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On the universality class dependence of period doubling indices 
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The dependence on v of the period doubling scaling indices for unimodal maps with a critical point of the form 1x1 “is numer- 

ically investigated. A new symbolic dynamics based computation technique working in configuration space is introduced. The 

existence of an upper bound for G(u+oo) is numerically verified. An accurate estimate of 29.8 is given for this limit. Moreover, 

the global functional form of 6( u) is shown to have an interesting symmetry. 

Period doubling universality is a well established 

theory [ 1,2]. It is well known, for instance, that the 

scaling behavior near the onset of chaos for one- 

parameter families of unimodal maps of the interval, 

.f,( 1x1”) with a critical point of order 1x1 ” only de- 

pends on v [ 3,4]. In fact, v labels the universality 

classes of unimodal maps which share the same scal- 

ing behavior. In other words, the indices describing 

such scaling are class functionals. Since the classes 

are only parametrized by v, these indices are uni- 

versal functions of v. In particular, the accumulation 

rate 6 of the period doubling bifurcation sequence in 

parameter space and the scaling factor (Y for the 

highly bifurcated orbits around the critical point are 

both universal functions of v [ 5 1. In the range VE ( 1, 

GO), there are two singular limits in the scaling be- 

havior. For v+ 1 the scaling factor (Y diverges. This 

limit can be analyzed rigorously in the framework of 

renormalization group theory as a perturbation to 

the tent map. Such analysis leads to the result 

6( v-+ 1) =2. Although the validity of the result is out 

of question, an accurate numerical check in the con- 

figuration space of the cascade is difficult to achieve 

due to the divergence of a(v). At the opposite ex- 

treme, the other singular limit v-+03 is equally dif- 

ficult to study numerically. In this case, renormali- 

zation group schemes [ 6-9 ] give an upper bound of 
about 30 for 6(v). 

The aim of this paper is to investigate numerically 
the v-+co limit for 6(v), not in a renormalization 
group framework, but rather by using its real space 
definition as the asymptotic rate of convergence for 
superstable parameter values. For this purpose, we 

introduce a map of infinite order in the sense that all 
its derivatives vanish at the critical point. In order 
to investigate the period doubling cascades in this 
extremely difficult case, we developed a powerful 
numerical technique which we shall describe below. 
To test the reliability of the method, we compute the 
limit v+ 1+ up to an accuracy never reached nu- 
merically before. Finally, we speculate about the 
global form of the function 6(v) which shows a nice 
symmetry. 

The ratio 

6= lim 6, 

with 

&=(~,-~,-,)l(n,+, -2,) 

as a function of the order of the maximum of fA is 
computed numerically by finding the superstable 
points ;i,, which satisfy f 3: (xmax) =x,,,,,. Similarly, 
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tent map (AC,,, = 
A( 1 - 12x,, - 1 I) ) in the neighborhood of the critical 

point. For such maps, all 1, collapse to a single value 

A0 = 4 (i.e. the 2” cycles appear all at once) [ lo] and 

the onset of chaos attractor shrinks to a single point 

in phase space. Nevertheless, it can be proven that 

6( v-+ 1)+2 [4]. However, direct numerical com- 

putations in this limit are extremely difficult (the best 

result in the literature is [ 111 d( 1.1) = 2.8 1). The 

origin of the difficulty is, of course, the divergence 

of o(v). (b) v+co. In this limit, a(v) tends to un- 

ity. Consequently, the distance between branches in 

the neighborhood of the maximum scale slower than 

geometrically. On the other hand, although a trun- 
cated RG analysis shows a divergent 6(v) [ 121, more 

careful treatments [ 6-91 lead to an upper bound for 

6(m). Although these arguments yield good esti- 
mates for this limit, a direct numerical calculation is 

again very difficult. 

First of all, 6(co) is usually defined [ 81 as 
lim,,, lim,,, 6,(v). This double limit is however 

singular. In fact, the sequence of maps fy= 1 - k( x] ” 

converges to a discontinuous function f,, which takes 

on the value of --co for x outside of [ - 1, 1 ] and 1 

inside. It is clearly impossible to calculate the scaling 

index for the f,. However, since the value of 6 is only 

sensitive to the shape off near the maximum, we can 
regularize such a limit by considering the alternative 
family 

g,(x)=l-k[Ix]“+exp(-1/x2)]. 

We will show that the inverted limits 
lim,,, lim,,, 6, (v) is consistent with the expected 

values of 6(co) [ 8,9]. In fact, we consider the in- 
verse Gaussian map 

X n+l =il(l-em{- [,u/(X~-~)I~)), ifx+t , 
=A, ifx=f , 

(1) 

as the V=GO member of a family like g,. This map 
has all derivatives continuously vanish at the max- 
imum and is unimodal in its neighborhood. 

The second difficulty arises from the fact that the 
derivatives of F(A) =f i" (x,,,) -x,,,, whose zeroes 
define the A,,, increase with n as (-S/a)“. This 
makes standard numerical methods very inefficient. 
Instead, we devised an algorithm which relies on 
some results from the symbolic dynamics theory. 

It is well known that as A is increased the stable 
periodic orbits of unimodal maps appear in a uni- 
versal order known as MSS [ 3 1. The proof of this 
result is based on the symbolic description of trajec- 
tories. This consists of associating to each orbit of 
period n a sequence of IZ symbols R (right ), L (left ) 
or C (center), according to the position relative to 
the critical point of each orbit element. It can be 

shown that the symbolic sequences of a given peri- 
odic orbit and the one of a transient, which starts 

from x0 = x,,, are the same. Thus, by convention, 
the orbits always start with x0=x,,,, so as to avoid 
cyclic permutations of the sequences. Therefore, su- 
perstable orbits always end with C. The symbolic de- 
scription distinguishes between orbits with i<A, and 
A>,?, where 2, indicates superstability. 

Not all sequences of symbols correspond to al- 
lowed stable orbits (e.g. no sequences may begin with 
LR), the MSS work [ 31 leads to an algorithm for the 
construction of the allowed sequences corresponding 

to superstable orbits and also specifies the order of 
these orbits in parameter space. A less publicized re- 
sult [ 131 is that the MSS order can be translated into 
a binary tree by means of appropriate labeling. Each 
node of the tree is associated with a symbolic se- 
quence. Both allowed and forbidden sequences are 
present but the former are precisely in the MSS or- 
der. Thus, the tree translates the MSS order into the 
order of real numbers. 

The labeling of the tree proceeds by associating an 
R or an L to each link, such that each horizontal level 
reads LRRLLRRL... (see fig. 1). Thus, each node 
represents a symbolic sequence which is obtained by 
reading the symbols on the corresponding chain of 
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Fig. 1. The binary tree with both the Gray and the binary labeling. 

links from the top to the node. Note that the L sym- 
bol in this labeling indicates continue in the same di- 
rection while the R symbol means reverse direction, 
This labeling, known as Gray encoding, is an alter- 
native to the ordinary binary labeling which indi- 

cates absolute left or right movements on the tree (!J 
or r. in fig. 1) [ 141. The labeling schemes can be in- 

terpreted in terms of the variation, E,, of the orbit, 
X x,+,+t,+,=f(x,)+S’(x,)~,. Namely, S,=R 
(L)if.s,=l (-l),wheres,=signIf’(x,)].Onthe 
other hand, the sign of the t, is 

V,=sign(t,)= fi signIf’( 
,=I 

and consequently, the II, r symbols are defined as 
V,=r (Q) if v,= - 1 (1). In other words, the abso- 

lute movements on the tree can be deduced from the 
sign of the variation at the nth iterate. 

To illustrate the result (proven in ref. [ 131) that 
the natural order of the nodes restricted to allowed 
sequences coincides with the MSS order we show in 
fig. 2 the coordinate of the nodes which are associ- 
ated with the symbolic sequences generated by the 
logistic map (Y= 2), as a function of A #I. The state- 
ment is then substantiated by the fact that the graph 
in fig. 2 is monotonic. 

We further use the invariance of symbolic se- 
quence of the period doubling attractor under the 
substitution R+RL and L+RR #2. This leads to the 

‘I The coordinate of a node is given by its binary address. 
” This follows from S=R*S, where S is the onset of chaos se- 

quence, and * is the sequence product defined by MSS. 

i 
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Fig. 2. The binary assigned node coordinates for the binary tree 

in fig. 1 versus the value of I at which the corresponding periodic 

orbits are superstable for the logistic map (v = 2 ) 
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Fig. 3. 6 versus v for the range UE ( 1.0015, 90). 

formula S, = R (L) if ~1, is odd (even) where n, is the 
maximum integer k such that 2k divides i. 

Furnished with these results, we are able to rec- 
ognize whether an orbit produces a symbolic se- 
quence which is before or after the desired super- 
stable one. Therefore, we can devise a powerful 
numerical scheme to detect superstable orbits based 
on a simple bracketing search. This method, of 
course, always converges even in the singular limits 
mentioned above. Different symbolic dynamical al- 
gorithms to detect superstable orbits were also used 
by Hao [ 151. 

The function 6(v) computed with this method for 
maps of the form x,+, = ;1(1-]l-2x,(“) for v be- 

tween 1 .OO 15 and 90 is shown in fig. 3. It is clearly 
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seen that 6(v) is a smooth monotonically increasing 
function in agreement with the renormalization group 
theory [2,4]. 

To test the power of the numerical method, we can 
consider the Y-P 1 + limit. Notice that although the 
convergence to the theoretical result 6+2 is very slow, 
we were able to compute 6( 1 .OO 15 ) = 2.2442... for V, 
two orders of magnitude closer to one than the best 
numerical results previously available. Since 6 still 
differs by more than 10% from the limit we also 
studied its convergence. We fitted our computed val- 
ues with the expression 

log(v- 1)Z & +c 

for small values of Y- 1. Although the additive con- 
stant c is uncertain, one can make a good estimation 
for b and a. In fig. 4 we have plotted 
log[-log(v-1)-c] versus log(6-2) for several 
values of c. The graph becomes linear for small val- 
ues of 6- 2. The quality of the linear fit in this region 
is best for CFZ 1.25 and this leads to bz0.46 which 
are again consistent with the behavior predicted by 
the renormalization group theory [ 41. 

Let us consider now the V+CC limit. At first glance, 

the curve 6(v) shown in fig. 3 could lead to the 
impression that this limit is $-divergent. However, 
a more refined analysis (see fig. 6 ) indicates the ex- 
istence of an upper bound. One could clarify this by 
computing 6 for increasingly higher (but finite) val- 
ues of v but this approach becomes impractical above 
vz 100. Instead, we compute it for the map in eq. 

log&2) 

Fig. 4. The v+ I+ limit. 
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Fig. 5. The v-00 limit: the inverse Gaussian map. 
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Fig. 6. The global form of S(v): (a) 8: versus v, (see text), (b) 

S, versus v, where the continuous line represents the same data as 

in fig. 3 and the dashed curve is obtained by inverting the low v 

data with respect to the point v,= I .25. 

( 1) which can be regarded as belonging to the v= co 
universality class. In table 1 the values of the ratios 
S, (co) are listed for n between 4 and 18. A slow 
monotonic convergence to 6( 03) z 30 can be ob- 
served. To improve this estimate we define s’(g) = 
B,,(m) where q= l/n such that G(co)=lim,_,J(q). 
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Table 1 

The convergence to 6, of & y‘ and 6for the inverse Gaussian map 

(see text and fig. 5 ). 

4 

5 

6 

8 
9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

15.84423 

19.80478 

22.49363 

24.52404 

25.85286 
26.84534 

27.49777 

27.99756 

28.33298 

28.59962 

28.78270 

28.93408 

29.04016 

29.13 130 

29.19625 

33.18954 24.51688 

35.79244 27.79861 

36.32217 29.40790 

35.93053 30.22728 

34.96990 30.41138 

34.07744 30.46 139 

33.18256 30.34016 

32.50903 30.25330 

31.91092 30.12195 

31.48098 30.04030 

31.10806 29.94538 

30.84240 29.88824 

30.61049 29.82532 

30.44494 29.78812 

We know that 8(q) is monotonic, since it converges 
geometrically for the even and odd subsequences, 
with a positive factor; for the same reason, the even 
and odd subsequences are convex, and are inter- 
twined. We then use these facts in the neighborhood 
of q= 0 to assure that the value of the limit is bounded 
between J(q) and its Legendre transform p(q) = 
8(q) -q$' (q). Moreover, it can be shown, that 

S(q)= [&)+Y(q)l/2=&a)+O(q3) 9 

indicating that J(q) displays accelerated conver- 
gence to the limit (see fig. 5 ). This procedure leads 
to the result &GO) =29.8... which is in agreement with 
the analytic estimate made in ref. [9] by means of 
the renormalization group. 

We finally point out an interesting feature in the 
global form of 6( v). In fig. 6a we show the numerical 
derivative Sk of the function &( v,) where &=a-2 
and ZJ, = log ( u - 1) _ Notice that S: has a maximum at 
u, z 1.25 which coincides with the value of c which 
optimizes the fit to the law of eq. (2). Since our data 
are poorer as v increases, the curve S: becomes noisy 
after this maximum. However, there is evidence sug- 
gesting that S: is symmetric around its maximum. 
On the basis of this hypothesis, we can predict the 
value of 6( co) using the results from the small v part 

of 6(v). One obtains B(a) z 31.2 which is within 
5% of the actual value. Accordingly, fig. 6b illus- 
trates the conjectured symmetry of the function 
&(v,). A true confirmation of this symmetry should 
come from the systematic computation of 6(v) for 
increasing values of log( v - 1). Results of the work 
in progress on this problem will be discussed 
elsewhere. 
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