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Localization in quasi-one-dimensional systems with a random magnetic field
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We investigate the localization of electrons hopping on quasi-one-dimensional strips in the presence of a
random magnetic field. In the weak-disorder region, by perturbative analytical techniques, we derive scaling
laws for the localization lengthé, of the form éx1w”, wherew is the size of magnetic disorder and the
exponenty assumes different values in the various energy ranges. Moreover, in the neighborhood of the
energies where a new channel opens a certain rearrangement of the perturbation expansion leads to scaling
functions for&. Although the latter are in general quantitatively wrong, they correctly reproduce the corre-
sponding» exponents and the form of the scaling variables and are therefore useful for understanding the
behavior ofé¢.

I. INTRODUCTION responding nonlinear sigma model Lagrangian, altering the
nature of this system and allowing for the presence of ex-
The problem of electron localization in the presence of a@ended states. In the light of recent numerical studies of ran-
random magnetic field was originally suggested simply as anlom flux models that found evidence of extended states,
alternative new type of disordémRecently however, a real- it appears that this case is also nonrepresentative of its sym-
ization of the random flux model was proposed by Kalmeyemetry class.
and Zhan§ in order to describe the behavior of the Hall ~One way of approximating the 2D random magnetic field
system in the neighborhood of fractional filling fractions problem is via squares of finite size, It was found’ that
with even denominatory=m/2n. While for suchv’s, the for |E|<E.~3, & /L grows asL is increased while it de-
Hall conductancegy,, is not quantized, the corresponding creases whefE|>E.. Such behavior indicates that a metal-
longitudinal conductancer,,, displays a pronounced mini- insulator transition takes placeBt . A different approach to
mum which is relatively insensitive to changes of the tem-investigating the properties of the infinite size 2D systems
perature. This suggests the presence ldhl metallic phase uses quasi-1D strips of lengti—c and finite width,M.
that can be explained by replacing the entire magnetic fluAlthough all states of the quasi-1D system are localized, one
with flux tubes attached to the electrons. If for example,expects that knowledge of the behavior of the localization
v=1/2, then each electron will have incorporated two fluxlength for such systems can help to elucidate the above men-
guanta, leading to a system of composite fermions in zerdioned questions. However, numerical results for the random
average magnetic field. Moreover, due to the underlying disflux model on strip3® are to some extent contradictory. In
order in the Hall system, the electron density is fluctuatingRef. 6 the observed behavior is analogous to that obtained
which in turn leads to fluctuations in the associated flux denfor square systems, namely(M)=¢&,,/M changes from an
sity. Correspondingly, a positive magnetoresistance for ranincreasing function to a decreasing one at roughly the same
dom flux models would account for the observed minimumvalue of the energyE.. On the other hand, in Ref. 5 no
in o,. In turn, the presence of a mobility edge in suchevidence of a metal-insulator transition was observed and
models is the simplest mechanism leading to positive magA (M) is an increasing function for all the energies that were
netoresistance. In a different context, the quantum twostudied. The apparent disagreement between the two studies
dimensional motion of a particle in a random static magneticcould be a result of the fact that, due to numerical limita-
field is also important for the theory of correlated spintions, in Ref. 5 only energies larger than 2.9&|>2.95,
systen? Sometimes these systems form a spin liquid statavere considered. A more interesting possibility is that the
and such behavior is likely to occur in high-cuprates. difference between the two studies is related to the short
At first glance, properties of related models do not indi-range correlations that are included in the model of Ref. 6
cate the possibility of a metal-insulator transition in a two-but are absent in that of Ref. 5.
dimensional(2D) random flux model. In particular, in the While all numerical studies were done for large magnetic
Anderson model with site disorder alone all states are localdisorder, extended states are certainly present in the limit of
ized and the corresponding magnetoresistance is negativeanishing disorder and therefore, one expects that this re-
Moreover, calculations using supersymmetry methods showime is of interest in the search for a metal-insulator transi-
that no extended states are to be found in 2D disorderetion in infinitely wide strips. The advantage of the approach
systems with either orthogonal or unitary symmetry and onlywhere weakly disordered quasi-1D strips are studied is that a
the symplectic case displays a metal-insulator transition. Otransfer matrix formalism can be used for which an appro-
the other hand, in the case of 2D disordered systems in priate perturbation theory is availaii®ecently, Avishai and
strong constant transverse magnetic field it is known thatuck® have employed the perturbation theory of Ref. 8 in
states at the center of the Landau band are extended. Thisasder to investigate the localization of electrons on a ladder
due to an additional topological term that appears in the cometwork of two quantum wires with a random magnetic flux
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on each plaquette. On the other hand, we shall address tieen consecutive transfer matrices and accordingly, the per-
corresponding localization problem within the tight-binding turbative expansion of Ref. 8 can be used. lrem> be a
approximation and for arbitrari. While in the Anderson complete set of orthogonal states associated with the lattice
model disorder is implemented through random site energiesijtes. Then the Hamiltonian takes the form
magnetic disorder is included via random phases in the hop-
ping matrix elements. These phases are usually chosen as,
independent variables that have the same probability distri-
bution with some definite widthw. The purpose of this work - e
is to obtain a perturbative expansion for the localization +e'“nm[n,m+1)(m,n|+e" nm-1n,m—1)(m,n|,
length, &, in the limit of weak magnetic disorder. )
In Sec. Il, we present our model and derive the weak-

disorder expansion for the positive Lyapounov exponentswherea“'m:e/ﬁCA”'m' and the value of the corresponding

The outcome is expressed in several different forms Cmre@lgenfunctlon at ther(,m) lattice site, iy m, satisfies

sponding to the various energy ranges. In Sec. lll, these Preg, . 1 m+ ¢n—1m+eian’m¢n m+1+e_i“”~m*1¢n no1=Ethn m.
dictions are corroborated by accurate numerical data for two ’ ' ’ ’ '2)
wires. Finally, in Sec. IV, we discuss the results and som

unresolved questions left for future work.

H=>, [n+1,m)(m,n|+|n—21m){m,n|
n,m

eEquation(Z) can be written in transfer matrix form. Acting
with the 2M X2M transfer matrix,T,,, on the 2V vector
representing the wave function of two consecutive columns
of the strip, ¢,_1n and ¢, ,,, Where E==m=<M, generates
We study the localization of an electron on quasi-1Dthe vector corresponding #, , and ¢, 1. The propaga-
strips subject to a random transverse magnetic field. Théon along the strip is therefore described by the product
model we use consists of a tight-binding Hamiltonian with
phase disorder in the hopping matrix elements and rigid
boundary conditions. The underlying 2D square lattice has
unit lattice constanta, =1, lengthN—~, 1=x=<N, and
width M, 1<y<M. Thus the lattice sites are located at in-
teger values ok andy, n andm, respectively. In order to
isolate the behavior due to magnetic disorder, in what fol
lows, we assume that the site energies,,, vanish,

Il. THE MODEL

N
QN=n[[1 Tn A3)

and the corresponding localization length is related to the
Lyapounov exponents, y;, of the infinite product
Q=limy_.Qy- In fact, if Rey,=Rey;,(, then¢ is the in-
verse of the real part of the smallest positive Lyapounov

o e . . exponent.

enm=0. A random magnetic field3, with zero average is . .

applied parallel to the-axis,B=BZ. It is chosen such that T (In)our model, we can write the random transfer matrix
nla

the corresponding vector potential in the Landau gauge,
A=(0Bx,0), oneach vertical lattice link,n,m],, between v, -I
the sites ,m) and (h,m+1), A, ,, is an independent ran- Tn(a)=( ) 4
dom variable. Moreover, al\, , are identically distributed. IO

Although this is clearly not the most natural choice, it iswherel, O, andV, areM XM blocks;l! is the corresponding
among the few models for which there is no correlation be-identity matrix,O is the null matrix, and

E —ei”‘n,l 0 0
_e*ian‘l E —eian,Z 0 .
Visl g ez B s L | (5)

We assume rigid boundary conditions on the horizontalp=(By,0,0) would have been used. In this gaugg,de-
edges of the stripyy o=y m+1=0. Correspondingly, the pends on boti\, ,, andA,_ 1, and accordingly, Eq(6) only
matrix element situated in the upper rigteind lower left  holds if |n;—n,|>1.

corner of theV, matrix, vanishes. Moreovefl, only de- In the site representation, current conservation implies
pends on the vector potential on thth column of the strip.  that the transfer matrix is constrained to satisfy the relation
Since thea, , are uncorrelated, this implies that tfig for

differentn are uncorrelated as well, TIT=J, (7)

Tann2='Fnl'Fn2 , forng#n, | (6) where

whereT is the average of the matriX over the disorder. J:(O _|> @)
This would not be true if, for example, the Landau gauge '



9636 YAKOV RUTMAN, MARIO FEINGOLD, AND YSHAI AVISHAI 53

For the case wherg&, has the structure of Ed4), this is P P 4o
equivalent toV,, being HermitianV,=V!, which is indeed E yi=2 In\;— MF?
satisfied by the/,, corresponding to our modgsee Eq(5)]. '~ * =1 ( )
In general, from Eq(7) one obtains that the eigenvalues of Ep: p T
complex transfer matrices come in pairs,j}, i #j, such X — —=,
that, \;=(\}) "’ Consequently, eigenvalues of complex =1 = M) = M) () = A1)
T, that lie on the unit circle are at least twofold degenerate. (13

In the weak-disorder regime, i.e., when the width of the, hqre
distribution of the random magnetic field is small, the M
Lyapounov exponents can be expanded in a systematic way T =sin( &)

1]

in terms of the successive moments of this distribution. This gl sin(kg;)sin(kg;)[sin((k—1)q;)cog(k
paper presents the perturbative expansion of the Lyapounov
exponents and gives explicit expressions for the results up to —3)g)—sin((k+1)g;)cos(k+3)a;)]. (14)
the second order, following closely the approach described ift tyrns out however that the expansion in the moments of
Ref. 8. « is not well behaved for all energieE, The most serious

In the case of potential disorder, the corresponding tranSgfficulty originates with the(a%) term that we ignored in
fer matrix is additively modified by the disorder, that is, g4 (13). In Ref. 8, it is shown that this term includes sums
To=A+uB,, whereu is the width of the distribution of ¢ 1atios of different eigenvalues de’ e.g.,
site energies. For magnetic disorder however, this simplify-
ing feature is absent. Nevertheless, one can always obtain an 1 (M)B“

analogous separation using the average transfer matyix, S T Ni=dSsen A
wherep<i<M and I<j<p. In the limit N—, §; does
not converge whenevéx;|=|\;|=1 and for energies within

Accordingly, the zero order approximation to the Lyapounoyil€ Pand there always exists somg [ pair for which thatis
o . — the case. The only exception occurs for the energy range in
exponents is given by the eigenvaluesTgf, A, namely,

which there is a single open channel,

(15

To=To—(Th=Th). ©)

v=In\,. In turn, thex, satisfy the relation 2acod§(2m)/(M+1)]+2<|E[<2aco§7/(M+1)]+2, where
-1 the O(a*) term is convergent despite the fact that
A+ N\ ~=E—2acoq (10 - _ ; ;
kT Ak ks [Am|=|Am+1|=1. Another type of divergence occurs in the
where O(a?) term at the energies at which(1)=+=1 where

1<k=p [see Eq(13)], Ex=2cox*2. While in the case of

- potential disorder, these divergences occur whenever a new
Q=g Sk (1)  channel opens,E,=E,, here these do not coincide,
Ex— Ex=2(a—1)cos=0(a?). In order to avoid both these
divergences, it is enough that a strong version of @4),
where all the weak inequalitiesz, are replaced by strong
ones,>, be satisfied. In the following we shall refer to this
requirement as theondegeneracy conditiorOn the other
hand, such condition excludes most of the energy band
. . P which is the range of physical interest. Two ways have been
While TOT E>.0’ Eq.(12)is Saf“Sf'Ed ifsy=M+1-k, when suggested to ob?ain in?orymation on the Lyapoun)i)v exponents
E<O, it implies thats,=k. Since atE=0, [\,[=1 for all | 5ing thea expansion in the range where the nondegeneracy
k, the different labeling between the positive and negative.qndition fails. In Ref. 8, the energy is allowed to be com-
energy sectors of the band does not lead to discontinuities iﬁlex, Ep=E+ie, which for a fixed, nonvanishing insures
I\l at the band center. The real part df, however, that the nondegeneracy condition is satisfied everywhere ex-
Re\y, flips its sign at==0. One can see from EQLO) that  cept for a finite number of isolated points. However, since it
the eigenvalues of depend ora and therefore, the energy is not clear how to extrapolate the results down to the real
where thekth channel opensk,, depends on disorder, energy axis, this approach, while conceptually promising, is
Ex(a). It is determined by the requirement that merely an uncontrolled approximation. On the other hand, in
M(a)= =1, leading toE,(a)=_2acos*2. Therefore, the previous work!! we have shown that in the neighborhood of
width of the band A=2E,, gradually shrinks as the vari- the singularities of th®(a?) term, E,, useful information
ance of the magnetic disorder is increased. To first order iy the localization length can be obtained by ignoring the
the varianceA =4+ (4—2a%)cog#/(M+1)]. ill-behavedO(a*) term. In other words, certain properties of
~ In order to obtain the higher order terms of the perturba can be extracted from the expansion up to second order
tion expansion, one must write the random matrix,and are not modified by the higher order terms. Specifically,
(Th,—T,), in the basis wherd, is diagonal. For simplicity, for smallt=E— Ek andw?= a2, the expansion can be writ-
we assume that the distribution af, , is symmetric and as  ten, in terms of new variables;=w™#it, that balance the
a consequence, th@(a®) term vanishes. Since th®(a*)  largeness of the divergent terms with the smallness of disor-
term is rather involved, we only quote here the series up t@ler. We refer tax; as scaling variables and to the divergent
O(a?) terms as resonant. From the structure ofdhexpansion one

anda=e'*=1-a?/2+ O(a%). Moreover,s, is a permuta-
tion of the integers (1,2...,M), such that

IN= o= = N = = . (12



53 LOCALIZATION IN QUASI-ONE-DIMENSIONAL SYSTEMS ... 9637

can obtain the3; exponents®! Moreover, keeping only the 7,=4/3. Finally, on the left side of the band edge;0, and
resonant terms, the perturbation expansion is rearranged suabcordingly, the first term in Eq19) does not contribute to
that the localization lengthé. The Lyapounov number however,
behaves according to the same functional form on both sides
of the singular energ\g=2.

For the example of the previous paragraph, whenever
pn<1 andx>1, the first few terms of the large expansion
where 7, <#7,<---<u<---, and f, are nondivergent of f,; provide an excellent approximation for the localiza-
scaling functions. Since is small, we naturally restrict our tion length. As already mentioned, this is not the case for
analysis to the first term of E¢16). Moreover, we find the M>1 and energies in the band where more than a single
asymptotic form off,h(xl) from the requirement that for channel is open. On the other hand, we argue that for the
large x, it matches up with the resonant part of the originalmu|tip|e channel case one can still use the scaling function
perturbation expansion. The corresponding nonresonam@pproach to obtain the correct leading power of the disorder,
terms will appear in the expansion of Ed.6) in the higher 7., and that determining the form of the corresponding scal-
order terms. For example, the nonresonant part from the cang variable,3;. In other words, the failure of the perturba-
efficient of the O(w?) term in the perturbation expansion tion expansion will only manifest in that the coefficients of
contributes in Eq(16) to the term withy;=2> 7, . the largex expansion off, will turn out wrong. Our argu-

In order to illustrate the_ s_teps that er_1ter the_derivation Ofnent is based on analyzing the behavionygf in the neigh-

f,,» let us show the way it is obtained in the simplest casepqrhood ofE,, namely, around where the second channel is
namely that of a purely one-dimensiondd,=1, Anderson opening. ForlE>E, the perturbation theory is well behaved

ym=WNE, (X)) +w72f, (Xp)+ -, (16)

model’® Here leading to the correct large expansion of the scaling func-
tion fvl. However, by continuity aE=E,, the same vari-

2 able and the same power pf should describe also the be-

y1=Inng— pul=—— ! 5 +0(uh). (17)  havior atE<E,. Despite the fact that we only know the

2(\1—1) large x expansion off , which is unlikely to converge for

|x|<1, this does determine the value gf and there is no
While far enough from the band edd&—2|<u*?, the first  way in which one could smoothly match two functions of
term in Eq.(17) is dominant, whenE—2)/u*?is finite, the  different variables ak=0. In turn, the case where theth
first and second term become comparable. In particular, iEhannel opens, 2k<M, namely, in the neighborhood of
t=E-2, then Ey, is qualitatively equivalent on both sides Ef, to the
situation for energies slightly belo®&,. Therefore, one ex-
pects that the corresponding valuessgfand 38, are being
N=1+ £+ EM=1+ i+ o), (19 determined_ by the ill behaved perturbation theory in the
2 2 same way in both cases.
Quantitatively however the prediction of E{.6) is false,
and neglecting th©(t) terms for smalk, Eq. (17) becomes although in some cases the corresponding error is extremely
small, e.g., for potential disorder withl =3 andk=2. We
also noticed that the value of the theoreti@({«?) term
+O(u™) turns out to be larger than the correct value in the several
' cases that were studied. One is therefore tempted to conjec-
(190  ture that the truncated expansion leads to a lower bound,
&1, for the true localization length. However, for potential
with x=t/u*® . Moreover, thex-dependent part represents disorder this implies that states are extended in the corre-
the first two terms in the large expansion off 5. If the  sponding two-dimensional cdSewnhich is known to be
O(x* term in Eq.(17) is included in the derivation, one wrong.
obtains two additional terms. While the first is 6f u?3) We now consider the scaling approach to Exp) for the
and leads to the next order term in the expansiofygf the M>1 case of the random field [nodel. In the neighborhood
second term i©(u*® contributing tof ;. Since theO(t) of the outermost singularitye=E;, we find thatn,;=1,
terms that were neglected in E(L7) are alsoO(u*?), B1=2 and from Eqs(13) and(14)

2
NN [ -
n=ts gt = (& 8x

M-1

o1 a4 (Twj+ i)
fl(x)_&ﬂzﬁ ! (M+1)2j21 \/(1+2 RIVRE VR VG 20
COSM+ DB M+1)

On the other hand , foIfEi with i>1, »,=4/3, B,=4/3. The real part of the corresponding scaling function isxfai0
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(Tmi+Tim)

mi+1) w(i-1)\2
3(M+1)2J—_x\/<1—2cosz(M+1)cosz(M+l) -1

Ref 4/5(X) = (21)

For x>0, however, all the resonant terms in E43) are  grow aswj with «=4.00+0.03, in agreement with our pre-
imaginary. diction.

For energyE< 1, both eigenvalues,; and\,, are imagi-
nary, i.e., both transversal channels are open. Unfortunately,
the general weak-disorder perturbative result of ELp)

In order to compare the theoretical predictions with thedoes not yield directly any quantitative information about the
results of numerical simulation, we consider a strip of widthLyapounov exponents in this region. While for large enough

M=2 and a uniform distribution for the vector potentials, € the perturbation theory is valid, such addition to the energy
changes the physics of the problem; the perturbation theory

IIl. COMPARISON WITH NUMERICAL SIMULATIONS

a 1 . . . -
mm prediction now refers to thé corresponding to a physically
1 irrelevant model with complex energy that significantly dif-
. for |ay m| <w; fers from the one with real energy. On the other hand, if the
P(aym) = 2w, ' (22) minimal e required for regularizing the perturbation expan-
’ 0, for | ap ml>wy , sion, €., is not too large, one could hope thte;) is a good

estimate of(0). Unfortunately, numerical simulation shows

that this is not the case. Consequently, both Lyapounov ex-
wherew,; = J3w. The spectrum of the ordered system con-ponents vanish likev?, but one cannot obtain explicit ex-
sists of three domains, namelf}) |E|>3, (Il) 1<|E|<3, pressions for the amplitude functions.
and (lll) |E|<1l. Their edges are defined by the We now look at the behavior of the second Lyapounov
A,(1)=+1 and\,(1)=*+1 conditions, respectively and the exponent;y,, near the external band edge of the spectrum of
localization length has different forms in each of these rethe unperturbed network, that is, fir—3. Forx— +, that
gions. Since the behavior of the localization length is invari-iS, deep outside the band, the result for the scaling law can be
ant underE— —E, in what follows, we only consider the Written in the form
positive energy ranges> 0.

In the region KE=<3, one of thex eigenvalues is real, 1— i
N1, and the othen\,, is imaginary. In other words, only one _ V3
transversal channel is open. In order to obtgjn and hence Y2=W \/;Jr 12\/; ’ (23)

the localization length, we use the perturbative result of Eqg. )

(13). Since, is imaginary, neither the term of order zero Wherex=(E—3)/(w?). Conversely, for x»—=, i.e., deep
nor the term proportional te? contribute toy,. As a con- N the region with a single open channel the second
sequence, only fourth-order terms contribute/icand there- ~ Lyapounov exponent vanishes as the fourth power of the
fore, the inverse localization length vanishesnds Indeed, strength of disorder. Figure 2 shows the real part of the scal-

in Fig. 1 the inverse localization length &t 2.5 is shown to N9 functionf, = y,/w, obtained from data corresponding to
' ' a narrow distribution of vector potentials. For-0, scaling

is observed to hold extremely well and so does €8) for
10° large enough values of. On the other hand, for negative
X, scaling holds only in a small interval, up k= —0.05.

For E—1, the spectrum of the network exhibits an inter-
nal band edge, which demarcates the two-channel region
from the one-channel region. The perturbative weak-disorder
expansion of Eq(13) for the second Lyapounov exponent is
£ again singular. In analogy with the previous case, we are led
to hypothesize the scaling form

1
=w*3 for x— — oo, 24
Y2 127—x (24)
wherex=(E—1)/(w*?) is the corresponding scaling vari-
able. Forx>0, however, all the resonant terms in E§3)
01 1.0 are imaginary and one cannot obtain information about this
Wi part of the scaling function from th@(a?) terms. Figure 3
shows the real part of the appropriate scaling function,
FIG. 1. Numerical values of the inverse localization length, f 5= (v,)/(w*?3). While scaling holds here as well as it does
&1, as a function of the strength of disorder,, atE=2.5(error  in Fig. 2, unlike in Fig. 2, the theoretical scaling function is
barg. The straight line is the best fit of the foréT*=Cwj, where  significantly larger than the numerically obtained one. This is
xk=4.00+0.03. a consequence of the failure of theexpansion in this range.
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08 | 0.15
0.6 r ] 0.10 ‘
Re f,;

Re f, Axo
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o 0.05 | o°
02 | Ox i AOonononxAOonxA
0.00 : -
« 2.5 -1.5 0.5
0.0 o : : «
-0.2 0.2 0.6
X FIG. 3. Same as in Fig. 2 only near the internal band edge,

E= 1. The continuous line represents the scaling curve given by Eq.

FIG. 2. The real part of the scaling functiéfn(x) describing the (24).
behavior of the smallest Lyapounov exponestnear the external
band edgeE=3. The data correspond to rectangular distributionsThis sequence is more diverse than the one observed for
of the random values, with various values of the width=0.1  potential disordet! namely
(A), 0.15 (X) and 0.2 (0). The continuous line represents the
scaling curve given by Eq23). 7=0,213,2,4/3,2,4/3,2 . .. (26)

IV. CONCLUSIONS

We have investigated the localization of electrons in the
framework of a tight-binding Hamiltonian on quasi-1D strips ~ We suggest that it should be interesting to use the ap-
with a random magnetic field. The magnetic vector potentialroach described in this work to study the combined effects
are assumed to be independent and drawn from a commd¥ potential and magnetic disordérMoreover, it would be
even distribution. As in any model of 1D disordered wires,useful to generalize the theory of Ref. 8 for the case where
all eigenstates are exponentially localized. We have thereforansfer matrices corresponding to neighboring strip columns
focused our attention on the weak-disorder regimes1, are not uncorrelated and find the influence of such correla-
where the localization lengthé=1/Reyy, is much larger tions on thez exponents. -
than the lattice spacinga, . In this regime, a systematic ~ However, the most important task remains finding the
perturbative expansion for the smallest positive Lyapounoway to properly regularize the perturbation expansion for
exponent was derived. Moreover, we have checked the outbfinite products of transfer matrices such that it would be-
come of our analytical approach against data obtained b§ome quantitatively correct throughout the band. This prob-
means of numerical simulations fov = 2. em is reminiscent of analogous difficulties arising in the

The most important result is that magnetic disorder modiHamiltonian and Green function perturbation theories and
fies the divergence laws of the localization lengtlin the ~ One expects that some of the methods developed there could

weak-disorder regimew—0), in the various energy do- be applied to the case of infinite products as well.
mains, with respect to those observed in the case of potential
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