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Abstract

High precision video tracking of microscopic particles is limited by systematic and random errors. Systematic errors are

partly due to the discretization process both in position and in intensity. We study the behavior of such errors in a simple

tracking algorithm designed for the case of symmetric particles. This symmetry algorithm uses interpolation to estimate the

value of the intensity at arbitrary points in the image plane. We show that the discretization error is composed of two parts:

(1) the error due to the discretization of the intensity, bD and (2) that due to interpolation, bI . While bD behaves

asymptotically like N�1 where N is the number of intensity gray levels, bI is small when using cubic spline interpolation.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Microscopic particles are used in a wide range of experiments to monitor the dynamics of objects that
cannot be directly visualized. Such particles are also used as tracers in flows [1] or as microprobes for various
environments [2–4]. Quite often these particles are spherical beads of sizes ranging from 0:1mm up to several
mm. For example, attaching a bead to a single kinesin molecule Sheetz et al. [5] monitored its motion along
a microtubule. For this purpose, they have developed a sub-pixel video tracking method that uses the
correlation function between the images in the different frames. The precision was estimated to be of about
2 nm corresponding to about 1

40
of the pixel size. Later work has revealed that kinesin advances in 8 nm

steps [6].
An alternative approach relies on fluorescent particles or dyes. Tracking single fluorophores has allowed to

monitor the dynamics of biomolecules in the cell membrane [7–10], in model membranes [11,12], in solution
[13] and inside cells [14]. This field was reviewed in Refs. [15,16]. For example, in a recent study, tracking of
single fluorophores was used to monitor the motion of myosin V on actin. Single rhodamine or Cy3 molecules
were used to label one of the ‘‘walking legs’’ of myosin V [17]. Special care was required in order to prevent the
fluorophore from bleaching and to optimize the signal-to-noise ratio (S/N). The tracking was done using a
Gaussian fit to the intensity profile leading to a precision of 1.5 nm.
e front matter r 2006 Elsevier B.V. All rights reserved.
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The use of single fluorophores in biophysics is among the most modern techniques in the field and is pushing
the limits of light detection technology. It is mainly limited by the low number of photons that the fluorophore
emits before bleaching. This makes the photon counting noise the dominant source of error in single fluorophore
tracking. On the other hand, in most optical and magnetic tweezing experiments, microbeads are used as handles
through which external forces can be applied. Moreover, colloidal suspensions of microbeads are studied in order
to understand the two-body and many-body interactions between the beads. Such suspensions were shown to
display phase transitions between liquid-like and crystal-like configurations [18]. Video tracking of microbeads is
required in order to characterize the system. In such experiments, imaging is typically achieved using brightfield
microscopy where the photon counting noise is relatively low. Here, the other types of error will contribute and,
in particular, the discretization error will play an important role in limiting the precision of tracking.

Quite a few tracking algorithms are used in experiments and their accuracy is not always well defined. The
performance of four such algorithms was compared by Cheezum et al. [19]. They compared the cross-
correlation [5,20,21], sum-absolute difference (SAD) [22], centroid [10,23] and direct Gaussian fit [12,24]
algorithms and have shown the way in which the various sources of error contribute to the accuracy of the
different techniques. The study of Ref. [19] was focused on finding the best way to monitor the dynamics of a
single fluorophore. It was found that, due to the small S/N, the Gaussian fit is the most accurate algorithm
for such experiments. For the case of microscopic particles that are larger than the point-spread function
(PSF), they found that the cross-correlation method is the most accurate.

In video tracking there are several sources of error. It is customary to divide the errors in two categories:
random and systematic. Random errors (noise) are referred to as limiting the precision of the method while
systematic ones (bias) affect the accuracy. Although noise can be reduced by averaging, this limits the time
resolution. Even in experiments where this is not an issue, averaging is limited by the stability of the system.
On the other hand, one expects that a better understanding of the experimental system would allow to
eliminate or at least reduce the bias. While each experimental system has its own characteristics, there is one
source of bias that is generic, namely, the bias due to the digitization of the image, b. This source of error is
often ignored in tracking experiments. The purpose of this paper is to describe the behavior of the
discretization bias and to show how it can be significantly reduced. For this we choose to use a simple
algorithm that allows to track symmetric particles with sub-pixel accuracy, the symmetry algorithm. While its
simplicity allows us to perform a detailed analysis, its general features may also apply to some of the other
algorithms, in particular, to the SAD algorithm [22]. Moreover, as will be shown in Section 5, the error of the
symmetry algorithm for microbeads is comparable to that of the cross-correlation algorithm that is currently
considered to be the most precise. We show that for our algorithm the discretization bias, b, is composed of
two parts that to a good approximation are additive, namely, the bias due to the intensity discretization itself,
bD, and that due to interpolation, bI . Asymptotically, bD / N�1, where N is the number of gray levels.
Moreover, in the case of linear interpolation, bI ! N2

Egð�Þ for NEb1, where NE is the number of extrema of
the intensity function and gð�Þ is an antisymmetric function that is almost entirely independent on the intensity
function. The paper is organized as follows. In the next section we introduce the symmetry algorithm. Then, in
Section 3 we analyze the behavior of the discretization bias for 1D images. Next, in Section 4 we show that
many of the features of the 1D behavior are preserved in the 2D case. A brief experimental comparison of the
different tracking errors is presented in Section 5. Section 6 contains our conclusions.

2. The symmetry algorithm

In the case of both microscopic beads that are larger than the PSF and point sources the ideal image has
circular symmetry. This symmetry can be used to find the center of the particle using the axes of symmetry in
both the x and y directions, Lx: y ¼ y0 and Ly: x ¼ x0. The center of the particle lies at the intersection of the
two symmetry axes, ðx0; y0Þ (see Fig. 1). Each of the symmetry axes is found by searching for the minimum of
the symmetry functions, Syð�xÞ and Sxð�yÞ, where �x and �y generate sub-pixel shifts of the symmetry axes in the
x and y direction, respectively. For the case of Ly,

Syð�xÞ ¼
XN1

i¼1

XN1

j¼�N1

jf ði � �x; jÞ � f ð�i � �x; jÞj, (1)
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Fig. 1. Schematic description of the symmetry algorithm. For example, one shifts the Ly symmetry axis until the intensities on its two sides

are most similar in the sense of Eq. (1).
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where i runs over the pixels to the right of Ly, excluding the i ¼ 0 pixels, namely, the pixels through which Ly

passes, j runs along the columns of the entire image, f ði � �x; jÞ is the intensity value at ði � �x; jÞ and 2N1 þ 1 is
the size of the image in pixels. Since digital images only provide intensities of entire pixels, we obtain the value
of f ði � �x; jÞ by interpolation between the values of adjacent pixels. In this work, two types of interpolation
were used: linear and natural cubic spline [25]. While the case of linear interpolation is more analytically
tractable, the cubic spline interpolation leads to very small values of the corresponding bias, bI . Sx is obtained
by exchanging the roles of i and j and of x and y in Eq. (1).

For a perfectly symmetric intensity function whose values are known at all ðx; yÞ points (no pixels), the
minimum of Sx and Sy corresponds to the exact center. However, in actual images the symmetry is weakly
perturbed due to optical aberrations, noise and discretization effects. Assuming an ideal optical system that
preserves the circular symmetry and ignoring the effect of experimental noise, we are left with the bias that is
due to discretization, b. It is defined as

b ¼ e1 � e0, (2)

where e1 is the measured shift obtained from the minimization of the experimentally measured, discretized S’s
and e0 gives the position of the true symmetry center of the particle. In experiment, it is difficult to separate the
different sources of error in order to understand the behavior of each one. However, this can be done in a
model system and therefore, in the next section, we analyze the behavior of the bias for various types of
intensity functions. We found that the bias behaves similarly in one and in two-dimensions and that the 2D
case does not present any new features with respect to one-dimension.
3. The bias for the symmetry algorithm in 1D—theory and simulations

In what follows, we analyze the bias due to discretization for 1D intensity functions. In particular, we will
illustrate the behavior of the bias using three different symmetric functions, f 1, f 2, and f 3, where the first is a
Gaussian, the second is an exponent that decays in an oscillatory manner and the third is a cosine,

f 1ðxÞ ¼ exp �
x2

2s2

� �
, (3)
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f 2ðxÞ ¼
1

2
exp �

jxj

a

� �
cos

pxðnþ 1=2Þ

A

� �
þ

1

2
, (4)

f 3ðxÞ ¼
1

2
cos

pxðnþ c=2Þ

A

� �
þ

1

2
. (5)

While the Gaussian represents a good approximation to the PSF, f 2 and f 3 are reminiscent of the images of
defocused beads that display multiple interference fringes (see Fig. 12b). We have studied a variety of
functions and found that f 1, f 2 and f 3 are representative of certain function families: (1) monotonically
decaying on each side of the symmetry center, (2) decaying in an oscillatory manner and (3) oscillating at
constant amplitude.

We apply to these functions a discretization similar to that of a noise-less 1D digital camera with N gray
levels and 2N1 þ 1 pixels. In a digital CCD, the value of the intensity function in a given pixel results from
integrating the light intensity over the active area of the pixel. We approximate this process by taking the value
of the intensity function at the center of the pixel to represent the entire pixel. The pixels are chosen to be of
unit length and centered on integers, such that, in the first digitization step, D1,

D1: f lðxÞ ! f lðiÞ, (6)

where l ¼ 1; 2; 3 and �N1pipN1. The second digitization step, D2, approximates the intensity of the pixel by
the closest available gray level,

D2: f lðiÞ !
~f lðiÞ, (7)

where ~f lðiÞ ¼ N�1fix½Nf lðiÞ� and the function fix rounds the value of its argument to the nearest integer value.
Since the functions we study are symmetric and their symmetry center is located at the middle of the central
pixel, i ¼ 0, the symmetry is preserved under discretization, D, where D ¼ D2 �D1. However, such coincidence
between the symmetry center of an image and the center of some pixel center has zero probability when
imaging a symmetric object. In order to include in the model the difference between the symmetry center of the
image and the center of the pixel, we shift the image function by �0p1 from the origin, T �0 : f ðxÞ ! f ðx� �0Þ
and only then discretize using the operator D, ~f lði � �0Þ ¼ D � T �0f lðxÞ. Due to the mismatch between the pixel
array and the symmetry center, the discretization will perturb the symmetry of the function such that ~f lði � �0Þ
is only approximately symmetric. As a consequence, searching for �0 using the symmetry algorithm of
Section 2 will lead to a slightly different value, �1. The bias is defined as in Eq. (2), b ¼ �1 � �0. In what follows,
we study the behavior of the bias as the various parameters of the problem change, namely, the number of
gray levels, N, the number of pixels, N1 and the various parameters of the intensity functions, f lðxÞ.

3.1. Dependence of the bias, b, on the number of gray levels, N

Throughout the rest of the paper, we express all lengths, e.g. �0, �1 and b, in units of pixels. In Fig. 2 we show
the behavior of b for f 1 and f 2 as a function of N for a particular shift, �0 ¼ 0:1, and linear interpolation. For
both functions the bias oscillates wildly. However, while for the Gaussian it seems to oscillate around zero, in
the case of f 2 it clearly has a finite average value. In fact, the average of b in Fig. 2a is hb1;Li ¼ 1:81� 10�4 and
in Fig. 2b it is hb2;Li ¼ 4:66� 10�3, where the first index of hbi indicates to which function it corresponds and
the second which type of interpolation was used (L ¼ linear, S ¼ natural cubic spline). When the same
calculation is made with spline interpolation the oscillations appear to be quite similar in size but the
corresponding averages are different, namely, hb1;Si ¼ �1:97� 10�5 and hb2;Si � 2:08� 10�4. This suggests
that the fluctuations in the bias are determined by the D2 operator that transforms the function into its
approximation in terms of N gray levels, while the average bias is due to interpolation. To verify this
assumption, we can, in our computation, turn off the D2 step to obtain a bias that is due to interpolation
alone, bI . Indeed, for the case of the linear interpolation the values of bI that we obtain are similar to those of
the corresponding hbi. Specifically, bI ;1;L ¼ 1:87� 10�4 and bI ;2;L ¼ 4:00� 10�3. However, for the case of the
spline interpolations, the values of bI that we find are completely different than those of hbi, that is, bI ;1;S ¼

1:36� 10�7 and bI ;2;S ¼ �1:18� 10�6. The discrepancies between hbi and bI are due to the finite size effects in
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Fig. 2. Variation of the bias as a function of the number of gray levels, N, using linear interpolation for N1 ¼ 40, �0 ¼ 0:1 and (a)

Gaussian, f 1, with s ¼ 10, (b) decaying cosine, f 2, with a ¼ 10, A ¼ 40 and n ¼ 2. At small N, in both (a) and (b), the bias exceeds the

range of the y-axis that is shown. (c) Same as in (b) only that here the range of N values is small (line with circles). The second curve

corresponds to the case of spline interpolation for f 2 (line with full squares). Notice that the two lines are displaced with respect to each

other due to the different average values of the bias for linear and spline interpolation, bI ;2;LabI ;2;S . The bias is expressed in units of pixels.
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the averaging of hbi. These are relatively small whenever bI is large as in the case of linear interpolation, but
become significant for the spline case. Performing the average of b at large values of N we obtain values that
are closer to those of bI . In particular, when b is averaged over 107pNp1:0001� 107 we obtain hb1;Li ¼

1:87� 10�4, hb2;Li ¼ 4:01� 10�3, hb1;Si ¼ 1:87� 10�7 and hb2;Si ¼ �1:36� 10�6 showing clear convergence
towards the corresponding bI ’s. This indicates that the average bias is due to the interpolation error while the
fluctuations around this average are due to the discretization error and that one can approximately decompose
b, such that,

bffi bI þ bD, (8)

where bD is the bias that is due to the D2 operator. In our simulation of the symmetry algorithm
the interpolation is performed after the discretization step and therefore its result depends on the
discretization. This leads to some coupling between the bI and bD and to the approximate equality sign in
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Eq. (8). The fluctuations in the bias for the linear and spline interpolations are compared in Fig. 2c for the case
of the decaying cosine function, f 2. We notice that the magnitude of bD seems to behave similarly for both
types of interpolation (see also Fig. 4). Moreover, in the case of the Gaussian, the linear and spline
interpolations lead to fluctuations that are practically identical. As will be shown in the next section, for the
case of linear interpolation, Eq. (8) is due to an expansion of S. We find that bI vanishes at the lowest order of
this expansion.

3.2. The structure of the symmetry function, S, for linear interpolation

In order to understand the behavior of the bias, it is important to first describe the structure of the symmetry
function and in particular, the way its minimum is determined. For simplicity, this analysis is restricted to the
case of the linear interpolation. For a given initial shift, �0, the symmetry function, S, can be viewed as
depending on the value of the restoring back-shift, �1. Before any errors are introduced by discretization

Sð�1Þ ¼
XN1

i¼1

jf ði � �0 þ �1Þ � f ð�i � �0 þ �1Þj. (9)

However, the value of the function at x ¼ �i � �0 þ �1 is unknown when the pixel centers are at x ¼ �i � �0
and is approximated in the symmetry algorithm by linear interpolation, such that

Sð�1Þ ’
XN1

i¼1

jf ði � �0Þ þ �1½f ði þ 1� �0Þ � f ði � �0Þ� � f ð�i � �0Þ � �1½f ð�i þ 1� �0Þ � f ð�i � �0Þ�j. (10)

The next error is due to the discretization of the intensities, f. We denote these errors as Df i. To estimate the
expression of Eq. (10) we assume that the products of Df i and �1 are of higher order and therefore can be
neglected. Moreover, we expand the f’s to first order in �0 and 1� �0 to obtain

Sð�1Þ ’
XN1

i¼1

jDf i � Df �i � 2ð�0 � �1Þf
0
ðiÞj, (11)

where f 0ðiÞ is the derivative and we used the symmetry of f. Each of the terms in the sum over pixels is linear in
b decreasing with slope 2f 0ðiÞ until it vanishes at �1;i where it changes slope to �2f 0ðiÞ. Moreover

bi � �1;i � �0 ¼
Df �i � Df i

2f 0ðiÞ
. (12)

To estimate the bi’s, we note that the values of an arbitrary function are unrelated to the gray levels imposed
by the camera. It is therefore a reasonable assumption that, on average, these values are homogeneously
distributed between each two adjacent gray levels, f �i��0 2 ðk� �

1
2N
; k� þ 1

2N
Þ, ~f ð�i � �0Þ ¼ k� and

Df � 2 ð�
1
2N
; 1
2N
Þ. One expects that this approximation becomes more accurate as N increases. Moreover, for

large enough �0 and N, kþak�, leading to uncorrelated Df i and Df �i. In this regime, averaging over
consecutive values of N, e.g. in Fig. 2, gives

hbii ¼ 0, (13)

SdðbiÞ ¼
1

2
ffiffiffi
6
p

Nf 0ðiÞ
, (14)

where Sd denotes the standard deviation.
Next step is to understand the way that the individual terms in Eq. (11) combine to determine the behavior

of Sð�1Þ. As can be seen in Fig. 3, Sð�1Þ is composed of straight segments that start with a large negative slope
that discontinuously changes and progressively becomes smaller. At the minimum, the slope changes sign and
afterwards grows towards a large positive value. The discontinuous changes in the slope of Sð�1Þ occur at �1;i.
There, its slope changes by 4f 0ðiÞ (see Eq. (11)). In particular, one of the pixels is responsible for changing the
sign of the slope at the minimum. We refer to it as the dominant pixel, i ¼ id , because it determines the value
of the overall bias, b ¼ bid

. To find the dominant pixel, we need to understand both the sequence of the bi’s



ARTICLE IN PRESS

Fig. 3. The symmetry function for the Gaussian, f 1, in the vicinity of its minimum. The parameters are the same as in Fig. 2a only that

here N is fixed, N ¼ 1000.
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when arranged in order of increasing value and the corresponding way in which the slope of Sð�1Þ decreases. In
order to illustrate these aspects we use the case of the Gaussian, f 1, as an example.

For the Gaussian, the derivative has a single extremum for x40 at x ¼ s. For a given N, on average half of
the bi’s are positive and half are negative. On the other hand, the slope of Sð�1Þ, AðbÞ, starts from 2

PN1

i¼1f 0ðiÞ at
�15�0 and then increases with �1 by 4f 0ðjÞ at each point where b ¼ bj. Therefore, in order to reach a vanishing
slope we require that

AðbÞ ¼ 2
XN1

i¼1

f 0ðiÞ � 4
Xs�K1

j0¼1

f 0ðj0Þ � 4
XN1

j0¼sþK2

f 0ðj0Þ ¼ 0, (15)

where j0 runs over the bi’s in order of increasing value and K1;2 define the number of bi’s required to balance
the first term. The second and third sums of Eq. (15) contain much less terms than the first one. The index j0

scans all the pixels in the ranges ð1;s� K1Þ and ðsþ K2;N1Þ but picks only the bi’s with the largest absolute
value and negative sign. On average there are ðN1 � K1 � K2Þ=2 terms in the two j0 sums. Notice that the
arguments of the slope, AðbÞ, and that of the symmetry function itself, Sð�1Þ, are equivalent because here �0 is a
constant and b ¼ �1 � �0. Since on average there are N1=2 negative bi’s, Eq. (15) is on average satisfied
whenever K1 ¼ K2 ¼ 0. In other words, the dominant pixel is the one for which f 0ðiÞ is maximal,
id ’ is � fixðsÞ. Using Eq. (14) for f 1, we obtain

SdðbÞ ¼ SdðbDÞ 	
1

2

ffiffiffi
e

6

r
s
N
’ 0:34

s
N

, (16)

where we follow the definitions of Section 3.1 and identify the fluctuating part of b as being due to
discretization, bD. The 	 sign of Eq. (16) indicates that this is only an estimate for SdðbDÞ since three factors
that contribute to determining its actual value have not been included in the derivation.

First, we have ignored the fact that statistical fluctuations in the discretization errors, Df i, will also lead to
fluctuations in the position of the dominant pixel, id . The pixels in the neighborhood of is will compete with
each other for the role of the dominant pixel (the one with the smallest bi). This competition is manifested as
fluctuations in the ordering of the bi’s (see Eq. (12)). It will reduce the value of the bias. While the correction to
the bias will not affect its dependence on N, it can lead to a different dependence on s because more pixels will
participate in the competition the broader the Gaussian. For the same reason, SdðbDÞ will also depend on N1.

A second effect that has been neglected in the derivation of Eq. (16) consists of fluctuations in the number of
negative bi’s, N1;�. If N1;�aN1=2, the dominant pixel will not be the one with maximal f 0ðiÞ, idais even if all
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jDf �i � Df ij are equal, jDf �i � Df ij ¼ Z. Instead, id will change such as to correspond to the range where Sð�1Þ
has a vanishing slope (see Eq. (15)). While this effect does not change hbDi, it leads to a variability in the
dominant pixel, id ¼ is � Di, which, in turn, leads to variability in the derivative, f 0ðid Þ. Now both Df �i and
f 0ðidÞ need to be regarded as random variables and this will lead to a larger SdðbDÞ. However, since f 0ðid Þ is
fluctuating around its maximum its contribution to SdðbDÞ, Db2, vanishes to first order. To second order,

Db2 ¼
1

8

ffiffiffi
e

6

r
N1

s
1

N
. (17)

Finally, a third contribution to bD that was ignored in Eq. (16) is the presence of small intensity values in the
pixels that are far from the origin in the case of a strongly decaying function. If N is not large enough, such
values will be quantized to zero. On the other hand, as N grows these pixels will eventually start to contribute
to the symmetry function in a non-trivial way, leading to an effective increase in N1, N1ðNÞ. This effect will
lead to deviations from the N�1 dependence of SdðbDÞ for the Gaussian at small s, s5N1 (see Fig. 8a).

It is important to note that Eq. (13) apparently contradicts our numerical observation of Section 3.1 where
we found that hbi ¼ bIa0. This will be resolved by going to the next order in the expansion used in Eq. (11)
which gives a non-vanishing contribution to bI (see Section 3.3). Another important observation, is that the
only explicit manifestation of the Gaussian functional form in the derivation of Eq. (16) is the maximal value
of the derivative. Therefore, within the approximation described above, this provides an estimate for SdðbDÞ

for an arbitrary function when replacing the corresponding maximal derivative

SdðbDÞ 	
1

2
ffiffiffi
6
p

NMaxðjf 0jÞ
. (18)

In Fig. 4 we test the validity of Eq. (18) for the case of f 1 and f 2. Here the value of bD is obtained from
Eq. (8) where bI is computed by turning off discretization and the approximate equality is assumed to be exact.
The standard deviation of bD is computed by averaging over consecutive intervals of N of 102. While for both
f 1 and f 2 the N�1 behavior is clear, the accuracy of our estimate is much better for the decaying exponent, f 2

than for the Gaussian, f 1.
We can further extend the applicability of Eq. (18) to include the effect of random noise, df i, that has the

same standard deviation in all pixels (see Section 5). Such random noise will simply add to the one due to

discretization and the standard deviation of the sum,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½SdðDf �i � Df iÞ�

2 þ ½Sdðdf �i � df iÞ�
2

q
, should replace

the factor ð2
ffiffiffi
3
p

NÞ�1 in Eq. (18) to account for the combined effects on the fluctuating part of the error. Note
that, while df i is intrinsically random, Df i is not and only depends in a complex way on the parameters of the
problem.

3.3. The interpolation bias, bI

For practical purposes, the most important fact concerning the interpolation bias, bI , is that when using
cubic spline interpolation it becomes negligible (see Section 3.1). For example, for the case of f 2 with the
parameters of Fig. 2b, only CCD’s with more than 19 bit/pixel would reach the range where bI ;2;S
bD.
Moreover, in most applications such low levels of discretization errors are most likely negligible relative to the
other sources of error, e.g. noise. On the other hand, since spline interpolation is computationally expensive it
is worthwhile to understand the behavior of bI for the case of the linear interpolation.

As already pointed out in Section 3.2, Eq. (13) for i ¼ id contradicts our findings of Section 3.1 where we
showed that hbia0. There we also showed evidence that the non-vanishing of the average bias is due to the
interpolation. Therefore, in order to resolve this contradiction, we return to Eq. (10) and, in the derivation
leading to Eq. (11), we turn off the effect of intensity discretization, Df i ¼ 0. In this case, to first and second
order in �0 and 1� �0 the expansion of Eq. (10) leads to a vanishing bias. We therefore pursue the expansion
up to third order to obtain that the ith term in the sum of Eq. (10) vanishes when

bi ’ ��0
f 000ðiÞð1� 3�0 þ 2�20Þ

6f 0ðiÞ þ f 000ðiÞð1� 3�0 þ 3�20Þ
. (19)
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Fig. 4. Standard deviation of bD (in pixels) as a function of the number of gray levels, N, using either linear (open circles) or cubic spline

(full squares) interpolation. The parameters are the same as in Figs. 2a and b, respectively. (a) Gaussian, f 1, with s ¼ 10, (b) decaying

cosine, f 2, with a ¼ 10, A ¼ 40 and n ¼ 2. The straight line represents the prediction of Eq. (18).
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As in Section 3.2, in what follows we illustrate the behavior of Eq. (19) for the case of the Gaussian, f 1. In this
case, the bi’s of Eq. (19) are ordered from the outermost pixel towards the origin, that is, i4j ) bi4bj.
Moreover, the structure of the symmetry function, Sð�1Þ, is qualitatively similar to that of Fig. 3 and here, as
well, there will be a dominant pixel, i ¼ id , which determines the value of the total bias, bI . Using a similar
approach to that of Eq. (15), we need to find the pixel which leads to a vanishing slope for Sð�1Þ. Since here the
bi’s are ordered,

AðbÞ ¼ 2
XN1

i¼1

f 0ðiÞ � 4
XN1

i¼id

f 0ðiÞ ¼ 0. (20)

In the limit N1bs and replacing the sums with integrals we obtain

2f ðid Þ ’ 1, (21)

where we used the normalization f ð0Þ ¼ 1 (same as in Eqs. (3)–(5)). This leads to

id ’ fixð
ffiffiffiffiffiffiffiffi
ln 4
p

sÞ, (22)
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Fig. 5. Variation of bI (in pixels) as a function of a parameter of the intensity function for the case of the Gaussian, f 1 (full line). We

change its width, s, using linear interpolation, �0 ¼ 0:1 and N1 ¼ 40. The prediction of Eq. (23) is also shown (dashed line).
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and correspondingly to

bI ’
að�0Þ

3:71s2 � bð�0Þ
, (23)

where að�0Þ ¼ �0ð1� 3�0 þ 2�20Þ and bð�0Þ ¼ 1� 2�0 þ 3�20. For s41, b is small relative to the first term in the
denominator of Eq. (23) and bI tends to a power law dependence on s, bI / s�2. Although the prediction of
Eq. (23) is in agreement with the corresponding numerical results (see Fig. 5), we find an additional pattern of
equidistant discontinuities in the value of bI . These occur at the values of s where the dominant pixel changes.
Here, Sðbid Þ ¼ Sðbidþ1Þ and its minimum degenerates into a segment with vanishing slope. These discontinuity
points are the solutions of Eq. (20). Inverting Eq. (22), we obtain that the jumps are expected at fixed intervals
in s, Ds ’ 0:85. Indeed, numerically we find that the discontinuities in bI occur at values of s, si, where
Dsi � siþ1 � si ! 0:85 as s grows (Ds3ðs3 ¼ 2:91Þ ¼ 0:864, but Ds6ðs6 ¼ 5:49Þ ¼ 0:854). The variation of bI

is much larger at si than in the range between discontinuities, leading to a staircase-like behavior.
For other functions, e.g. f 2, the bi’s of Eq. (19) are not monotonic functions of i. As a result, the pattern of

discontinuities is more complex than that of the Gaussian. Nevertheless, for each function, the behavior of bI

as a parameter of the function varies can be deduced. We found no indication of generic behavior. However,
in the next section, we show that the dependence of bI on �0 and NE is largely independent on the functional
form of the intensity.
3.4. Dependence of the interpolation bias, bI , on parameters

Interpolation, and in particular, linear interpolation is most inaccurate in the neighborhood of extrema. If
consecutive pixels are located on opposite sides of an extremum of the intensity function, linear interpolation
will place the approximated value on the straight line that joins the values in the pixels, thereby truncating the
extremum. It is therefore natural to expect that the interpolation bias, bI , will be dominated by the
contribution from the extrema and that bI / gEðNEÞ where NE is the number of extrema of f and gE is a
function that remains to be determined. In Fig. 6 we show the behavior of bI for the decaying exponential, f 2,
and two different cosine functions, f 3, at �0 ¼ 0:1. For large NE the function gE approaches a power law

gEðNEÞ ! CNa
E for NEb1, (24)

where for the cosine with A ¼ 40 the best fit gives a ¼ 1:996� 0:011 and C ¼ ð1:922� 0:005Þ � 10�4. This
result suggests that asymptotically a ¼ 2. As can be seen in Fig. 6, even for small number of extrema, NEo10,
bI is nearly in its asymptotic regime.
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Fig. 6. Variation of bI (in pixels) as a function of the number of extrema, NE , using linear interpolation, N1 ¼ 40, �0 ¼ 0:1 and a decaying

cosine, f 2, with a ¼ 10 and A ¼ 40 (pulses), a cosine, f 3, with A ¼ 40 and c ¼ 1 (squares) and a second cosine with A ¼ 27 and c ¼ 0

(triangles).

Fig. 7. Variation of bI (in pixels) as a function of �0 using linear interpolation, N1 ¼ 40 and a Gaussian, f 1, with s ¼ 10 (circles), a

decaying cosine, f 2, with a ¼ 10, A ¼ 40 and n ¼ 2 (pulses) and a cosine, f 3, with A ¼ 40, c ¼ 1 and n ¼ 5 (triangles). The values of bI for

f 2 and f 3 have been normalized such that they are equal to those of the Gaussian at �0 ¼ 0:1. Notice that for f 2, NE ¼ 5 and for f 3,

NE ¼ 11. Circles almost precisely cover the other symbols. Differences between the data points at fixed �0 are nowhere larger than

1:5� 10�6.
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In addition to the dependence on NE , bI also depends on the value of �0. In Fig. 7 we show that bI / gð�0Þ,
where gð�0Þ is weakly dependent on the form of the intensity function. From the definition of the symmetry
function, Eq. (1), it can be shown that gð�0Þ is antisymmetric, gð�0Þ ¼ �gð��0Þ.

4. The bias for the symmetry algorithm in 2D—theory and simulations

In two dimensions, the behavior of b ¼ ðbx; byÞ is similar to the 1D case discussed in the previous section if
each of the components is viewed separately. E.g. for bx we obtain similar equations for the symmetry function
as Eqs. (9)–(11). The only difference is the additional summation along the y direction,

PN1

j¼�N1
, and the

fact that the derivatives of f become here partial derivatives with respect to x, f 0 ! f x. This also applies for
Eqs. (12), (18) and (19). The difference between 1D and 2D will appear when determining the dominant pixel,
ðid ; jd Þ. In 2D, there are 2N2

1 single pixel biases, bx;Dði; jÞ’s and bx;I ði; jÞ’s, that have to be arranged in order of
increasing value to find which one determines the minimum of the symmetry function. As in 1D, the behavior
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of the bias is particularly simple for the axially symmetric 2D Gaussian. Here as well, the discretization bias,
bx;D, is approximated by the contribution from the pixel at ðfixðsÞ; 0Þ that has the largest derivative. As a result,
the estimate for Sdðbx;DÞðNÞ is the same as in 1D and the exact Sdðbx;DÞðNÞ behaves similarly to that in 1D (see
Fig. 8a). However, in 2D there is some additional structure beyond the N�1 behavior which is due to the low
intensity pixels effect (see Section 3.2). Moreover, in 2D, Sdðbx;DÞðNÞ is smaller than in 1D due to the large
increase in the number of pixels that compete to be dominant (see Section 3.2). As for the bx;I ði; jÞ’s, they are
independent of j and depend on i in the same way as in 1D. Therefore, the interpolation bias for the Gaussian,
bx;I , has instead of a single dominating pixel an entire column of such pixels, ðid ; jÞ, where id is given by
Eq. (22). Together these determine the minimum of the symmetry function. This column plays the same role in
2D as the single determining pixel, id , in 1D. It is therefore to be expected that there will be no difference
between the 1D and 2D behaviors of bx;I ðsÞ (see Fig. 9). The identical behavior of bx;I in 1D and 2D is
particular to the Gaussian and other functions that have simple derivatives. For example, this will not be the
case for the 2D decaying exponential, f 2.

The dependence of bx;I on the other parameters, namely, the number of extrema, NE , and �0 was also found
to be similar in 2D to the behavior found in 1D. This is illustrated in Figs. 10 and 11.
a

b

Fig. 8. The 2D analog of Fig. 4. The parameters are the same as in Fig. 4 and the functions are the 2D analogs with x replaced by r. Only

the case of linear interpolation is shown. (a) Sdðbx;DÞ for the 2D Gaussian (triangles) is compared with the 1D case (circles) and the

theoretical estimate of Eq. (16) that here is the same for 1D and 2D (line). (b) Sdðbx;DÞ for the 2D decaying exponential (triangles)

compared to theory (line).
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Fig. 9. The 2D analog of Fig. 5. The bx;I for the 2D Gaussian with the same parameters as in Fig. 5 (circles) is compared to the data of

Fig. 5 (line).

Fig. 10. The 2D analog of Fig. 6. Both the parameters and the symbols are the same as in Fig. 6 only that here the functions are the

corresponding 2D analogs of the functions of Fig. 6. For comparison the behavior of the 1D cosine of Fig. 6, f 3, with A ¼ 40 and c ¼ 1 is

also shown (circles).

Fig. 11. The 2D analog of Fig. 7. Both the parameters and the symbols are the same as in Fig. 7 only that here the functions are the

corresponding 2D analogs of the functions that were used in Fig. 7.

G. Carmon et al. / Physica A 376 (2007) 117–132 129
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5. Tracking microbeads with the symmetry algorithm—experiment

We have compared the performance of the symmetry and cross-correlation algorithms for the case of latex
beads (Polysciences) of 2:8mm diameter. These were imaged on an inverted Olympus microscope (IX70) with a
100X objective (1.35NA, oil immersion). Images were recorded using an analog CCD (Cohu 4912) and
captured to computer with an 8-bit/pixel (N ¼ 256) video card (Scion LG3-64 CCIR). The CCD has a
6:4� 4:8mm image area containing 752� 582 pixels. The pixel size is 8:6� 8:3 mm. The S/N ratio is advertised
to be better than 56 dB at 0 gain and g ¼ 1. In our system, the pixel corresponds to an area of 82� 78 nm of
the sample. The beads were fixed to the glass bottom of the sample and we recorded 100 frames at 25 frames/s
(see Fig. 12). We compute the distance between the centers of two beads, d12, in each frame. In order to reduce
the influence of the background, we limit the range of i and j in Eq. (1) such that i2 þ j2pr2, where r ¼ 40
pixels is about the size of the radius of the bead image. We find that the standard deviation of the distance,
Sdðd12Þ, is similar for the two algorithms and that its values are within 20% of each other. Sdðd12Þ varies in the
range between 0.7 and 1.0 nm and is typically smaller when the cross-correlation algorithm is used. Using
slightly defocused bead images for tracking (as in Fig. 12b) leads to larger differences between the performance
of the two algorithms. In this case, the cross-correlation algorithm is up to 2.5 times more accurate than the
symmetry algorithm. However, both algorithms give larger errors for such images.

For both focused and defocused bead images, the symmetry algorithm gives practically identical values for
Sdðd12Þ when either linear or cubic spline interpolation is used. This suggests that the discretization error, bD,
is dominant for such images, bDbbI .

In order to understand the experimental relevance of the discretization bias, we should compare its
contribution to the tracking error to that from the other types of error. In particular, two types of noise need
to be considered, namely, the dark noise, Df dk, and the photon counting noise, Df ph. While both the
discretization error, Df D, and the dark noise in each pixel are independent of the intensity value, Df ph, is given
by

ffiffiffiffiffiffiffiffi
Nph

p
, where Nph is the number of photons that reaches the individual pixel in one frame.

To measure the number of photons we replaced the camera with a photodiode (UDT PIN-10D). Since the
spectral responsivities of the camera and the photodiode are different, we performed the calibration in a 10 nm
wide spectral window centered at l ¼ 635 nm using a band filter. In this spectral range, each intensity level in
our CCD, ranging between 0 and 255, corresponds to about 355 photons. Varying the illumination intensity
we find that hf iðNphÞi is linear with only 0:21% error in the slope. The average of f i was taken over all the
pixels in 20 consecutive frames. Next, we use the data to measure Sdðf iðNphÞÞ. To eliminate the effects of
background, we subtract consecutive frames and compute the standard deviation of the difference. The Sd of
the difference is further divided by

ffiffiffi
2
p

and averaged over 19 frames. We find that Sdðf iðNphÞÞ ¼ A1

ffiffiffiffiffiffiffiffi
Nph

p
þ B1

where A1 ¼ 1:1� 0:1, B1 ¼ 157� 16 and Nph 2 ð2500; 62 500Þ. The dark noise, corresponding to Nph ¼ 0,
turns out to be larger than the value of B1, namely, Sdðf iðNph ¼ 0ÞÞ ’ 208. This could be due to the
dependence of the read-out noise, Df rd , on Nph. Since we cannot measure Df rd independently, in this
discussion, we regard it as part of the dark noise, Df dk.
Fig. 12. Images of microbeads of 2:8mm diameter that were used in the tracking experiment. (a) A focused bead image. Its center is

saturated. This leads to the best tracking accuracy. (b) A defocused bead image.
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To compare the three types of error it is convenient to express their magnitude in units of intensity on the
8-bit scale. For simplicity, we assume that the noise levels that we found do not depend on the wavelength. As
discussed in Section 3.2, on this scale the discretization error is obtained as the standard deviation of a top-hat
distribution over the ð�1

2
; 1
2
Þ interval, that is, SdðDf DÞ ¼

1
2
ffiffi
3
p ’ 0:29. On the other hand, SdðDf dkÞ ’ 0:59 and

the photon counting error will further increase that up to a maximum of SdðDf ph;maxÞ þ SdðDf dkÞ ’ 1:32.
Thus, for our CCD the three types of errors are of similar magnitude and none can be neglected. This prevents
us from comparing the measured error with the one estimated by our analysis. Such comparison is further
impeded by the fact that since Df ph depends on the intensity, Eq. (18) cannot be applied and needs to be
generalized to include this situation. Such generalization will allow to minimize the tracking error given the
characteristics of the CCD and the particle image.

6. Conclusions

We have presented a simple algorithm for symmetric particle tracking and have analyzed the behavior of the
corresponding discretization error. The structure of the symmetry function was discussed and was used to
deduce its behavior at the minimum. The discretization error was shown to be composed of a part that is
due to the intensity discretization and another that is due to interpolation. Approximate formulas for these
two components of the error were derived and compared to numerical results for representative functions.
Finally, we applied the symmetry algorithm to bead images and compared the magnitude of the various
sources of error.

The total error, bT , contains additional contributions from optical abberations and imperfections of the
CCD, e.g. banding, interlace, clock jitter, etc. [26,27]. In a high quality, low noise, cooled CCD it should be
possible to isolate the discretization error and compare its behavior to our estimates. In CCD’s N is always a
power of 2, N ¼ 2q, where typically q ¼ 8, 12 or 16. Therefore, it might seem inappropriate to treat N as an
arbitrary integer as was done in this study. However, often images cannot span the entire dynamic range of the
camera and as a result a smaller, effective value of N, Neff , needs to be considered.

The symmetry algorithm is conceptually not very different from the other tracking algorithms studied in
Ref. [19]. It is therefore natural to expect that some of its features will also manifest in the other algorithms. In
particular, the SAD algorithm [19,22] has a quite similar structure to that of the symmetry algorithm. While
the former minimizes the absolute value of the difference between the images in consecutive frames, the latter
does that for the two sides of the symmetry axis. In fact, the main difference between the SAD and symmetry
algorithms is that the latter uses interpolation to obtain sub-pixel precision. Therefore, the behavior of bD is
expected to be similar in the two algorithms.
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