that  this 
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single t rajectory visits all the available space. 
The  rate of  diffusion, D, has been est imated 
analytically in Ref. [12]. For  the case of Fig. 5b it 
is shown that D = tT(E2). Numerically,  we found 

that  D = ~(ev)  where 3' = 2 . 0 -  0.3. 

3. Tubes and invariant lines 

The standard approach to the systematic study 
of maps  and their propert ies  is based on the 
principle of decomposi t ion in terms of the sim- 
plest type of invariant objects. Since in 3DLM, 
periodic orbits are generically unstable [10], the 
lowest-order  invariant objects which underlie the 
organizat ion of the dynamics are the invariant 
lines. In the case of L1 maps,  invariant lines 
behave  in a way which is reminiscent of  the fixed 
points in 2D conservative maps.  In particular, 
slices through the dynamics on the (x, y, z)- torus 
transversal  to one of the angle directions, x or y, 
are similar to phase-space portraits of  the stan- 
dard map  for example [10]. To  some extent,  
however ,  this similarity is misleading. It  gives the 
wrong impression that a simple extrapolation to 
one more  dimension of the theory for periodic 
orbits is sufficient for the understanding of in- 
variant  lines in 3DLM. In fact, while periodic 
orbits are solutions of  algebraic equations, in 
order  to find invariant lines one has to solve 
functional equations. In this section, we shall 
illustrate this difference through the study of the 

simplest bifurcations which the invariant lines 
undergo.  By analogy with the case of periodic 
orbits,  bifurcations are qualitative changes in the 
proper t ies  of invariant lines occurring as the 
pa ramete r s  of the map  vary. In what follows, we 
restrict ourselves to bifurcations in which in- 
variant  lines are ei ther created or destroyed. 

The  simplest and most  dramatic  destruction of 
invariant  lines occurs when the non-integrability 
pa ramete r ,  e, is turned on. As described in 
Section 2, the continuous families of invariant 
lines present  in the integrable case are replaced 
with a few stable tubes and a chaotic slab (see 

Fig. 1). To illustrate this process we can imple- 
ment  a perturbat ive scheme for invariant lines 
which is similar to the one already used for 
surfaces. For the sake of clarity we restrict 
ourselves to the ( - 1 ,  0, 0) resonant  surfaces. In 
the integrable case this resonance occurs if to x = 

A s i n z  o = 0 , i . e ,  at z o = z  i w i t h z  1 = 0  a n d z  2 =  
-rr. It  is clear that the trajectories on these 
resonant surfaces lie on lines parallel to the 
y-axis. Each initial condition x 0 on the resonant  
surface corresponds to a different line which is 

consequently defined by x = x 0 and z = z r We 
want to understand what happens  with these 
lines when E ~ 0 .  Therefore ,  we will look for 
per turbed lines of the form 

x = x  0 + ~X(y)  + ( ? ( 2 ) ,  

z = zi + , Z ( y )  + ~7(e 2) (20) 

and confine our  calculations to order  e. By 
requiring invariance of (20) under  the iteration 
of the map,  we find two functional equations,  for 
X ( y )  and Z(y) :  

X ( y  + A cos z,) = X ( y )  + A Z ( y )  cos z i "q- COS y ,  

(21a) 

Z ( y  + A cos zi) = Z (y )  + sin(y + A c o s  z i )  

+ a B cos x 0 . (21b) 

As before,  expanding the two functions in 
x einy and Z ( y )  Fourier  series, X ( y )  = E a, = 

E a~ iny e , we obtain for the coefficients 

a ~ ( e i n  m . . . .  i _  1) 

= A c o s  zi  az + l ( t ~ l ,  n + t ~ _ l , n )  , (22a) 

aZ(einm . . . .  i - -  1 )  

= li(t~__ 1,n e - i m  . . . .  i __ t~l, n e i a  . . . .  i )  

+ 80,ha B cos x 0 . (22b) 

Notice that when n = 0, the f a c t o r  ( e  i n a  . . . .  i _ 1 )  

vanishes whereas the r.h.s, of  Eq. (22b) does 
not. Therefore ,  the first-order correction for the 
invariant lines is finite only if cos x 0 = 0. This 
implies that out of  the infinity of  invariant lines 
corresponding to the (-+ 1, 0, 0) resonant  surfaces 
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z 0 = zi, only those defined by the (x 0, zi)  pairs 
('tr/2, -rr), (3-rr/2, 0), (rr/2, 0) and (3~r/2, ,rr) sur- 
vive at first order in ~. Numerical computations 
indicate that half of these lines are dynamically 
stable and the other half are unstable. This result 
is a remarkable manifestation in 3DLM of a 
scenario similar to the one which, for Hamilto- 
nian systems, is predicted by the Poincarr-Bir- 
khoff  theorem [16]. While around stable lines, a 
family of elliptic invariant tubes is formed, 
associated with the unstable lines an H-shaped 
chaotic slab emerges. This scheme is repeated 
for higher-order resonances at the corresponding 
order of the perturbation expansion. The loca- 
tion of the lowest-order elliptic lines is indicated 
schematically in Fig. 6. 

A different bifurcation, in which tubes are 
created rather than destroyed, takes place at 
A = 2-rr. For A---2"rr, one has additional t~(E) 
solutions to the invariant-surface resonance con- 
dition of Eq. (12) of the type ( m , n , k ) =  
(+-1,0, -+1) and ( m , n , k )  = (0, -+1, -1 ) .  As be- 
fore, these solutions correspond to elliptic tubes 
embedded in a chaotic slab. Since all the new 
tubes have similar properties, we only consider 
the (0,-+-1,-+1) ones. For these tubes, w x =-+ 

x 

z 

Y 

Fig. 6. Schematic representation of the lowest-order elliptic 
resonances.  The dashed lines parallel to the x- and y-axis 
represent  the stable invariant lines of the (0, 1,0) and 
(1, 0, 0) resonant surfaces respectively, which survive when 
E ~ 0 in Eq. (7). The cylinders sketch the tubular invariant 
surfaces that appear around these lines at finite e. 
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3 ~ / A 2 - 4 " r t  2, tOy = 2-rr for all values of A, and 
therefore, for A >2-rr, they are parallel to the 
x-axis. Their average position in z, z i, satisfies 
cos z i = ---2rrA -1. Unlike the tubes of Fig. 6, the 
new tubes travel along the z-direction as the 
parameter A changes. Accordingly, we shall 
refer to them as travelling tubes. At A = 2~r, the 
travelling tubes are created at z i = 0, "rr, at appar- 
ently the same position at which the old 
( - 1 ,  0, 0)-tubes lie in the perpendicular direc- 
tion. One would naively expect that the collision 
between the new and the old tubes would lead to 
an increase in the degree of chaos in this part of 
space. While numerical investigations [10] do 
indeed confirm this expectation, it turns out that 
the actual scenario is more subtle. In fact, at 
A = 2~, the (---1, 0, 0) invariant lines themselves 
become resonant (see Eq. (22)). This is simply a 
manifestation of the fact that at E = 0, each of 
these lines is a continuous family of f ixed points 
with toy = 2"rr. Accordingly, at finite e, the corre- 
sponding tubes degenerate into chaotic trajec- 
tories in a range of 0(x/~) around A =2"rr. 
Remarkably,  it is within this range that the 
travelling tubes are born. These appear as regular 
trajectories which glue together pairs of fixed 
points of the type (tog, toy, %)  = (0, 2-rr, 0). Such 
fixed points exist in the interval A E ( 2 x r -  
eotnac, 2"rr + Ea~ac) at (x o, Yo, zo) such that, to 
lowest order in ~ and with 6 = - A -  2"tr: 

~/ 62 
C O S  X 0 ~-  --I- 1 2 2 2 , 

t~B~ C 

c o s y o = - +  1 - a 2  2 2 , 
E O~ C 

1 _  
sin z 0 = - -~-w ~ e z a  2(1 - t ~ )  + 6 2 (23) 

The --- signs in Eq. (23) are restricted such that 
only fixed points are obtained which, at the 
lower end of the existence interval, are pairwise 
degenerate. Here, the pairs lie at (xr/2, 0, ,rr), 
('rr/2, ~r, ~r), (3~r/2, 0, 0) and (3~r/2, "rr, 0). For 
A > 2~ - EaBa c this degeneracy is lifted and the 
fixed points belonging to a pair drift way from 
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each other  mainly in the x-direction. For  exam- 
ple, at A = 2"rr the members of each pair are two 
quadrants apart in x. Moreover ,  at the upper end 
of the existence interval, the fixed points in each 
pair collide after having wrapped once around 
the x-direction. 

We now turn to discussing the properties of 
trajectories that lie in the vicinity of the fixed 
points. For  this, one needs to understand the 
behaviour  of the corresponding stable and un- 
stable manifolds. The fixed points in each pair 
have two complex-conjugate eigenvalues and 
one real. While, for one of the fixed points, the 
complex eigenvalues correspond to a 2D-stable 
manifold and the real eigenvalue to a 1D-un- 
stable manifold, for the second fixed point it is 
the other  way around. Moreover ,  when A is just 
slightly larger than 2"rr- ~ a z a c ,  the manifolds 
corresponding to the real eigenvalue are directed 
towards the second fixed point of the pair. 
However ,  generically the two 1D manifolds do 
not meet  but rather wind up around each other 
approximately filling up a tube which runs be- 
tween the two fixed points and then opens up 
along the complex manifolds. This structure of 
the manifolds generates a region of chaotic 
motion that can be considered as the generaliza- 
tion of Shilnikov chaos to 3D maps [17]. Re- 
markably,  this scenario parallels the one in 2D- 
Hamiltonian nlaps. Notice however that while in 
2D the intersections of the manifolds are un- 
avoidable, in 3D such intersections are non- 
generic. The parallelism between the two can 
instructively be pursued further. In the same way 
as in 2D, the heteroclinic chaotic regions are 
usually bounded by regular quasiperiodic motion 
on invariant curves encircling the elliptic periodic 
orbits; in our  3D example, the Shilnikov-type 
chaos is bounded by a nested family of toroidal 
surfaces, each hosting three-frequency 
quasiperiodic motion. Through the interior of 
this family runs a circular invariant line (which 
comes as a replacement for the elliptic point in 
the 2D picture) and it is threaded by both the 
stable/unstable manifold pair of the fixed points 

y .5 

.4 5 

.50 

z . 5 ~  

.4 

Fig. 7. A trajectory of (7) which lies on a toroidal invariant 
surface. Here, A = 6.276, a B = 1, a c = 2 and E = 0.01. The 
pulses denote the pair of fixed points associated with this 
trajectory. The coordinates are expressed in units of 2~r. 

and their associated Shilnikov-chaotic trajec- 
tories. A trajectory lying on one of these doug- 
hnut-shaped surfaces is shown in Fig. 7. 

As the fixed points move apart,  they pull the 
tori along, stretching them into travell ing tubes  

by the time they collide on the other  side of the 
x-circle (see Fig. 8). One expects similar bifurca- 
tions leading to new travell ing tubes  to take place 
for all A = 27rl with l = 1, 2 . . . . .  Therefore,  at 
large enough A, space will be mostly filled with 
such tubes rather than with invariant surfaces as 
is the case for A < 2"tr. 

4. Concluding remarks 

Three-dimensional  Liouvillian maps present 
an extremely rich variety of dynamical phenom- 
ena. Many of these phenomena show an analogy 
in the nearly integrable limit to the behaviour of 
Hamil tonian systems of either two or three 
degrees of f reedom, which generate symplectic 
maps in two and four dimensions respectively. 



32 J.H.E. Cartwright et al. Physica D 76 (1994) 22-33 

----7 
0.53 l 

0.52 

o. 

1 

Fig. 8. A brand new travelling tube. The parameters are the 
same as in Fig. 7 only that A = 6.3. Here as well as in Fig. 7, 
the coordinates are expressed in units of 2~r. 

The similarity with one or the other is governed 
by the number  of invariant quantities of the 
corresponding integrable system. 

Recent  progress has been made in the direc- 
tion of extending KAM results to this kind of 
dynamical system. However ,  there are several 
interesting problems which are still open and 
whose solutions, although probably relying on 
straightforward extensions of the approaches 
used in other  dynamical systems, require the 
development  of non-trivial techniques. For ex- 
ample,  in the case of maps with one action, the 
smooth two-dimensional KAM surfaces break at 
a critical value of the nonlinearity parameter.  
The question of how these surfaces behave at the 
breakdown point arises as a natural extension of 
similar studies in two-dimensional area-preserv- 
ing maps. In our context,  however,  the problem 
becomes a version of the still-unsolved transition 
to chaos in three-frequency systems. Our studies 
strongly suggest that its solution requires the 
ability to investigate the invariant lines playing 
the role of periodic orbits in the lower-dimen- 
sional case. In fact, we have shown in Section 3 
that the appearance of these objects is generic 

even in the parameter  regions where the, in this 
case more elusive, periodic orbits are present. 

The ergodic properties of L 2 maps should be 
extensively investigated. We were able to obtain 
good estimates for the diffusion rate in the 
regions dominated by the first-order resonances. 
However,  one can imagine a situation where a 
fraction of the adiabatic surfaces do not cross 
any first-order resonance. In these regions the 
local diffusion rate is determined by the reso- 
nances with n - 2. A better  understanding of the 
interaction between the adiabatic and resonant  
motions is required to obtain a similarly reliable 

estimate for this case. 
Finally, it is important  to remark that the 

co-dimension of the whole class of Liouvillian 

maps is higher than that of the families that we 
have studied. Therefore ,  it is very relevant to 
applications in hydrodynamics to investigate (a) 
the conditions for which real 3D time-periodic 
flows approach the subclass presented here, and 
(b) to what extent the reported behaviour ex- 
tends beyond the limits of such a subclass. 
Research in these directions is currently in pro- 
gress. 
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