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PACS. 71.10 - General theories and computational techniques. 
PACS. 72.15R - Quantum localization. 

Abstract. - A perturbative study of the localization length in the Anderson model on strips is 
presented. It is shown that in the neighbourhood of those energies corresponding to the opening 
of a new channel, a certain rearrangement of the perturbation expansion significantly improves 
the accuracy of the prediction. Moreover, the localization length scales in a way which is 
reminiscent of the strictly 1D behaviour, but is nevertheless different. 

The simplest model describing the behaviour of an electron on a disordered lattice is the 
one due to Anderson: 

where (ij) denotes summation over nearest-neighbouring sites only and Vi, the site energies, 
are uncorrelated random numbers sharing the same distribution of variance p. The 
eigenstates of this model were rigorously shown to be exponentially localized in 1D and 
quasi-1D systems (l) [l, 21. Moreover, the finite-size scaling theory of localization [3] predicts 
that all states are localized in 2D and that a metal-insulator transition takes place in 3D for 
large enough disorder, p. On the other hand, it appears that a complete picture on the 
variation of the localization length with energy is hard to obtain. Aside from the numerical 
approach, there are very few other methods available [4]. One of them is the perturbation 
theory (PT) developed in ref. [5] and [6]. Unfortunately, this method only works as long as no 
more than one channel is open and therefore for strips of width M >> 1 it fails for almost the 
entire energy band, ( E  I S 2 + 2 cos ( x / ( M  + 1)) (2). The purpose of this letter is to show that 

(l) While a 1D lattice is an infinitely long row of evenly spaced atoms, a quasi-1D lattice has several 

(2) See however the results obtained at  M = 2 in a tight-binding-like model with random fluxes by 
such rows. A quasi-1D system which is embedded in 2D is referred to as a strip. 

Avishai et al. 171. 
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despite the failure of PT, it nevertheless provides a good qualitative description of the 
localization length, E, in the vicinity of the opening of a new channel. This agreement suggests 
that an appropriate modification of the formalism could give quantitative predictions for 5. 

We start with a brief summary of the results in ref. [6]. The PT is constructed in terms of 
2M X 2M transfer matrices, M a ,  associated with the a-th column of the strip, a = 1, ..., N 
and N + CQ . The localization length is related to the Lyapunov exponents, yi , of the infinite 
product 

N 

a = l  
P =  n M a .  

In fact, if Reyi 3 is the inverse of the real part of the smallest positive 
Lyapunov exponent. On the other hand, 2 y i  is given by the rate of growth of the 
p-dimensional volume enclosed by p different 2M-vectors, Wi, N ,  such that Wi, N = PWi, 0 .  In 
the limit of weak disorder, one assumes that 

then 
P 

i = l  

M a = A + F * B a ,  ( 3 )  

where A is the transfer matrix of the periodic lattice and B, is a random matrix with elements 
that have vanishing average, B, = 0. Then 

where Ai  are the eigenvalues of the unperturbed transfer matrix, A, ordered such that 

[ A I /  3 ( 2 2 1  3 a . .  3 l h k l  3 a . .  3 l h 2 M I  , ( 5 )  

and Bij are the matrix elements of B in the diagonal representation of A. If in eq. (5) the 3 
signs are replaced by > , we refer to it as the non-degeneracy condition. The O(p4) terms in 
eq. (4) (not shown) include certain double sums which run along the strip (see eq. (23) in 
ref. [6]) and converge only if the non-degeneracy condition is satisfied. 

Equation (4) holds for any product of random matrices of the form given in eq. (3). On the 
other hand, in the particular case corresponding to the Anderson model, eq. (l), the two 
matrices, A and B, take on a block form with blocks of size M X M 

where I and 0 are the corresponding identity and null matrix, respectively, ( T H ) ~ ~  = 6i , j  + + 
+ ai, - and ( VJij = - Vi, a ai, j .  Notice that the indices of the Anderson model have been now 
redefined: while each index of eq. (1) was running over all the sites, here the first index of Vi, a 

runs across the strip, 1 C i S M ,  while the second one counts the sites along the strip, 
1 S a S N .  Moreover, we have assumed rigid boundary conditions on the edges of the strip. 

The zeroth-order approximation to the Lyapunov exponents is given by the eigenvalues of 
the matrix A .  These satisfy the relation 
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Fig. 1. - The inverse localization length; comparison of numerical results (e), perturbation theory 
(dashed line) and scaling (continuous line) at M = 3 and 2 = 2. The Vi, o( are chosen from a distribution 
which is uniform between - 1 and 1. Moreover, p = 0.2 and we used N = 2-10' in the numerics. The 
scaling regime ends at E = 1.4. 

where 

and the j ' s  are ordered such that condition (5) is satisfied. In order to obtain the higher-order 
terms of the perturbation expansion, one has to substitute eq. (6) into eq. (4). Then 

: log Aa - * AA"-'- 
i = l  ( M + l ) 2  i = l j = l  

Clearly, inside the band, IEI 6 2 + 2 cos ( x / ( M  + l)), the non-degeneracy condition is not 
satisfied and this leads to the failure of PT. The degeneracy in absolute value of the 
unperturbed eigenvalues, Ai, can be lifted by adding a small imaginary part to the energy, 
E E + it. While for large enough E the PT is recovered, its prediction now refers to the 
y M  3 €- I  of an Anderson model with complex energy rather than that of the actual, 
physically relevant, model. On the other hand, if the minimal E required for agreement, E , ,  is 
not too large, one could hope that y M ( c , )  is a good estimate of y M ( 0 ) .  Such hope, which was 
also expressed in ref. [6], is unfortunately Bot supported by numerical results. Although 
throughout most of the band, to lowest order in p, y M  = K M p 2 ,  we find large disagreement in 
the value of KM between the prediction of PT and numerics (see fig. 1) (% Moreover, there 
are energies in the band, Ez = 2 + 2 cos (Zx/(M + l)), I = 1, ..., M ,  where the PT prediction 
for K M  is diverging. These correspond to the opening of a new channel, hM-l+] = 1 for E > 0. 
In what follows, we refer to the terms entering KM that diverge at El as resonant. It is 
natural to  expect that, in the neighbourhood of El ,  PT fails in an even more extreme way. 

('1 We use K M  to denote the M-dependent coefficient of p 2  in the Taylor expansion of y M  around 
p = 0. Notice that, when M + m , K M  ( E )  + W E ) .  
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Indeed, due to the largeness of the resonant terms, the perturbation expansion needs to be 
rearranged such as to give these terms a certain priority over the non-resonant ones [5]. In 
other words, one is trying to balance the largeness of the resonant terms with the smallness 
of disorder. The expected rearrangement of PT is of the form 

yhf = pa'& (21) + p Y a z  ($2) + * * .  9 (10) 

whereu l<u2<  ... < a i <  ..., xi=tpPiandt~E-El<<1.Thisapproachwasusedinref.[5] 
for M = 1 in the neighbourhood of the band edge, E = 2. It was shown there that a l  = 2/3, 
x1 = tp -4/3 and, asymptotically, 

- 
+ ... . v2 5 F 2  L,(x)=+ - - -- 

8x 128 X5l2 

We refer to  f,,(x> as the scaling function. It turns out that one can further relax the 
non-degeneracy condition such that, for a single open channel, PT converges as well. 
Accordingly, for the M = 1 case PT is convergent for all E and in this sense it is quite special. 
This enabled Derrida and Gardner [5] to include in eq. (11) the resonant O(p4) terms of PT. 
Notice, however, that for x < 0 the first and third terms in eq. (11) are purely imaginary and 
therefore do not contribute to 5. 

Let us now apply the scaling approach to the M > 1 case. Here, when I E I < E 2 ,  the O( p4) 
terms are ill-behaved for real energies, E = 0. It is however natural to  expect that the O(p4) 
terms do not affect the 0 ( p 2 )  behaviour. Therefore, in the following derivation and the 
corresponding numerical computation, we set E = 0 and only consider the PT up to O(p2) .  
Moreover, since the energies under consideration are in the vicinity of El ,  the non-resonant 
terms of eq. (9) can be neglected. In order to bring the remaining terms to the form of 
eq. (lo), one needs to find the scaling variable, xl, for which u1 is minimal. In practice, we 
assume that eq. (9) includes at least two terms of the asymptotic expansion offal and, 
accordingly, compare all pairs of terms. Given the power o f t  in a term, v ,  and that of p, t 
(T  = 0 or 2), one has to  find a and 7,  such that: 1) a + 7 = t, 2) the value of a is the same for 
both terms, 3) the ratio between the $s of the two terms is the same as that between the v's. 
The pair of terms with the smallest value for u determines a ] ,  u1 = a. Finally, p1 = z - 
- a l .  

Using the prescription described in the previous paragraph, we find that, in the 
neighbourhood of the band edge, E = El, u1  and p1 are the same as for M = 1 and 

+ ... . 3v2 
16(M + 1 ) z  L,(d = fi - 

Asymptotically, the agreement between this scaling function and the corresponding 
numerical results is better than the precision of the latter. On the other hand, for El with 
E > 1, u = 4/3, while the form of the scaling variable, 3c1, is once again unchanged. The real 
part of the corresponding scaling function is for, x1 < 0, 

Ref,,(x) = 
- 

+ ... . (13) 
v2 

c- . ,  
X(Z + 1) 

2(M+1)  
1 - sin x(l+ 1) 4 2(M+1) sin 2(M+1) 'l-') ( 8(M+1) sin 
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Fig. 2. - Scaling of y M  . Parameters are the same as in fig. 1, except for p which is 0.1 ( A  ),0.15 ( x ) and 
0.2 (0). The continuous line represents the scaling curve given by eq. (13). The scaling regime ends at 
x = - 5 for p = 0.2 and at x = - 8 for p = 0.15. On the x > 0 side, scaling holds only up to 
x 0.4. 

t 

For xl > 0, however, all the resonant terms in eq. (9) are imaginary. We find that eq. (13) 
represents a significantly better approximation to E than PT alone (see fig. 1). Moreover, the 
numerical results of fig.2 support the scaling indicated by eq. (13). Nevertheless, a certain 
difference between the scaling prediction and numerics persists arbitrarily far into the 
asymptotic regime and is a remaining consequence of the failure of PT. In the case of fig. 2 
for example, for p = 0.1 and x E ( - 10, -5), this difference, A, satisfies log A = a log( - x) + 
+ b with a = - 0.5 2 0.2 and b = - 6.5 2 0.4. This indicates that the discrepancy is due to a 
small error in the coefficient of ( - x)-'I2 in eq. (13). Qualitatively, the behaviour a t  other Ms 
and l's such that 1 > 1 was found to be similar. Although the agreement between theory and 
numerics becomes gradually worse as either M or I increase, it is always much better than 
the prediction of PT. 

Clearly, the range of validity of eq. (13) is limited (see fig. 2). At small enough lz I, it fails 
since it is a first term in an asymptotic expansion. On the other hand, at 1x1 > Ix,(p) I, the 
scaling argument fails simply because t is no longer small. In the large-1x1 extreme, the 
range of validity is extended by the fact that eq. (13) is at  the same time of the PT form, y u  = 
= p 2 g ( E )  + . . . . In order to properly illustrate the breakdown of scaling at large I x I , one needs 
to enlarge the x E ( - 9, -4) range in fig. 2. Although this is not shown here, notice that, 
while the ,U = 0.1 symbols stay roughly parallel to the theoretical line for x < - 3, the p = 0.2 
symbols at x = - 5 begin to slightly deviate upwards from the numerical scaling curve. This 
can be interpreted as the saturation which is expected when approaching E 3 ,  which for 
,U = 0.2 is at x = - 12.09. Since for p = 0.15 E3 corresponds to x = - 17.74, it is only at  large 
values of x, x = - 8, that the corresponding saturation occurs. Finally, for p = 0.1, $(Es) = 
= - 30.47 and the saturation occurs outside the range of x depicted in fig. 2. We find that 
x,(p) a p -4/3 and, therefore, scaling breaks at fixed t, t,. Furthermore, our numerics seems 
to indicate that t, grows with M. Since, on the other hand, AEl = El+, - El decreases with M ,  
we conjecture that, for wide enough strips, scaling holds throughout the band. 

One can further use the approach described above to study the behaviour of the higher 
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Lyapunov exponents as well. We find that in the vicinity of El all y j  with M - 1 + 1 S j 6 M 
scale with the same scaling variable. While for M - 1 + 1 j 6 M, a1 = 4/3, when j = 
= M - 1 + 1, al = 2/3. Appropriate scaling functions have also been obtained. The rest of 
the positive Lyapunov exponents are non-vanishing in the p 4 0 limit and, accordingly, do 
not scale. 

In summary, we found that, to lowest order in p, the inverse localization length, y M ,  
behaves as yM CC ,U", where as one lowers the energy from E > El towards the centre of the 
band, a = 0 ,2 /3 ,2 ,4 /3 ,2 ,4 /3 ,  ... . This represents a generalization of the M = 1 behaviour 
where the above-mentioned sequence stops after the first three terms, a = 0 ,2 /3 ,2 .  
It should be stressed that the behaviour of yM for E > 0 is quite different. In particular, for 
E > cc(E) ,  we have found agreement between PT and the numerical calculation which was 
done at this particular value of E. A major task, which will make the PT significantly more 
useful, remains to obtain an upper bound on E, .  This, in turn, will allow to estimate the size of 
the error bar on the prediction of PT. In an earlier work along similar lines, Dorokhov [8] has 
reached, to lowest order in ,U and M -', a semi-empirical formula, E = M1/2. Here, however, I ,  
that can be loosely interpreted as a mean free path, has its own M ,  and E,  dependence 
including the large decrease in E at El. Moreover, in ref. [8] the difficulties arising from the 
O(p4) terms were ignored. 

* * *  
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