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We study the spectral statistics in the center of the lowest Landau band of a two-dimensional
disordered system with a smooth potential and strong transverse magnetic field. Due to the finite
size of the system, the energy range in which there are extended states is finite as well. The behavior
in this range can be viewed as the analogue of the Anderson metal insulator transition for the case
of the quantum Hall system. Accordingly, we verify recent predictions regarding the exponent of
the asymptotic power law of £2(N), v, and that of the stretched exponential dominating the large s
behavior of the spacings distribution a. Both the relations « = 1 —+ and v = (1 — 1/vd), where v is
the critical exponent of the localization length and d is the dimension, are found to hold within the
accuracy of our computations. However, we find that none of several possible models of the entire
spacings distribution correctly describes our results.

I. INTRODUCTION

The microscopic description of disordered systems of-
ten relies on various types of random matrix models.
These are, in general, different from the traditional
Gaussian orthogonal, unitary, and simplectic ensembles,
(GOE), (GUE), and (GSE), which were introduced in the
context of nuclear physics in the early 1950s. The Gaus-
sian ensembles are mainly used to describe the statistical
properties of the spectra of strongly interacting, com-
plex quantum systems such as nuclei, for example. Con-
sequently, such ensembles are assumed to be invariant
under similarity transformations; therefore, their mem-
bers are basically structureless matrices with elements
h;; that are independent, Gaussian distributed random
variables. On the other hand, in disordered systems, a
central concept is the localization of eigenvectors in con-
figuration space. While such phenomenon is, in general,
absent in the Gaussian ensembles, it is characteristic of
random matrices with off-diagonal elements that decay
as a function of |¢ — j|. Such matrices have a preferred
representation and are often referred to as banded.

In the definition of the Gaussian ensembles, all the
structure of the physical system is ignored, except for
its symmetry with respect to time reversal. Accordingly,
their prediction power is based on the assumption of uni-
versality, although the extent of the corresponding uni-
versality class is only qualitatively determined. For ex-
ample, disordered systems in the metallic regime have
been shown to share most of the spectral properties of
the Gaussian ensembles for small enough energy inter-
vals. In particular, the spacings distribution P(s) is of
Wigner type and the number variance $?(V) is logarith-
mic. Disordered systems in the insulating regime, how-
ever, belong to a different universality class. Namely,
their P(s) is Poisson and $2(N) = N. In order to
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understand the spectral characteristics of the insulating
regime, one can think of the sample as being composed of
subsystems of the size of the localization length £&. While
the spectrum of each subsystem is of the metallic type,
the full spectrum consists of a random superposition of
many such spectra and therefore is entirely uncorrelated,
or in other words, Poissonian. The universal behavior in
both the metallic and the insulating regimes is restricted
to a certain, system dependent, energy range known as
the Thouless energy Er = k/7, where 7 is the time it
takes an electron to diffuse through the sample.

It was recently suggested that a third type of spectral
behavior, which is neither Wigner nor Poisson should be
expected in the neighborhood of a metal-insulator (MI)
transition region which is centered on the transition en-
ergy E. and consists of states for which £ > L, where
L is the system size.)»? Using a perturbative approach,
it was shown that for a d-dimensional system, inside an
energy interval, 6 E around E.,

P(s) x exp(—A4Bs®77) for s = o (1)

and
T2 (N) o %NV for N = oo . 2)

If v is the critical exponent of £, £ o< (E — E.)”Y, then
¥=1-— ;1&. Finally, B = 1,2, 4 according to the symmetry
with respect to time reversal.

Several numerical studies of the spectral statistics in
the neighborhood of the MI transition in the three-
dimensional (3D) Anderson model were also performed.
In particular, in Ref. 3 the family of P(s) functions that
interpolate between the Wigner and the Poisson form is
obtained for a sample of finite size. All the curves in
this family cross in one point at s ~ 2 and their max-
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ima appear to be equally high.* Moreover, P(s) = c;s
for s <« 1 and for the critical distribution (W, = 16.5),
c1 =~ 2.04. Finite size scaling theory implies that the
family of curves P(s) is parametrized by a single vari-
able, P(s,L/€), where o, = limy_,o, £1. In the ther-
modynamic limit L — oo only the Wigner, Poisson, and
critical P(s) can occur. As the size of the system grows,
the other curves gradually migrate toward the Wigner
distribution for W < W, and toward the Poisson P(s)
when W > W.. In another study, Evangelou® showed
that :

Py (s) = e168 exp(—eas™) , 3)

with 8 = 1, gives the best fit to the numerically obtained
critical P(s) for ¢; = 2.65, c; = 1.47, and o = 0.31.
Moreover, the fitted curve appears to be in good agree-
ment with the numerical one. For the value of a, the
error was estimated around +0.06. Consequently, it was
suggested that for » = 1 this confirms the prediction of
Eq. (1), @ = 0.33. Although the value of v is not yet fully
agreed upon, most studies indicate that v ~ 1.35. This,
in turn, leads to a ~ 0.25, which still agrees with the
numerical value. When, instead, a power law was fitted
to In P(s) for 2 < s < 4, the resulting o was quite low,
that is, @ ~ 0.12. The behavior of the critical X2(N)
is also shown in Ref. 5. It indeed displays a power law
behavior with  ~ 0.88. It therefore appears that there
is a better support for the relation

y=1-a, (4)

where the large s value of « is considered, than for the
relation between v and v. As was pointed out in Ref. 6,
Eq. (4) bolds quite generally. In a large enough energy
interval s, the number of levels N can be assumed to be
Gaussian distributed. If the corresponding average is N
and the variance is 2, then the probability of having no
levels in s, P(s), is

P(s) x exp(—N?/%?) = exp(—cs®>™7) , (5)

where Eq. (2) was used for £2 and s is in units of the
mean spacing.” Therefore, Eq. (4) also holds for separate
ranges of N and the corresponding ranges of s. Another
feature of £2(IV), shown in Fig. 2(b) of Ref. 5 but oth-
erwise ignored, is that a power law behavior is observed
also for very small N although with a slightly smaller
exponent, v9 ~ 0.71. The change in the exponent oc-
curs at N = Np ~ 2.5. Moreover, it is interesting to
notice that v and the value of o obtained from fitting
Eq. (3) to the data satisfy Eq. (4) well within the cor-
responding errors. As we shall see in Sec. II, such a fit
is dominated by the s < 2 range and, accordingly, the
resulting exponent « is determined by the same range of
N as v9. On the other hand, it is surprising that the
Gaussian approximation should hold here. Another fit of
the critical P(s) with Eq. (3) was carried out in Ref. 8.
Since here the analytical forms of ¢; and ¢y are obtained
from the normalization and the requirement § = 1, only
a one parameter fit was performed. The resulting expo-

nent was o = 0.20+0.03, which corresponds to a slightly
too large value of v, v = 1.7+0.2. It is not clear whether
the difference between the value of a obtained in Ref. 5
and that of Ref. 9 is due to the quality of the fit or the
different parameters of the model.

In this paper we study the level statistics in the neigh-
borhood of another MI transition, namely, that occurring
in two-dimensional disordered systems in the presence of
a strong transverse magnetic field. Such systems have
been found to display quantized Hall conductance, which
is a consequence of the divergence of £ at the center of
the disorder broadened Landau level. There is consider-
able evidence that the corresponding critical exponent is
v = % and that this value is more reliable than the one
for the Anderson transition. Therefore, the Hall system
is preferable for verifying the predictions of Egs. (1) and
(2). On the other hand, since here extended states can
only be found precisely at the center of the band, it is
not clear whether these predictions apply. However, in
a system of finite size L, the critical region is broadened
into an energy interval AFE, where £ > L. Inside this
interval, the Hall system is critical in a way similar to
that of the Anderson type system inside §E.

Numerical studies of the corresponding spectral statis-
tics of Hall systems® were done prior to the work of Refs.
1 and 2. It was found that the spacings distribution
varies from an almost GUE one in the center of the Lan-
dau band to a Poisson one at its edges. The correspond-
ing transition was also observed in the behavior of the
spectral rigidity Az(V). On the quantitative side, it was
suggested'?13 that the ensemble of Pandey and Mehta,
which interpolates between GOE and GUE, can repro-
duce the P(s) obtained close to the center of the band.
The members of this ensemble Hpy are of the form

Hpm(apm) = Hs + tapymHa, (6)

where Hg belongs to the GOE matrix, H,4 is a real anti-
symmetric random matrix, and 0 < apy < 1, such that
Hppm(1) = GUE. Presently, only the P(s) for the case of
2 X 2 matrices is known:

Ppum(s) =

S 82
IR G
12/l —aby p( SvZ)
— 2
xerf( l—Ol?ﬂs), )

8ad,v?
where v is determined by the requirement that § = 1,

\/1_—?%})‘

v

1
v = — | o +
8(PM '——l—a%M

arctan

apm
(8)

In particular, for the P(s) calculated from the first 20
levels around the center of the band (out of a total of 200
levels in each sample and with 700 samples being used),
good agreement was obtained with Ppym(apm = 0.515).
Notice, however, that for large s the error function in
Ppy; approaches unity and thus v = 0, in contradiction
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with the prediction of Refs. 1 and 2 (if applied to the
quantum Hall transition). Qualitative studies of the P(s)
for Hall systems were also reported in Refs. 10 and 11.

II. RESULTS

In order to obtain the spectrum of an electron in a 2D
random potential and a strong magnetic field, B = Bz,
we numerically diagonalize the Hamiltonian matrix Hpg:
in a lowest Landau level basis ®4(x,y). In the Landau

gauge,
d  y\? &

H=(-i——5) — 5= +V(z,y), 9

( i 1123) dy2+ (z,y) (9)

where lg = \/fic/eB is the magnetic length and

V(z,y) = Z'Unm exp ((z - xn)z +(y— ym)z) . (10)

202

The v,,,, coefficients are uncorrelated random numbers
chosen from a uniform distribution with zero mean and
variance w?/12 and (zn,ym) = [~L/2 + a/2 + (n —
1)a,—L/2 + a/2 + (m — 1)a] where a is the lattice con-
stant. Moreover, the system is restricted to a square of
size L such that N; = L/a is an integer and, accordingly,
1 < n,m < N;. The corresponding lowest Landau level
(LLL) states are K-fold degenerate in the absence of dis-
order K = L2?/(2nl%) and are chosen to satisfy periodic
boundary conditions!4

®u(z,y) = (Lip)V2x~ M/ Y

j=—o0

x eli@mk/L+5L/Uy)e) o= [(y=3L)/tp~2mkin /LI*/2 |
(11)

where k is integer and —K/2 < k < K/2. Finally, shift-
ing the origin of the energy such that the LLL is at E = 0,
one obtains

1 nm
Hypr = —————— v e_sh+jx,k'+j'x ,
Ly/w(l% + 202) nz;n nm sz:,
(12)
where

nm

1 , 1 @+ a2\
kR = g +i(gk — qk)Zn 1123 T 202 (ym TIB

(13)

and ¢ = zf"k Since the terms in the second sum of
Eq. (12) decay rapidly with j and j’, it is sufficient to
truncate the sum such that —1 < j, 5 < 1. The parame-
ters determining the strength and shape of the disorder
are w, a, and 0. We first require that the overlap be-
tween two adjacent impurities be exp(—3). Specifically,
consider the overlap integral
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R(a,0) = /dmdy exp (—

X exp (—M) . (14)

22 + y2
202

202

Then
R(a,0)/R(0,0) = exp [~ ) =exp (-L) , (1)
b b - p 402 - p 2 b
which leads to
o= —. (16)

Moreover, we assume a = lg such that there is one impu-
rity within an area of I4. Let us now fix the strength of
the disorder, w. Notice that after projecting the Hamil-
tonian on the lowest Landau level, the value of w only
determines the energy scale of the problem. For conve-
nience, we let the width of the density of states p» be
unity

,w2

2
=2 = —— =
Ha(e o) 24ma2(1% + a?)

1. (17)

Finally, the value of B in our computations corresponds
to K = 1019 and we have used 160 different samples. In
order to avoid the tails of the Landau band, we restrict
ourselves to the energy range |E| < E,, = 2.5, which in
turn we divide into Ng = 5 equal intervals. In the third
interval, |E| < 0.5, both the density of states and the lo-
calization length are almost constant. Therefore, in what
follows, we shall regard the properties of the spectrum in
this interval as critical. In order to compute the spac-
ings distribution, we have first unfolded the spectrum
normalizing each individual spacing to the average of the
Np = 5 adjacent ones. In Fig. 1 we show the resulting
P(s) for the case where the Ng = 119 spacings closest to
E = 0 were used. Three different theoretical curves are
fitted to the numerical experiment: (a) the distribution
of Eq. (3) with 8 = 2, Py(s), (b) the Pandey-Mehta
distribution of Egs. (7) and (8), Ppm(s), and (c) the
Robnik distribution,'® Pg(s).

The Robnik distribution interpolates between the Pois-
son P(s) and the GUE one using a 2 X 2 random ma-
trix, Hr(agr). For agr = 0, the matrix is diagonal and
P(s) = e~*, while for ag — oo it approaches the GUE.
In practice, when ap = 1, the corresponding spacings
distribution is very close to that of GUE. Specifically,

Pg(s) = Py (s) + P_(s), (18)
where
A ps/a F[(S/a)®—27]'/2
Pyi(s) = ige_/ T /4N
4a2 22 [, ((S/a)? — z2]1/2

x [1 +erf (51/([(5/@)2 — 2 g A)] dz, (19)

A = ap/a, and a is determined by the 5 = 1 constraint.
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Fitting Py (s) to the numerically obtained P(s) with
the assumption that the number of spacings in each of
the 38 bins is a Gaussian distributed random variable
leads to @ = 0.26 & 0.02 and x? = 85.0 [see Fig. 1(a)].
For the case of a least squares fit with 37 degrees of free-
dom, this corresponds to a negligible confidence limit,
C.L.= 0.7 x1073%. One might wonder whether the large
value of x2? obtained is a consequence of ignoring addi-
tional sources of error besides those of statistical origin.
The most likely one is the unfolding procedure. In or-
der to verify this possibility, we modify the extent of
the smoothing interval, Ng, to 7. Comparing the re-
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FIG. 1. The spacings distribution for the Np = 119 levels
closest to the center of the Landau band (e). The line is
the corresponding best fit in the entire 0 < s < 4 range of
(a) Pv(s), (b) the Pandey-Mehta distribution, and (c) the
Robnik distribution.
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sulting P(s), P;(s), against the original one Ps(s) and
using twice the statistical variance, we obtain x2? = 29.1
for which C.L.~ 62%. Therefore, despite significantly
larger statistics than usually encountered in quantum
chaos, where, in general, only a single sample is stud-
ied, here as well, the accuracy of the unfolding procedure
appears to be practically irrelevant. One concludes that
Py (s) is inappropriate for the description of our numer-
ical results. Nevertheless, it is interesting to notice that
most of the contribution to the x? comes from the small
s range. In particular, we find that the partial x? from
the first 10 bins, s < 1, is 48.2 while that from the last
18 bins, s > 2, is only 18.0. This fact suggests that the
large s tail of Py (s) could be in agreement with P(s)
despite the fact that the two distributions are different
from each other. We therefore separately fit the s > 2
tail of Py (s) and this leads to o = 0.30+0.02, x2 = 13.9,
and C.L.~ 74%. This result is statistically reliable and,
at the same time, is in contradiction with the prediction
of Ref. 2 for v = 7/3, which is a = 0.214. Alternatively,
using this result to determine the value of v, one obtains
v=17+0.1.

While Py (s) does incorporate the expected behavior
of the true P(s) at both small and large s, it is largely
an interpolation formula for s = O(1). In other words,
there is no physical argument to support such behavior
as that of Py(s) for intermediate values of s. On the
other hand, the Pandey-Mehta distribution interpolates
between the GOE spacing distribution and the GUE one
along the most natural path in the space of 2 x 2 random
matrices. At first, it would appear that there should be
no GOE component in the description of a Hall system.
However, such a component is needed in order to incor-
porate those states that are extended, £ > L, but are rel-
atively insensitive to changes of the flux and accordingly,
behave almost as if time-reversal invariant. We therefore
fit Pppm(s) to the numerical P(s) [see Fig. 1(b)] and ob-
tain apy = 0.18 £ 0.01 and x? = 94.4. In other words,
the Pandey-Mehta distribution is even less appropriate
than Py (s) to describe the level spacings at the center of
the Landau band. Moreover, we find that the contribu-
tion to the large value of x? comes equally from the entire
range of s. Specifically, the partial x2 for small s, s < 1
(the first 10 bins), is 23.3, while that from large s, s > 2
(last 18 bins), is 54.0. Accordingly, when the fit is re-
stricted to the large s tail, s > 2, we obtain apm = 0 and
x2 = 37.2. Not only does this correspond to a confidence
limit of only 0.32%, but rather than a true minimum of
x? it is just the edge of the allowed interval of the fitting
parameter, apy. One is led to conclude that the tail of
the distribution is not of Gaussian type, that is, a # 1.

If instead of computing the spacing distribution in the
central (third) energy interval, we use the fifth edge in-
terval, a P(s) that is quite close to a Poisson distribu-
tion is obtained (see Fig. 2). This is to be expected
considering that the corresponding eingenstates are lo-
calized, £ < L. On the other hand, from the knowledge
of the finite size localization length £; alone, there is no
way one can determine the boundaries of the critical en-
ergy range. It is therefore conceivable that even in the
central interval some fraction of the states are localized.
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P(s)

FIG. 2. The spacings distribution for the Np = 119 levels
closest to E = 2 which, in turn, is close to the edge of the
band (e). The best fitting Robnik distribution (solid) and the
Poisson distribution (dashed) are also shown.

Since the Pandey-Mehta distribution ignores the possi-
bility of a Poisson component due to localized states, it
is worthwhile to try to identify the presence of such a
component by fitting a Poisson - GUE interpolating dis-
tribution, e.g., Pr(s) [see Fig. 1(c)]. We obtain that
ap = 0.66 & 0.02 and x? = 604.4, which corresponds
to a negligible confidence limit. Although here, like for
Py (2), most of the contribution to x2 comes from the
small s range [x%(s < 1) = 365.2, x%(s > 2) = 106.8],
the fit of the s > 2 tail alone leads to ar = 0.75 &+ 0.02,
x% = 92.8, and C.L.< 1073%. This clearly excludes the
Robnik distribution as a candidate for the description of
our results. Moreover, it indicates that in order to de-
rive an appropriate distribution, one has to use the fact
that some of the eigenvectors are localized. It is likely
that such distribution is similar to the one encountered
in a 1D disordered system when { ~ L (see Refs. 16-20).
The failure of Pg(s) to incorporate localization is further
stressed by fitting it to the edge P(s) of Fig. 2. The best
fit is obtained for ap = 0.75 x 10~2 with x2 = 85.9 and
C.L.< 1073%.

As already mentioned, we do not have a clear estimate
of the critical energy range. It is therefore instructive
to verify the behavior of the tail of P(s) as we shrink
the energy interval around the center of the band. We
therefore progressively reduce the number of energy levels
around E = 0, Np, and fit Py (s) for s > 2. The result-
ing values of a are given in Table I. One would expect
that as we lower N and, correspondingly, the statistics
become worse, the value of x? would go down and the
error would increase. We see, however, that while the
error does indeed increase, the x? goes first way up be-
fore returning to about the same value at Ng = 9 as at
Np = 119. Therefore, although in Table I the value of o
is varying beyond what our error estimates would allow,
it is reasonable to expect that the values at Ng = 9 and
Np = 119 are the most reliable. Using the former to-
gether with the prediction of Ref. 2 to obtain the critical
exponent leads to v = 1.7+0.4, which still disagrees with
the corresponding theoretical value v = 7/3. However,
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TABLE 1. The values of o and the corresponding x? for
gradually decreasing energy intervals around the center of the
Landau band in which the P(s) was computed.

NB a x?
119 0.30 £ 0.02 13.9
59 0.40 = 0.03 19.5
29 0.43 + 0.05 21.2
19 0.37 £ 0.06 17.3
9 0.30 £ 0.08 13.3

we are inclined to view this disagreement as being a con-
sequence of our inaccurate numerical procedure rather
than indicating the failure of the theory of Ref. 2 for the
quantum Hall system.

We now turn to the study of £2(N). In Fig. 3 we
show the result obtained for the third, central interval.
Ignoring the range 0.8 < N < 2.3 in which some oscilla-
tions occur, one can distinguish three different power law
ranges: (i) 0.07 < N < 0.8, (ii) 2.3 < N < 60, and (iii)
60 < N < 350. The best fitting power law curves give
Yo = 0.74 £ 0.01, v = 0.77 + 0.02, and ~; = 1.38 + 0.02,
respectively. Moreover, the corresponding natural loga-
rithms of the coefficients are Cy = —0.69 £ 0.02, C =
—1.05 £+ 0.04, and C; = —3.5 £ 0.1, respectively. As in
Ref. 5, 4 and the value of o obtained from the fit of
the entire Py satisfy Eq. (4). This relation also holds
for v and the a of the s > 2 tail of Py but only if the
large error bar of the Ng = 9 case is used. On the other
hand, the relation between « and v is in good agreement
with the prediction of Ref. 1. Recently?! it was argued
that the variance number contains also a linear term in
N. We have attempted a corresponding parametriza-
tion but in this range of N the contribution of the linear
term seems insignificant. The value of y;, however, bears
practically no relation to any previous result or theoret-
ical prediction. While presently the origin of this result
is not clear, we have observed similar behavior in other
models of the Hall system as well. Finally, in Fig. 4 we

100

10
2(® |

FIG. 3. The number variance £?(N) for the central energy
interval |E| < 0.5 (+). The solid lines are the corresponding
power law fits in the three different N ranges (see text).

10 100
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FIG. 4. Same as in Fig. 3 for the energy interval

1.5 < E < 2.5. Here, however, the finite size corrected aver-
age number of levels N, is used as variable, instead of N.

show the value of ©2(N) obtained from the last, band
edge energy interval. Here, one has to modify the N
such as to account for the finite size of the sample, that
is, N =+ N; = N(1- N/K). Assuming as before a power
law dependence for $2(N;), the best fit is obtained for a
power of v = 0.97+0.005 and a coefficient whose natural
logarithm is C' = 0.007 £0.02. This is extremely close to
the prediction of the Poisson ensemble but not identical,
indicating that even in the tails of the Landau band there
are a few states with relatively large €.

The finite size correction used for the data of Fig. 4
assumes that the levels are uncorrelated. In fact, the
effect of this correction is not too large. Specifically, the
best power law fit to £2(V) is vy = 0.953 + 0.005 and
C = 0.03 £ 0.02. This, however, is because in Fig. 4,
N only goes up to about 60. On the other hand, the
analogous finite size correction might significantly modify
Fig. 3 where N reaches almost 350. In particular, it could
modify the value of ;. Since it is known that levels in
this range are strongly correlated, it is not clear what
the proper finite size correction should be. It would be
interesting nevertheless to study the dependence of y; on
the system size.
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III. CONCLUSIONS

In summary, we have shown that the predictions of
Refs. 1 and 2 hold for the spectral statistics at the cen-
ter of the lowest Landau band to the accuracy of our
numerics. Moreover, it was pointed out that aside from
the small and large s behavior of P(s), there is no real
understanding of the spacings distribution interpolating
between the metallic and the insulating regimes. In fact,
the three most natural theoretical distributions, Py (s),
Pppr(s), and Pg(s), were shown to disagree with the nu-
merical P(s). It should be instructive to further compare
with the distribution derived by Lenz and Haake?? from
the way in which the Dyson gas relaxes to equilibrium
from the configuration corresponding to a Poisson en-
semble. However, in all these distributions one makes
no explicit use of the fact that the eigenvectors of the
system are localized. The simplest way to incorporate
the presence of localization is in the spirit of renormal-
ization theory. Namely, one assumes that the system is
composed of independent blocks of size ¢ for which the
corresponding spectrum has a Wigner P(s). The spec-
trum of the entire system is then a random superposition
of the block spectra and the P(s) of such superpositions
can be derived.?? Unfortunately, it turns out that the
resulting P(s) has a nonvanishing value at s = 0 in con-
tradiction with the observed form. Recently, an ensemble
that has a preferred basis and thus, is reminiscent of the
situation occurring in the case of localization, has been
shown to be analytically tractable.2* However, the P(s)
for this ensemble is not yet known.

Finally, it seems that for very large N, £2(N) grows
with an unexpected power that is significantly larger than
unity. Whether this is a generic property or is related to
finite size effects remains to be further investigated.
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