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We investigate the localization of electrons hopping on quasi-one-dimensional strips in the presence of a
random magnetic field. In the weak-disorder region, by perturbative analytical techniques, we derive scaling
laws for the localization length,j, of the form j}1/wh, wherew is the size of magnetic disorder and the
exponenth assumes different values in the various energy ranges. Moreover, in the neighborhood of the
energies where a new channel opens a certain rearrangement of the perturbation expansion leads to scaling
functions forj. Although the latter are in general quantitatively wrong, they correctly reproduce the corre-
spondingh exponents and the form of the scaling variables and are therefore useful for understanding the
behavior ofj.

I. INTRODUCTION

The problem of electron localization in the presence of a
random magnetic field was originally suggested simply as an
alternative new type of disorder.1 Recently however, a real-
ization of the random flux model was proposed by Kalmeyer
and Zhang2 in order to describe the behavior of the Hall
system in the neighborhood of fractional filling fractions
with even denominator,n5m/2n. While for suchn ’s, the
Hall conductance,sxy , is not quantized, the corresponding
longitudinal conductance,sxx , displays a pronounced mini-
mum which is relatively insensitive to changes of the tem-
perature. This suggests the presence of aHall metallic phase
that can be explained by replacing the entire magnetic flux
with flux tubes attached to the electrons. If for example,
n51/2, then each electron will have incorporated two flux
quanta, leading to a system of composite fermions in zero
average magnetic field. Moreover, due to the underlying dis-
order in the Hall system, the electron density is fluctuating
which in turn leads to fluctuations in the associated flux den-
sity. Correspondingly, a positive magnetoresistance for ran-
dom flux models would account for the observed minimum
in sxx . In turn, the presence of a mobility edge in such
models is the simplest mechanism leading to positive mag-
netoresistance. In a different context, the quantum two-
dimensional motion of a particle in a random static magnetic
field is also important for the theory of correlated spin
system.3 Sometimes these systems form a spin liquid state
and such behavior is likely to occur in high-Tc cuprates.

At first glance, properties of related models do not indi-
cate the possibility of a metal-insulator transition in a two-
dimensional~2D! random flux model. In particular, in the
Anderson model with site disorder alone all states are local-
ized and the corresponding magnetoresistance is negative.
Moreover, calculations using supersymmetry methods show
that no extended states are to be found in 2D disordered
systems with either orthogonal or unitary symmetry and only
the symplectic case displays a metal-insulator transition. On
the other hand, in the case of 2D disordered systems in a
strong constant transverse magnetic field it is known that
states at the center of the Landau band are extended. This is
due to an additional topological term that appears in the cor-

responding nonlinear sigma model Lagrangian, altering the
nature of this system and allowing for the presence of ex-
tended states. In the light of recent numerical studies of ran-
dom flux models that found evidence of extended states,2,4–7

it appears that this case is also nonrepresentative of its sym-
metry class.

One way of approximating the 2D random magnetic field
problem is via squares of finite size,L. It was found6,7 that
for uEu,Ec'3, jL /L grows asL is increased while it de-
creases whenuEu.Ec . Such behavior indicates that a metal-
insulator transition takes place atEc . A different approach to
investigating the properties of the infinite size 2D systems
uses quasi-1D strips of lengthN→` and finite width,M .
Although all states of the quasi-1D system are localized, one
expects that knowledge of the behavior of the localization
length for such systems can help to elucidate the above men-
tioned questions. However, numerical results for the random
flux model on strips5,6 are to some extent contradictory. In
Ref. 6 the observed behavior is analogous to that obtained
for square systems, namely,L(M )[jM /M changes from an
increasing function to a decreasing one at roughly the same
value of the energy,Ec . On the other hand, in Ref. 5 no
evidence of a metal-insulator transition was observed and
L(M ) is an increasing function for all the energies that were
studied. The apparent disagreement between the two studies
could be a result of the fact that, due to numerical limita-
tions, in Ref. 5 only energies larger than 2.95,uEu.2.95,
were considered. A more interesting possibility is that the
difference between the two studies is related to the short
range correlations that are included in the model of Ref. 6
but are absent in that of Ref. 5.

While all numerical studies were done for large magnetic
disorder, extended states are certainly present in the limit of
vanishing disorder and therefore, one expects that this re-
gime is of interest in the search for a metal-insulator transi-
tion in infinitely wide strips. The advantage of the approach
where weakly disordered quasi-1D strips are studied is that a
transfer matrix formalism can be used for which an appro-
priate perturbation theory is available.8 Recently, Avishai and
Luck9 have employed the perturbation theory of Ref. 8 in
order to investigate the localization of electrons on a ladder
network of two quantum wires with a random magnetic flux
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on each plaquette. On the other hand, we shall address the
corresponding localization problem within the tight-binding
approximation and for arbitraryM . While in the Anderson
model disorder is implemented through random site energies,
magnetic disorder is included via random phases in the hop-
ping matrix elements. These phases are usually chosen as
independent variables that have the same probability distri-
bution with some definite width,w. The purpose of this work
is to obtain a perturbative expansion for the localization
length,j, in the limit of weak magnetic disorder.

In Sec. II, we present our model and derive the weak-
disorder expansion for the positive Lyapounov exponents.
The outcome is expressed in several different forms corre-
sponding to the various energy ranges. In Sec. III, these pre-
dictions are corroborated by accurate numerical data for two
wires. Finally, in Sec. IV, we discuss the results and some
unresolved questions left for future work.

II. THE MODEL

We study the localization of an electron on quasi-1D
strips subject to a random transverse magnetic field. The
model we use consists of a tight-binding Hamiltonian with
phase disorder in the hopping matrix elements and rigid
boundary conditions. The underlying 2D square lattice has
unit lattice constant,aL51, lengthN→`, 1<x<N, and
width M , 1<y<M . Thus the lattice sites are located at in-
teger values ofx and y, n andm, respectively. In order to
isolate the behavior due to magnetic disorder, in what fol-
lows, we assume that the site energies,en,m , vanish,
en,m50. A random magnetic field,B, with zero average is
applied parallel to thez-axis,B5Bẑ. It is chosen such that
the corresponding vector potential in the Landau gauge,
A5(0,Bx,0), oneach vertical lattice link,@n,m#y , between
the sites (n,m) and (n,m11), An,m , is an independent ran-
dom variable. Moreover, allAn,m are identically distributed.
Although this is clearly not the most natural choice, it is
among the few models for which there is no correlation be-

tween consecutive transfer matrices and accordingly, the per-
turbative expansion of Ref. 8 can be used. Letun,m. be a
complete set of orthogonal states associated with the lattice
sites. Then the Hamiltonian takes the form

H5(
n,m

un11,m&^m,nu1un21,m&^m,nu

1eian,mun,m11&^m,nu1e2 ian,m21un,m21&^m,nu,

~1!

wherean,m5e/\cAn,m , and the value of the corresponding
eigenfunction at the (n,m) lattice site,cn,m , satisfies

cn11,m1cn21,m1eian,mcn,m111e2 ian,m21cn,m215Ecn,m .
~2!

Equation~2! can be written in transfer matrix form. Acting
with the 2M32M transfer matrix,Tn , on the 2M vector
representing the wave function of two consecutive columns
of the strip,cn21,m andcn,m , where 1<m<M , generates
the vector corresponding tocn,m andcn11,m . The propaga-
tion along the strip is therefore described by the product

QN5 )
n51

N

Tn ~3!

and the corresponding localization length is related to the
Lyapounov exponents,g i , of the infinite product
Q5 limN→`QN . In fact, if Reg i>Reg i11 , thenj is the in-
verse of the real part of the smallest positive Lyapounov
exponent.

In our model, we can write the random transfer matrix
Tn(a)

Tn~a!5SVn 2I

I O D , ~4!

whereI , O, andVn areM3M blocks;I is the corresponding
identity matrix,O is the null matrix, and

Vn5S E 2eian,1 0 0 •••

2e2 ian,1 E 2eian,2 0 •••

0 2e2 ian,2 E 2eian,3 •••

••• ••• ••• ••• •••

D . ~5!

We assume rigid boundary conditions on the horizontal
edges of the strip,cn,05cn,M1150. Correspondingly, the
matrix element situated in the upper right~and lower left!
corner of theVn matrix, vanishes. Moreover,Tn only de-
pends on the vector potential on thenth column of the strip.
Since thean,m are uncorrelated, this implies that theTn for
differentn are uncorrelated as well,

Tn1Tn25T̄n1T̄n2 , for n1Þn2 , ~6!

where T̄ is the average of the matrixT over the disorder.
This would not be true if, for example, the Landau gauge

A5(By,0,0) would have been used. In this gauge,Tn de-
pends on bothAn,m andAn21,m and accordingly, Eq.~6! only
holds if un12n2u.1.

In the site representation, current conservation implies
that the transfer matrix is constrained to satisfy the relation

T†JT5J, ~7!

where

J5SO 2I

I O D . ~8!
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For the case whereTn has the structure of Eq.~4!, this is
equivalent toVn being Hermitian,Vn5Vn

† , which is indeed
satisfied by theVn corresponding to our model@see Eq.~5!#.
In general, from Eq.~7! one obtains that the eigenvalues of
complex transfer matrices come in pairs, (i , j ), iÞ j , such
that, l i5(l j* )

21. Consequently, eigenvalues of complex
Tn that lie on the unit circle are at least twofold degenerate.

In the weak-disorder regime, i.e., when the width of the
distribution of the random magnetic field is small, the
Lyapounov exponents can be expanded in a systematic way
in terms of the successive moments of this distribution. This
paper presents the perturbative expansion of the Lyapounov
exponents and gives explicit expressions for the results up to
the second order, following closely the approach described in
Ref. 8.

In the case of potential disorder, the corresponding trans-
fer matrix is additively modified by the disorder, that is,
Tn5A1mBn , wherem is the width of the distribution of
site energies. For magnetic disorder however, this simplify-
ing feature is absent. Nevertheless, one can always obtain an
analogous separation using the average transfer matrix,T̄n

Tn5T̄n2~ T̄n2Tn!. ~9!

Accordingly, the zero order approximation to the Lyapounov
exponents is given by the eigenvalues ofT̄n , lk , namely,
gk5 lnlk . In turn, thelk satisfy the relation

lk1lk
215E22acosqk , ~10!

where

qk5
p

M11
sk , ~11!

and a5eia512a2/21O(a4). Moreover,sk is a permuta-
tion of the integers (1,2,. . . ,M ), such that

ul1u>ul2u> . . .>ulku> . . .>ulMu. ~12!

While for E.0, Eq. ~12! is satisfied ifsk5M112k, when
E,0, it implies thatsk5k. Since atE50, ulku51 for all
k, the different labeling between the positive and negative
energy sectors of the band does not lead to discontinuities in
ulku at the band center. The real part oflk , however,
Relk , flips its sign atE50. One can see from Eq.~10! that
the eigenvalues ofT̄ depend ona and therefore, the energy
where thekth channel opens,Ek , depends on disorder,
Ek(a). It is determined by the requirement that
lk(a)561, leading toEk(a)52acosqk62. Therefore, the
width of the band,D[2E1 , gradually shrinks as the vari-
ance of the magnetic disorder is increased. To first order in
the variance,D541(422a2)cos@p/(M11)#.

In order to obtain the higher order terms of the perturba-
tion expansion, one must write the random matrix,
(T̄n2Tn), in the basis whereT̄n is diagonal. For simplicity,
we assume that the distribution ofan,m is symmetric and as
a consequence, theO(a3) term vanishes. Since theO(a4)
term is rather involved, we only quote here the series up to
O(a2)

(
i51

p

g i5(
i51

p

lnl i2
4a2

~M11!2

3(
i51

p

(
j51

p
Ti j

@l i~1!2l i~1!21#@l j~1!2l j~1!21#
,

~13!

where

Ti j5sinS qi2 D (
k51

M

sin~kqi !sin~kqj !@sin„~k21!qj…cos„~k

2 1
2 !qi…2sin„~k11!qj…cos„~k1 1

2 !qi…#. ~14!

It turns out however that the expansion in the moments of
a is not well behaved for all energies,E. The most serious
difficulty originates with theO(a4) term that we ignored in
Eq. ~13!. In Ref. 8, it is shown that this term includes sums
of ratios of different eigenvalues ofT̄, e.g.,

Si j5
1

N (
1<a,b<N

S l i

l j
D b2a

, ~15!

wherep, i<M and 1< j<p. In the limit N→`, Si j does
not converge wheneverul i u5ul j u51 and for energies within
the band there always exists some (i , j ) pair for which that is
the case. The only exception occurs for the energy range in
which there is a single open channel,
2acos@(2p)/(M11)#12,uEu,2acos@p/(M11)#12, where
the O(a4) term is convergent despite the fact that
ulMu5ulM11u51. Another type of divergence occurs in the

O(a2) term at the energies at whichlk(1)561 where
1<k<p @see Eq.~13!#, Ẽk52cosqk62. While in the case of
potential disorder, these divergences occur whenever a new
channel opens,Ẽk5Ek , here these do not coincide,
Ek2Ẽk52(a21)cosqk5O(a2). In order to avoid both these
divergences, it is enough that a strong version of Eq.~12!,
where all the weak inequalities,>, are replaced by strong
ones,., be satisfied. In the following we shall refer to this
requirement as thenondegeneracy condition. On the other
hand, such condition excludes most of the energy band
which is the range of physical interest. Two ways have been
suggested to obtain information on the Lyapounov exponents
using thea expansion in the range where the nondegeneracy
condition fails. In Ref. 8, the energy is allowed to be com-
plex,ED5E1 i e, which for a fixed, nonvanishinge insures
that the nondegeneracy condition is satisfied everywhere ex-
cept for a finite number of isolated points. However, since it
is not clear how to extrapolate the results down to the real
energy axis, this approach, while conceptually promising, is
merely an uncontrolled approximation. On the other hand, in
previous work,11 we have shown that in the neighborhood of
the singularities of theO(a2) term, Ẽk , useful information
on the localization length can be obtained by ignoring the
ill-behavedO(a4) term. In other words, certain properties of
j can be extracted from thea expansion up to second order
and are not modified by the higher order terms. Specifically,
for small t[E2Ẽk andw

2[a2, the expansion can be writ-
ten in terms of new variables,xi5w2b i t, that balance the
largeness of the divergent terms with the smallness of disor-
der. We refer toxi as scaling variables and to the divergent
terms as resonant. From the structure of thea expansion one
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can obtain theb i exponents.
10,11Moreover, keeping only the

resonant terms, the perturbation expansion is rearranged such
that

gM5wh1f h1
~x1!1wh2f h2

~x2!1•••, ~16!

where h1,h2,•••,h i,•••, and f h i
are nondivergent

scaling functions. Sincew is small, we naturally restrict our
analysis to the first term of Eq.~16!. Moreover, we find the
asymptotic form off h1

(x1) from the requirement that for

largex1 it matches up with the resonant part of the original
perturbation expansion. The corresponding nonresonant
terms will appear in the expansion of Eq.~16! in the higher
order terms. For example, the nonresonant part from the co-
efficient of theO(w2) term in the perturbation expansion
contributes in Eq.~16! to the term withh i52.h1 .

In order to illustrate the steps that enter the derivation of
f h1

, let us show the way it is obtained in the simplest case,

namely that of a purely one-dimensional,M51, Anderson
model.10 Here

g15 lnl12m2
l1
2

2~l1
221!2

1O~m4!. ~17!

While far enough from the band edge,uE22u!m4/3, the first
term in Eq.~17! is dominant, when (E22)/m4/3 is finite, the
first and second term become comparable. In particular, if
t[E22, then

l1511
t

2
1
1

2
At~ t14!511At1O~ t !, ~18!

and neglecting theO(t) terms for smallt, Eq. ~17! becomes

g15At2
m2

8t
1•••5m2/3SAx2

1

8x
1••• D1O~mh2!,

~19!

with x5t/m4/3 . Moreover, thex-dependent part represents
the first two terms in the largex expansion off 2/3. If the
O(m4) term in Eq. ~17! is included in the derivation, one
obtains two additional terms. While the first is ofO(m2/3)
and leads to the next order term in the expansion off 2/3, the
second term isO(m4/3) contributing tof 4/3. Since theO(t)
terms that were neglected in Eq.~17! are alsoO(m4/3),

h254/3. Finally, on the left side of the band edge,t,0, and
accordingly, the first term in Eq.~19! does not contribute to
the localization length,j. The Lyapounov number however,
behaves according to the same functional form on both sides
of the singular energy,E52.

For the example of the previous paragraph, whenever
m!1 andx@1, the first few terms of the largex expansion
of f 2/3 provide an excellent approximation for the localiza-
tion length. As already mentioned, this is not the case for
M.1 and energies in the band where more than a single
channel is open. On the other hand, we argue that for the
multiple channel case one can still use the scaling function
approach to obtain the correct leading power of the disorder,
h1 , and that determining the form of the corresponding scal-
ing variable,b1 . In other words, the failure of the perturba-
tion expansion will only manifest in that the coefficients of
the largex expansion off h1

will turn out wrong. Our argu-

ment is based on analyzing the behavior ofgM in the neigh-
borhood ofE2 , namely, around where the second channel is
opening. ForE.E2 the perturbation theory is well behaved
leading to the correct largex expansion of the scaling func-
tion f h1

. However, by continuity atE5E2 , the same vari-

able and the same power ofm should describe also the be-
havior atE,E2 . Despite the fact that we only know the
large x expansion off h1

which is unlikely to converge for

uxu,1, this does determine the value ofb1 and there is no
way in which one could smoothly match two functions of
different variables atx50. In turn, the case where thekth
channel opens, 2,k<M , namely, in the neighborhood of
Ek , is qualitatively equivalent on both sides ofEk to the
situation for energies slightly belowE2 . Therefore, one ex-
pects that the corresponding values ofh1 andb1 are being
determined by the ill behaved perturbation theory in the
same way in both cases.

Quantitatively however the prediction of Eq.~16! is false,
although in some cases the corresponding error is extremely
small, e.g., for potential disorder withM53 andk52. We
also noticed that the value of the theoreticalO(a2) term
turns out to be larger than the correct value in the several
cases that were studied. One is therefore tempted to conjec-
ture that the truncateda expansion leads to a lower bound,
jT , for the true localization length. However, for potential
disorder this implies that states are extended in the corre-
sponding two-dimensional case12 which is known to be
wrong.

We now consider the scaling approach to Eq.~13! for the
M.1 case of the random field model. In the neighborhood
of the outermost singularity,E5Ẽ1 , we find thath151,
b152 and from Eqs.~13! and ~14!

f 1~x!.Ax1
1

12Ax S 12
4

~M11!2 (j51

M21
~TM j1TjM !

AS 112cos
p~ j11!

2~M11!
cos

p~ j21!

2~M11! D
2

21D . ~20!

On the other hand , forẼi with i.1, h154/3, b154/3. The real part of the corresponding scaling function is forx,0

53 9637LOCALIZATION IN QUASI-ONE-DIMENSIONAL SYSTEMS . . .



Ref 4/3~x!.
~TMi1TiM !

3~M11!2A2xAS 122cos
p~ i11!

2~M11!
cos

p~ i21!

2~M11! D
2

21

. ~21!

For x.0, however, all the resonant terms in Eq.~13! are
imaginary.

III. COMPARISON WITH NUMERICAL SIMULATIONS

In order to compare the theoretical predictions with the
results of numerical simulation, we consider a strip of width
M52 and a uniform distribution for the vector potentials,
an,m ,

P~an,m!5H 1

2w1
, for uan,mu,w1

0, for uan,mu.w1 ,
~22!

wherew15A3w. The spectrum of the ordered system con-
sists of three domains, namely,~I! uEu.3, ~II ! 1,uEu<3,
and ~III ! uEu<1. Their edges are defined by the
l2(1)561 andl1(1)561 conditions, respectively and the
localization length has different forms in each of these re-
gions. Since the behavior of the localization length is invari-
ant underE→2E, in what follows, we only consider the
positive energy range,E.0.

In the region 1,E<3, one of thel eigenvalues is real,
l1 , and the other,l2 , is imaginary. In other words, only one
transversal channel is open. In order to obtaing2 , and hence
the localization length, we use the perturbative result of Eq.
~13!. Sincel2 is imaginary, neither the term of order zero
nor the term proportional tow2 contribute tog2 . As a con-
sequence, only fourth-order terms contribute tog2 and there-
fore, the inverse localization length vanishes asw4. Indeed,
in Fig. 1 the inverse localization length atE52.5 is shown to

grow asw1
k with k54.0060.03, in agreement with our pre-

diction.
For energyE,1, both eigenvalues,l1 andl2 , are imagi-

nary, i.e., both transversal channels are open. Unfortunately,
the general weak-disorder perturbative result of Eq.~13!
does not yield directly any quantitative information about the
Lyapounov exponents in this region. While for large enough
e the perturbation theory is valid, such addition to the energy
changes the physics of the problem; the perturbation theory
prediction now refers to thej corresponding to a physically
irrelevant model with complex energy that significantly dif-
fers from the one with real energy. On the other hand, if the
minimal e required for regularizing the perturbation expan-
sion,ec , is not too large, one could hope thatj(ec) is a good
estimate ofj(0). Unfortunately, numerical simulation shows
that this is not the case. Consequently, both Lyapounov ex-
ponents vanish likew2, but one cannot obtain explicit ex-
pressions for the amplitude functions.

We now look at the behavior of the second Lyapounov
exponent,g2 , near the external band edge of the spectrum of
the unperturbed network, that is, forE→3. Forx→1`, that
is, deep outside the band, the result for the scaling law can be
written in the form

g25wS Ax1

12
1

A3
12Ax

D , ~23!

wherex5(E23)/(w2). Conversely, for x→2`, i.e., deep
in the region with a single open channel the second
Lyapounov exponent vanishes as the fourth power of the
strength of disorder. Figure 2 shows the real part of the scal-
ing function f 15g2 /w, obtained from data corresponding to
a narrow distribution of vector potentials. Forx.0, scaling
is observed to hold extremely well and so does Eq.~23! for
large enough values ofx. On the other hand, for negative
x, scaling holds only in a small interval, up tox'20.05.

For E→1, the spectrum of the network exhibits an inter-
nal band edge, which demarcates the two-channel region
from the one-channel region. The perturbative weak-disorder
expansion of Eq.~13! for the second Lyapounov exponent is
again singular. In analogy with the previous case, we are led
to hypothesize the scaling form

g25w4/3
1

12A2x
for x→2`, ~24!

wherex5(E21)/(w4/3) is the corresponding scaling vari-
able. Forx.0, however, all the resonant terms in Eq.~13!
are imaginary and one cannot obtain information about this
part of the scaling function from theO(a2) terms. Figure 3
shows the real part of the appropriate scaling function,
f 4/35(g2)/(w

4/3). While scaling holds here as well as it does
in Fig. 2, unlike in Fig. 2, the theoretical scaling function is
significantly larger than the numerically obtained one. This is
a consequence of the failure of thea expansion in this range.

FIG. 1. Numerical values of the inverse localization length,
j21, as a function of the strength of disorder,w1 , atE52.5 ~error
bars!. The straight line is the best fit of the formj215Cw1

k , where
k54.0060.03.
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IV. CONCLUSIONS

We have investigated the localization of electrons in the
framework of a tight-binding Hamiltonian on quasi-1D strips
with a random magnetic field. The magnetic vector potentials
are assumed to be independent and drawn from a common
even distribution. As in any model of 1D disordered wires,
all eigenstates are exponentially localized. We have therefore
focused our attention on the weak-disorder regime,w!1,
where the localization length,j51/RegM , is much larger
than the lattice spacing,j@aL . In this regime, a systematic
perturbative expansion for the smallest positive Lyapounov
exponent was derived. Moreover, we have checked the out-
come of our analytical approach against data obtained by
means of numerical simulations forM52.

The most important result is that magnetic disorder modi-
fies the divergence laws of the localization lengthj in the
weak-disorder regime (w→0), in the various energy do-
mains, with respect to those observed in the case of potential
disorder. If we go continuously from outside the band toward
its interior, we encounter the following sequence of expo-
nents for the divergence law of the localization length,j
}1/wh:

h50,1,4,4/3,2,4/3,2, . . . . ~25!

This sequence is more diverse than the one observed for
potential disorder,11 namely

h50,2/3,2,4/3,2,4/3,2, . . . . ~26!

We suggest that it should be interesting to use the ap-
proach described in this work to study the combined effects
of potential and magnetic disorder.13 Moreover, it would be
useful to generalize the theory of Ref. 8 for the case where
transfer matrices corresponding to neighboring strip columns
are not uncorrelated and find the influence of such correla-
tions on theh exponents.

However, the most important task remains finding the
way to properly regularize the perturbation expansion for
infinite products of transfer matrices such that it would be-
come quantitatively correct throughout the band. This prob-
lem is reminiscent of analogous difficulties arising in the
Hamiltonian and Green function perturbation theories and
one expects that some of the methods developed there could
be applied to the case of infinite products as well.
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FIG. 2. The real part of the scaling functionf 1(x) describing the
behavior of the smallest Lyapounov exponentg2 near the external
band edge,E53. The data correspond to rectangular distributions
of the random values, with various values of the width,w150.1
(n), 0.15 (3) and 0.2 (L). The continuous line represents the
scaling curve given by Eq.~23!.

FIG. 3. Same as in Fig. 2 only near the internal band edge,
E51. The continuous line represents the scaling curve given by Eq.
~24!.
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