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Phase locking, period doubling, and chaotic phenomena in externally driven excitable systems
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The behavior of excitable systems periodically stimulated by pulses is investigated. The non-

self-oscillating regime is studied in the simplest realistic model. The global bifurcation structure

is similar in several aspects to the one corresponding to driven oscillators. It includes phase lock-

ing, quasiperiodicity, period doubling, and chaos. The unexpected persistence of this structure is

explained by analytical arguments and its scaling properties are numerically determined.

Excitable systems are characterized by their behavior
under external stimulation. (i) There is an amplitude
threshold for the stimuli which separates two types of
responses. Subthreshold perturbations leave the system
close to the quiescent state while upper-threshold ampli-
tudes generate transitions to a state with very different
properties and values of its characteristic variables. (ii)
This exrited state decays to the original quiescent state
after a characteristic lifetime which is insensitive to the
amplitude of the stimulus. Nature provides many exam-
ples where excitability plays a fundamental role. This is,
for instance, the main subject of neural and cardiac elec-
trophysiological research. ' Excitable behavior is
present in many effects in nonequilibrium physics, chemis-

try, and biology as well as in many electronic devices.
Frequently, there is also an external periodic driving agent
in the problem. Hence, an understanding of the behavior
of those systems under periodic stimulation becomes of
general interest.

Excitable systems become oscillators for some values of
their parameters. s The dynamics of externally driven os-
cillators has been extensively studied. '3 This problem is
equivalent to the study of iterated circle maps which pro-
vides much qualitative and quantitative univer-

sal information about typical phenomena like phase lock-

ing, quasiperiodic transition to chaos, etc. On the con-
trary, the non-self-excited regime has never been studied
in detail„either theoretically or numerically. Our aim is
to show that the global bifurcation structure of this re-
gime has similar form and scaling properties as in oscilla-
tors and circle maps. The similarity includes both the
phase locking, quasiperiodicity and chaotic phenomena.
This result is surprising because while in nonlinear driven
oscillators the phase-locking structure arises from the
competition of two different frequencies, in non-self-

x' . (x+a)
p y — +x;y

3 p
(2)

It is instructive to think of this equation as a qualitative
description of the circuit in Fig. 1(a). There, the non-
linear device which shunts the capacitor C can be any one
having a three-valued i-u characteristic curve as shown in
Fig. 1(b) (e.g. , a neon bulb). From the Kirkchoff laws we
can see that this curve is mimicked in Eqs. (2) by the cu-
bic function y f(x) xs/3 —x. Also, the line y a acts

Ib}

FIG. 1. (a) Electronic circuit modeling an excitable system.
(b) The i ucurve of -the nonlinear device (NL). For E E~ the
capacitor C is periodically discharged through NL while for
E Eo the charge and the voltage on C reach static equilibrium
values.

excited excitable systems, one of those frequencies is lack-
ing. An extensive numerical study of the paradigmatic
van der Pol-Fitzhugh-Nagumo model2223 with the sim-
plest form of external stimulation is presented. An
analytical argument is also given to explain the origin of a
second effective frequency responsible for the phase-
locking structure.

Let us consider the following equation:

i+It(x —1)x+x+a 0,
which can be written as
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as the load line i (E —U)/R in the circuit equations, p
measures the ratio RC/L, and the time scale is RC. In the
limit p ~ corresponding to negligible inductances L,
the first of the Eqs. (2) becomes algebraic instead of
differential. It just represents a constraint on the evolu-
tion of y (or the voltage U) and x (or i). In fact, the ex-
istence of a small parameter 1/p (or L) allows one to con-
sider independently slow (x = I/p) motions taking place
on the curve y f(x) and fast (x = tt) motions which run
essentially perpendicularly to the y axis.

The intersection of the "nullclines" 2 x -a and

y xi/3-x is a fixed point. The fixed point is stable if
( a

~
) 1 and unstable for ) a ) & l. In the latter case, we

also have an attracting limit cycle which can be visualized

by considering the motion in the limit tt ~ oo. In this lim-
it x can be expressed as a multivalued function f '(y).
From (2) we see that if x & () )-a then y) (& )0.
This is stressed in Fig. 2 by the arrows indicating the flow

direction on the slow manifold. Now, when the system
reaches the critical points y+ + —,

' it is pushed by the fiow

out of the slow manifold. x becomes then extremely large
and the system jumps almost instantaneously to the other
branch of f '(y). It is clear from Fig. 2(a) that for
tt ~ and ) a ~

& 1 the system evolves (after a transitory
motion) on a limit cycle with a well-defined natural fre-
quency. These arguments can be extended for finite tt. 25

On the contrary, for
~
a

~
) 1 [Fig. 2(b)l there is just

one stable fixed point with no finite natural frequency.
The electronic example illustrates the two cases: For
some ranges of the circuit parameters (say E) the neon
bulb spontaneously switches periodically on and off while
for other ranges the asymptotic state is just off. Here we
are interested in the latter case which we call excitable.

These systems can be excited (i.e., forced to jump tem-
porarily to the branch which does not contain the 6xed
point) by modifying a during a short time interval. This is
like adding a short voltage pulse to E which favors the
neon-bulb ionization. During the pulse, the 6xed point is
shifted to the unstable branch and the system can eventu-

ally reach the point where jumps take place. There is a
threshold value for the pulse height h below which excita-
tions cannot occur for any stimulus duration D. More-
over, for each amplitude above this threshold there is still
a minimum value of D which produces excitation. This is
the time it takes the system to ~o from the 6xed point to
the switching point y + (—) 3 . Therefore, there is an
amplitude-duration threshold curve for excitatory pulses.
However, in the limit D~ 0, h~ ~ and hD Vs there is

only a threshold for the pulse area VE. If p is fimte, this

limiting case is well described by a b function on the
right-hand side of Eq. (1). Each b produce an instantane-
ous displacement of magnitude VF. in x and y. The VE
threshold is the minimal distance that the system should
be pushed away from the fixed point (—a, a —a /3) in or-
der to make it jump to the opposite branch. If p is large
this value is close to —', —

~
a —a /3 ). Figure 3 shows ex-

amples of both subthreshold and upper-threshold
responses. Notice that the excited system relaxes to the
initial state after traveling on the upper branch and jump-
ing down at y —3. Hence, a second upper-threshold
pulse arriving when the system is still far from the fixed
point might be unable to excite the system again. This re
fraetoriness is commonly observed in real systems.

For studying the behavior under periodic stimulation
we introduce the forcing term

r(t)-Vs g a(t nTE)—
g ~ —oo

in the right-hand side of Eq. (1). Here TE is the period of
the stimulation. An extensive simulation for the forced
model is performed by numerically integrating Eq. (2)
and adjusting the y variable after each pulse. For given

VE and TF. we compute the stable periodic solutions by
starting from an arbitrary initial condition and letting the
transient motions decay. Such solutions repeat themselves
after an integer number of pulses. During the cycle some
pulses excite the system and some do not.

In Fig. 4 we show the regions of the parameter plane
where orbits of a given period are stable. The period,
measured in units of Te, is indicated by the number b of
the symbol a:b. Remarkably, this picture is similar to the
well-known phase-locking structure observed in the dy-
namics of driven self-oscillators and circle maps.
In those cases locking is the result of the competition be-
tween two independent finite frequencies: The oscillator
frequency and the external one. However, since in our
problem there is only one 6nite frequency, the persistence
of this structure is surprising. There is no natural angular
variable in the problem which could be considered a
locked phase. We cannot even define the rotation number
in the standard way. However, if the number of excited
responses indicated by a in the symbol a:b is considered,
the Farey organization of the usual phase locking is ob-
served here as well. As we will show later, the scaling of
the locked regions at large enough TE (and also at small
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FIG. 2. The liow on the slow manifold described by Eqs. (I)
aud (2). (a) (a( ( I (self-excited); (b) )a( & l.

FIG. 3. Response to an upper-threshold pulse (dashed line)
aud to a subthreshold one (solid line). (a) Time dependence of
x. (b) Phase trajectory. Notice that only the Ilrst trajectory
crosses the upper branch off
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FIG. 4. Regions of the (VE, TE) plane where the periodic
solutions of Eq. (l) with the forcing term (3) are stable. The
corresponding period nTE is indicated by n in the symbol m:n.
m indicates the number of excitations occurring in a given cycle
of the subcritical regime. Since there are supercritical bifurca-
tions (not discussed here) which change this number, the label-

ing of the period doubling sector is incomplete. Here p 3.5
and a 1.35. Vg and TE are given in arbitrary units.

enough VE) is consistent with the subcritical behavior of
circle maps. This implies the existence of a finite measure
of parameter space for which the motion is quasiperiodic.
Furthermore, the similitude between the two diagrams in-
cludes also the upper-critical behavior. There are places
where the main stability regions bifurcate in period dou-
bling sequences which end in a zone where the motion is
chaotic. "9~6 Period doubling and chaos appear coin-
cidently with overlapping of stability regions in the same
way it happens for driven oscillators and circle maps.

There are, of course, some differences between our sta-
bility diagram and the standard mode locking. In the
latter case for example, the tip of the Arnold tongues
touches the TE axis at rational TE/To ratios. The
equivalent objects in our diagram are bent such that they
never reach the horizontal axis except possibly at infinity.
This is a consequence of the infinite natural frequency
The following arguments give some intuition on the origin
and structure of our stability diagram. We first rewrite
F(t) VE/TE+G(t) where G(t) is a zero-mean oscillat-
ing term. Then the average force VE/TE renormalizes the
parameter a. The dressed parameter, a' a —Ve/TE, can

assume values within the range corresponding to self-
oscillations supplying in this way the missing frequency.
We can derive the period of this effective oscillator in the
limit tt co. In fact, if the motion takes place on the slow
manifold we have from Eqs. (2)

dt —p, —p, dx .dy '(x)
(4)x+a' x+a'

Neglecting the 0(p ') transit time from one branch to
the other, we obtain the effective period

'x' —1 "x'—1
To ~ tt dx p , dxx+g' ~ 2 x+a'

4 —a'
p 3+(a'2 —1)ln (5)

I 0

Notice that T is bounded between (3 —In4)p for a' 0
and 3 for a' 1. By using Eq. (5) we find the curves in
the (VE, TE) space where the ratio TF/TP p is constant.
As is shown in Fig. 5 these curves give a good description
of the geometry of the phase diagram of the Fig. 4.

We have studied the scaling properties of this diagram
in the subcritical regime. Since the results are the same
for all regions in this regime, we illustratively show the
scaling of the locked intervals on the TE 7 line in the pa-
rameter space. The fine structure between 1:1and 1:2 re-
gions is displayed in Fig. 6(a). Since we plot the period
rather than the rotation number, this picture is an unfold-
ing of the devil's staircase usually considered in the study
of the mode locking. 2 We can identify sequences of in-
tervals of period rn+s (with n 1,2, 3, . . . and r, s con-
stant integers) often called period adding sequences. 2

These sequences are composed of the intervals with sym-
bols (pn+q):(rn+s) where ~ps —qr ~

l. As n
those intervals accumulate at the border of the one labeled
(p:r). For circle maps the convergence is of the form n
while the width of the intervals vanishes as n . This is a
consequence of the fact that the p:q orbit appears after a
tangent bifurcation. ~s In our system we find the same
scaling behavior which indicates the presence of those bi-
furcations at the border of the stability regions. Figure
6(b), for instance, illustrates the power law n showing
the intervals on a logarithmic scale with the singularity at
the end of the 1:1 region. Similarly, the interval widths
scale like n . Our diagram is also consistent with the

12

FIG. 5. Curves of constant p TP/Ts [see Eq. (l)l. The
values of p and a are the same as in Fig. 4. VE and TE are given
in arbitrary units.
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FIG. 6. (a) &«iod of the stable solutions as a function of VE

» the line Tz-7 (see Fig. 4). The range of VE is (1.53, 1.64).
(b) As in (a) but with Vs V —Vs and on logarithmic scale.
V is the border of stability of the 1:1 region. The straight line
indicates the n 2 law.
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geometrical convergence of the intervals around the gold-
en mean found for circle maps. ' '

In summary, the global bifurcation structure of driven
excitable systems is qualitatively similar and has the same
scaling properties as the usual mode locking. Both the
analytical and numerical results suggest that those sys-
tems can be described by circle maps although the connec-
tion between them is not so transparent as in the oscillato-
ry case. The presence of chaotic behavior should be also
remarked as a possible origin (often not considered) of
disorder in excitable media. We finally stress that all the

phenomena described in this paper have been observed in
experiments both in electronics and electrophysiology.
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