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Active transport on disordered microtubule networks: The generalized random velocity model
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The motion of small cargo particles on microtubules by means of motor proteins in disordered microtubule
networks is investigated theoretically using both analytical tools and computer simulations. Different network
topologies in two and three dimensions are considered, one of which has been recently studied experimentally
by Salman er al. [Biophys. J. 89, 2134 (2005)]. A generalization of the random velocity model is used to derive
the mean-square displacement of the cargo particle. We find that all cases belong to the class of anomalous
superdiffusion, which is sensitive mainly to the dimensionality of the network and only marginally to its
topology. Yet in three dimensions the motion is very close to simple diffusion, with sublogarithmic corrections
that depend on the network topology. When details of the thermal diffusion in the bulk solution are included,
no significant change to the asymptotic time behavior is found. However, a small asymmetry in the mean
microtubule polarity affects the corresponding long-time behavior. We also study a three-dimensional model of
the microtubule network in living animal cells. Three first-passage-time problems of intracellular transport are
simulated and analyzed for different motor processivities: (i) cargo that originates near the nucleus and has to
reach the membrane, (ii) cargo that originates from the membrane and has to reach the nucleus, and (iii) cargo
that leaves the nucleus and has to reach a specific target in the cytoplasm. We conclude that while a higher
motor processivity increases the transport efficiency in cases (i) and (ii), in case (iii) it has the opposite effect.
We conjecture that the balance between the different network tasks, as manifested in cases (i) and (ii) versus

case (iii), may be the reason for the evolutionary choice of a finite motor processivity.
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I. INTRODUCTION

The genetic content of a living cell is predetermined and
complete from its inception. Yet additional mechanisms are
required to translate the program into morphology [1]. This
role falls largely to the cytoskeleton and to its associated
“motor proteins” [2—4]. The cytoskeleton consists of three
distinct, even though interconnected, networks of protein
filaments: microtubules, filamentous actin (F-actin), and sev-
eral families of intermediate filaments. Microtubules and
F-actin are associated with motor proteins: kinesin and dy-
nein for the former and myosin for the latter. Due to struc-
tural asymmetry in the filaments, the motors are able to sense
their directionality. Dynein motors move exclusively from
plus to minus ends of microtubules, while most kinesin
forms move from minus to plus [3,4]. Most myosins move
from the pointed end toward the barbed end of actin fila-
ments.

The microtubule network spans through the whole cell.
This makes it ideally suited for delivery of cargos—e.g.,
vesicles, organelles, or mRNA—from the membrane to the
nucleus and vice versa or from the membrane and nucleus to
different cell compartments—e.g., the ribosome. Recently, it
has been shown that various animal viruses—e.g., adenovi-
ruses, the Herpes Simplex virus, and the HIV—take advan-
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tage of microtubule-based transport for delivery to the
nuclear envelope, where the genome is released through
nuclear pores [5-9]. Theoretical studies of active transport in
microtubule networks may shed light on the efficiency of
such processes, but only a few studies have been presented
so far [10].

Several experimental approaches have been developed to
evaluate motor function. These include single-molecule im-
aging studies [11-13], bead-based assays [15-17], and force
transducers based on optical tweezers [18-22]. Recently,
motor-assisted transport along microtubules of a protein-
DNA complex containing a nuclear localization signal has
been experimentally studied in vitro [13]. The system is
based on a cell-free Xenopus egg extract [ 14]. Direct single-
particle tracking and detailed statistical analysis have been
used to deduce the mean-square displacement (MSD) and
probability distribution function (PDF). A disordered three-
dimensional (3D), plane-oriented, microtubule network
forms in the sample. The microtubules are mainly oriented in
the (x,y) plane; however, since the thickness of the sample is
significantly larger than the mesh size, there are several lay-
ers of microtubules along the z axis. The observed MSD of
the cargo in the (x,y) plane is found to behave similarly to
that of a Brownian particle, increasing linearly with time,
even though chemical and antibody inhibition studies clearly
show that the transport is of active nature and is based pri-
marily on dynein. It is therefore important to understand the
way that active transport in such a disordered microtubule
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tion between the topology and the resulting MSD is of gen-
eral interest. The initial theoretical steps required to explain
this behavior have been recently put forward [13]. The active
transport involved is similar to transport on a disordered rail-
way track network. On each track only one direction of mo-
tion is allowed. The “locomotor” moves with constant veloc-
ity on a single track, then falls off and hops to one of the
nearest-neighboring tracks and so on.

In intact animal cells, microtubules usually project radi-
ally from a centrosome with outward polarity (minus ends at
the centrosome). This allows the delivery nuclear-targeted
cargo to the nuclear envelope using dynein or membrane-
targeted cargo to the membrane using kinesin. Yet cargos that
need to reach a localized cell compartment, positioned away
from the centrosome and the membrane, will have to follow
a more complicated route, involving more than one track.
Moreover, due to large internal stresses that induce bending
of the microtubules, the network often becomes uniformly
disordered on a local scale even if global polarity remains
(see Ref. [1], p. 807), suggesting that transport on short
length scales may be similar to the transport studied in vitro
[13]. In fact, living cells are not always organized around a
centrosome from which microtubules grow. In some animal
cells, the microtubule network is disordered with respect to
both the position of microtubules and their polarity [23]. In
plant cells, while microtubules do nucleate around the
nuclear envelope, there may also be nucleation throughout
the cytoplasm.

From a statistical physics viewpoint, motion on a micro-
tubule network is similar to the random velocity model
(RVM), where all tracks (the field lines) are parallel to each
other [24-26]. In the simplest case, to which we shall refer in
the following as the (1+1)-dimensional [(1+1)D model] the
particle performs a 1D random walk between “tracks” with
random polarity, leading to a quenched disordered velocity
field. The result is enhanced (or “super”) diffusion of the
particle in the direction parallel to the tracks with an MSD
increasing as ~t¥? [24]. In the corresponding (2+1)D
model, tracks form a 2D parallel array with randomly as-
signed polarity. In this case, the resulting enhanced diffusion
is more moderate with the MSD increasing as ~7In ¢ [25].
However, in both models tracks do not intersect, whereas, as
described above, in realistic microtubule networks intersec-
tions are common. A motor protein moving on a microtubule
will fall off after a short “processivity time” typically of the
order of 1 s, diffuse in the solution, and subsequently attach
to an adjacent microtubule whose polarity is uncorrelated to
the polarity of the first microtubule. Therefore, application of
the random velocity model to transport on microtubule net-
works requires a suitable generalization of the model. Renor-
malization group calculations for such “velocity fields” have
been carried out and are closely related to the models studied
in this paper [27]. Studies concerning motion on a single
microtubule track in restricted geometries are also closely
related to the present work [28,29]

In what follows we study several models of disordered
microtubule networks. Three different network topologies
are considered: a purely 2D square lattice network, a purely
3D simple cubic network, and a 3D network that consists of
alternating planes of (1+1)D organization. The latter models
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the experimental system studied in Ref. [13]. We show that
the resulting enhanced diffusion of the particle is sensitive to
both the dimension and topology of the network. In order to
model the transport more realistically, in a separate study of
a 3D network we include the diffusion in the bulk solution
and the falling off and attachment processes between bulk
solution and microtubules. As expected, including such de-
tails does not affect the scaling behavior in time. We further
extend our analysis to asymmetric networks where the global
mean polarity does not vanish, leading to a crossover at long
times to a partially diffusive behavior. Finally, we present the
case of a 3D animal cell model. It mimics a 3D animal cell
with microtubules that radiate from a centrosome (also
known as a microtubule organization center), ending near the
cell membrane. The model includes significant local orienta-
tional disorder, on top of the radial global orientation. We
examine transport efficiency [30] for three cases: (i) cargo
that originates at the nucleus and has to reach the membrane,
(ii) cargo that originates at the membrane and has to reach
the nucleus, and (iii) cargo that leaves the nucleus and has to
reach a specific localized target in the cytoplasm. The trans-
port efficiency is characterized in the three cases via the first-
passage-time probability and examined for varying motor
processivities. We discuss the role of the finite motor proces-
sivity in optimizing the transport for different network tasks.

II. RANDOM VELOCITY MODEL: A REVIEW

Before dealing with realistic microtubule networks, we
briefly review the random velocity model for simple topolo-
gies that have been analyzed theoretically in the past. The
theoretical tools that have been developed to analyze this
model will later allow us to analyze realistic microtubule
networks.

The symmetric (1+1)D model. The random velocity
model [24,26,25,27] was originally introduced for the study
of ground water flow in layered media and was defined in 2D
[31,32]. In what follows we refer to it as the (1+1)D model.
It assumes a 1D array of parallel tracks along (say) the y
axis. The tracks are assigned random polarities, +1 or —1,
with equal probabilities—i.e., p=0.5 for each direction.
Since these values do not change in time, we have quenched
polarity disorder. Particles perform random walks between
the tracks along the x axis. When a particle attaches to a
certain track, it moves with a velocity *uv according to its
polarity. We seek to characterize the net motion along the y
axis in the long-time limit, in particular via the MSD.

As the process is stationary, one may either consider a
single particle and perform time averaging or, alternatively,
an ensemble of particles, each starting from a randomly cho-
sen track. While the corresponding mean (y()) vanishes, the
MSD (y*(¢)) does not. Yet since the track “polarity” field
(i.e., the velocity field) is quenched, the motion along the y
axis is faster than simple diffusion. The MSD for this model
has been derived by Zumofen, Klafter, and Blumen [24]:

4v%é

3(7TD)1/2t3/2' (1)

¥ 0) =

Here ¢ is the mesh size—i.e., the spacing between tracks—
and D is the diffusion coefficient of particles along the x
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axis. Transport with an MSD that increases as t* with «
>1 is termed enhanced diffusion or superdiffusion. The «
=3/2 exponent in this model can be obtained from a simple
scaling argument. “Canceling” of the motion in the y direc-
tion does not occur whenever the particle reattaches to the
previous track. Hence the track that is most visited will
dominate the motion, and this track is the track located at the
origin, x=0. Consequently, one expects that

((0) ~ Po (D0, (2)

where P (t) is the probability of return (within a mesh size
&) to the origin of the x axis—i.e., Py,=&P,(0,7), where
P,(x,1) is the PDF along the x axis. Since Py (1)~ in
1D, this scaling argument leads to (y(#)?) ~#*? or, more pre-
cisely, (y2(¢)) = (v2&/D"?)r¥?, which is consistent with Eq.
(1).

In fact, from the exact procedure of Zumofen et al. [24]
one may derive a general result for the RVM that holds in-
dependently of the exact nature of the motion along the x
axis, as long as it remains a stochastic process. Specifically,

in the Laplace transform plane [henceforth f(x) denotes the
Laplace transform of f(r)],
2

) =5 Py, (), @
which justifies the scaling approach of Eq. (2). We may
transform Eq. (3) to the time domain to obtain a differential
equation for (y*(f)) by taking the initial conditions to be
(y*(0))=0 and %(yz(t)>|,=0=0. The latter condition is ex-
pected to be exact for the long-time asymptotic behavior
when extrapolated to r=0. The differential equation is thus

dZ
S020) =207 (). @

For P, (t)=¢&/\(47Dt) the solution of Eq. (4) is given by
Eq. (1). Equation (4) will be a useful starting point for the
analysis of networks.

The (2+1)D symmetric model. Consider a 2D parallel
array of tracks directed along the y axis—that is, perpendicu-
lar to the (x,z) plane. The cargo particle is performing a 2D
random walk between these tracks. To find the MSD along
the y axis we only need to replace P () in Eq. (4) with the
probability of return to the origin of the (x,z) plane, Py . (r).
For a simple random walk among tracks, Py (1)
=&/(4mDt), and the asymptotic behavior can be obtained
from Eq. (3) or (4) [27]:

) UZ 2 ( ¢ )
) =S —5tn - (5)
Here 7,=£/(4D) is the hopping time between tracks and has
been chosen as the short-time cutoff (i.e., £=0 has now
shifted to t=17,). Note that (y*(f))~In ¢, very close to regu-
lar diffusion.

Asymmetric (1+1)D and (2+ 1)D models. Suppose that
we introduce asymmetry in the random walk along the x
axis, with probability p for a step to the right and ¢ to the
left. The mean position is proportional to time, {x(1))=(p
—q)f-ot (where 7, is the hopping time, 7,=£?/2D), while the
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standard deviation about the mean (i.e., the root of the MSD)
is proportional to the square root of time, {(x—(x))?)!/?
:2\““'p—q§\/fz0 . Hence, at long times the probability of return to
the origin becomes infinitesimally small and the random
walker visits essentially only new tracks. Thus, the motion
along the y axis becomes equivalent to a random walk with
50% chance to go up and 50% chance to go down and an
effective “hopping time” 7,/|p—g|. In the (1+1)D model we
therefore expect a crossover from the ~¢¥? behavior at
“short” times (still much longer than 7,) to ~7 at long times.
More quantitatively, we may define & as the ratio of the root
MSD (the standard deviation) to mean distance traveled, &
A EE0) SV
= &) T |p-ql\iim
behavior applies and when §<<1 one obtains regular diffu-
sion. This defines a crossover time t*Z(é‘iq)—z)ro, and the
MSD is predicted to be

, such that when 6> 1 the symmetric type

402
—gl/zty2 for r < r*,
5 3(wD)
(1) = 2.2 (6)
v§ ,
1 for t > t*.
2D|p -4

Similarly, a crossover between a ~¢In t and a ~ behavior is
expected for the (2+1)D RVM. Note that the long-time be-
havior is dramatically altered for arbitrarily small deviations
from polarity symmetry—that is, for any nonvanishing
p—q. In practice, however, the long-time behavior may not
be observed if this deviation is vanishingly small, since the
crossover time itself also diverges as [p—g|— 0.

Computer simulations. Computer simulations of the (1
+1)D and (2+1)D models have been performed. Below we
concentrate only on the asymmetric (1+1)D and symmetric
(2+1)D cases. We have simulated the motion in a large num-
ber of realizations for the polarity disorder and a large num-
ber of walks in each realization. After averaging over trajec-
tories, the mean position of the particle along the y axis is
found to vanish (as expected by symmetry) and the MSDs
along this axis are computed.

In the simulations of the asymmetric (1+1)D model, the
particle has been given a probability p=0.505 to hop to the
right and g=1-p=0.495 to hop to the left. Figure 1 shows
the MSD of the (1+1)D model along the y axis (the track
orientation axis) as obtained from averaging over 10* par-
ticles. The data are fitted to Az (solid and dashed lines). For
intermediate time scales (solid line) we find a superdiffusion
exponent &=1.499 £ 0.001 and a prefactor A=1.01 =0.01, in
good agreement with the theoretical values a=1.5 and (for
this parameter set) A=1.0638. For long times (dashed line)
the simulations yield @=1.01=*0.01, in good agreement with
the theoretical value a=1, and A=186.6* 0.6, which is
about twice the theoretical value A=100. This disagreement
is due either to the limited simulation time or to the limita-
tions of the theoretical approach. The crossover time ob-
tained from the simulations is ¥~ 8 X 1037'0, in the same
range as the theoretical estimate £~ 10*7,.

In the simulations of the symmetric (2+1)D model, at
each site the particle has probability f=0.7 to stay on a track
and probability 1—f=0.3 to hop to one of the four neighbor-
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FIG. 1. (Color online) The MSD in the asymmetric (1+1)D
RVM, normalized by &, where £ is the distance between tracks.
The circles are simulation data. The lines are best fits of the data to
(y*)=Ar®. For intermediate time scale (solid line) A=1.01*0.01
and @=1.499+0.001; for long time scale (dashed line) A
=186.6*=0.6 and a=1.003 == 0.031.

ing tracks (with equal probabilities). The MSD along the
tracks (the y axis) is shown in Fig. 2 [shown is %22 against
ln(fo)] and compared to the corresponding best fit to (y?)
:At[ln(fo)]ﬁ with A=1.337%0.002 and B=0.934+0.001.
While the analytical value (noting that ¢ is measured in units
of 75) A=2/7=0.637 is about half of the one found in simu-
lations, the exponent 8 is in good agreement with the ana-
Iytical prediction S=1.

III. ACTIVE TRANSPORT ON DISORDERED
MICROTUBULE NETWORKS

We now turn to study active transport on disordered mi-
crotubule networks that is carried out by the motor proteins
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FIG. 2. (Color online) Normalized MSD in the symmetric (2
+1)D RVM, divided by the time. The circles are simulation data.
The line is a best fit of the data to <y2)/t=A[ln(TL0):|ﬂ with A
=1.337%+0.002 and 8=0.934+0.001.
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FIG. 3. (Color online) Schematic presentation of 2D microtu-
bule networks. The arrows denote the polarity; i.e., they point to-
wards the minus end of the microtubule. (a) A network with both
orientational and polarity disorder. (b) A 2D microtubule, square
lattice, network bearing polarity disorder, but no orientational
disorder.

kinesin or dynein. We will examine the effect of microtubule
polarity disorder in different network topologies in two and
three dimensions. The polarity of the microtubule determines
the velocity direction of the motor protein (kinesin or dy-
nein) that is attached to it. Therefore, the RVM, generalized
here to networks, provides a suitable theoretical framework
for the description of such active transport. We will not in-
corporate into the model the precise orientational disorder
that may occur in realistic networks [13], since we believe it
will not affect the main characteristics of the transport.

A. Disordered 2D network

First, we consider a purely 2D system, although such sys-
tems are hard to realize in experiment. This example will
serve as an intermediate case study connecting between the
random velocity models discussed in Sec. II and the 3D net-
works. A disordered 2D network, in which both polarity and
orientation are random, is depicted in Fig. 3(a). A simplified
version of the model, in which orientational disorder is miss-
ing, is shown in Fig. 3(b). Since all microtubules are identi-
cal, on average the motion on the network of Fig. 3(b) is
isotropic. The same holds for the motion on the network of
Fig. 3(a). Moreover, at long times the underlying square lat-
tice in Fig. 3(b) is expected to affect only the fine details and
not the main characteristics of the motion. The rationale of
this approach is similar to modeling diffusion by using ran-
dom walk on a lattice, rather than in the continuum.
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Let ¢ be the mesh size of the network of Fig. 3(b). The
particle moves on a particular track with constant velocity v
in the direction prescribed by track polarity. At intersections,
we assign a probability f for the particle to remain on its
track and a probability 1—f to hop to the crossing track. In
our simulations, f is close to unity (typically above 0.6),
allowing the particle to sample many different tracks in the
different realizations of the trajectory. Thus, in the limit 1
—f<<1 the model corresponds to an exponential processivity
waiting time distribution (i.e., the probability of the particle
to remain on the track at time 7 given that it was on the same
track at r=0) W(¢) =™, where 7,=1,/(1-f) and 7,=&/v
is the time it takes to move between two consecutive inter-
sections. For cellular networks the mean processivity time 7,
is typically of order 1 s and v is order 1 wm/s. Thus, for a
given mesh size we may determine the model parameter f;
e.g., for £=0.1 um we get f=0.9.

Symmetric network. Consider first the case where exactly
half the tracks are pointing right or left and half up or down.
Evaluation of the particle motion characteristics in this sys-
tem cannot be done using Eq. (4) as for the (1+1)D RVM.
Instead, we use a self-consistent approach that is based on
the scaling law of Eq. (2) and on the fact that the motion
along both axes x and y must be statistically equivalent.
Hence, in the long-time limit this motion is described by the
two coupled equations

() ~ Po(0?r, (7)

(X(1) ~ Py (0. (8)

In addition, we assume the following scaling relations be-
tween the return probabilities and the corresponding MSDs:

3
~—_— 9
PO,x(t) \€’F<x2(t)> ( )
and
¢
Py (1) ~ = ) 10
0 VA1) (1o

Such relations hold for Gaussian and “stretched-Gaussian”
PDFs:

ol ()] o
r(z—y)\fzw(t» i

with y>0 (y=1 defines the Gaussian distribution). Since
symmetry requires (x*(£))=(y*(1)), we get

& 22
(x*(2)) \’Wv . (12)

For the 2D MSD {p*(1))={x*(t))+{y*(¢)), this implies that
<p2(l)> — 52/31)4/314/3. (13)

Thus, here the exponent of enhanced diffusion is 4/3,

smaller than that of the (1+1)D model, 3/2. The lower ex-

ponent is due to the increase in the velocity (polarity) field
dimensionality d,, changing from d,=1 in the (1+1)D
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model to d,=2 here. A similar dimensional reduction of the
anomalous diffusion exponent is also found in the (2+1)D
model. In the latter, the Euclidean dimension (d=3) is larger
than in the (1+1)D model (d=2), but the velocity field di-
mensionality is the same, d,=1. Indeed, departure from the
usual random walk result is mostly due to the “memory” that
the particle carries. Since the disorder is quenched, the par-
ticle “remembers” the polarity of a track to which it was
attached in the past, and upon returning to it, it is forced to
move in the same direction as before. We expect that, in
higher dimensions, this correlation effect will become
weaker and will lower the superdiffusion exponent towards
unity. Note that in the long-time limit the MSD is indepen-
dent of the processivity time 7, (and the probability to re-
main on the same track, f). This will be verified in the simu-
lations.

A more accurate self-consistent approach is based on Eq.
(4), leading to the coupled equations

d2
S00) =20, ), (149

d2
ﬁ()cz(t» =20%P (t). (15)

Using the symmetry between the dynamics in the x and y
directions, we obtain that

d2
ﬁ(xz(t» =20°Py(1). (16)

Assuming P, =CE(x*(1)))™""%, where C is a numerical con-
stant,

Y

EF(L>
Y 27

(for a Gaussian PDF C=1/12%), and denoting by ¢(t)
= (x*(1)), Eq. (16) becomes

C= (17)

¢”2d—2¢— 2Cv¢ (18)
'’ ’

with ¢(0)=0 and ¢'(0)=0. Assuming a power-law solution
leads to the 2D MSD

<p2(l‘)> — 21/3(9C)2/3(l}2§)2/3t4/3, (19)

in agreement with the simple scaling approach. [For a Gauss-
ian distribution, 2"3(9C)*3=2.95.]

Asymmetric network. In a more general configuration of
the network, tracks along the x axis point to the right with
probability p and to the left with probability g=1-p. Such
asymmetry leads to a constant drift (x(¢))= (p—g)vt. Similar
to dynamics in the asymmetric (1+1)D model, along the y
axis we expect a crossover from the symmetric-model behav-
ior, (y2(¢))~*3, at short and intermediate times, to regular
diffusion (y?(¢))~1 at long times. In turn, this implies that
along the x axis, the MSD about the constant drift should
exhibit a crossover from {(x—{x))?) ~*? to a ~#'*> behavior
similar to that in the (1+1)D model. The behavior of the
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FIG. 4. (Color online) PDF along the x axis at time =107, for
the 2D network. The circles are simulation data, and the line is the
best-fitting stretched Gaussian PDF, Eq. (11), with y=0.96 £0.01

and o= \f@:MOi 1, correlation coefficient R=0.999.

MSD can be further quantified using, as before, the dimen-
\ 2 241/3,2/3
sionless quantity s=X& ) M_L Here 6~1 corre-
[Ge()] lp—qlot . L
sponds to the crossover and the crossover time is t*
= ﬂfﬁ' Therefore we expect that

)
(9C2)?32e)*? *? for t < r*,

?) = 20
o9 vé t for 1> r*. 20)
Lp -4l

(9C/2)2/3 (025)2/3 t4/3

— 2 = ‘J”_
((x =) :\’,E|p—q|“2v3/2§”2 A2 for 15 1.
Y V7T

for r < r*,

1)

Note that as |p—¢q| — 0 the crossover time diverges, implying
that longer observation times are required to detect the
asymptotic long-time behavior, and the ~#*3 behavior of the
symmetric case is recovered.

Computer simulations. Computer simulations for both the
symmetric and asymmetric 2D networks have been per-
formed. We chose the probability to remain on track at inter-
sections to be in the range f=0.5-0.9. This range of f gives
the particle a sufficiently broad sampling of different tracks
along its stochastic trajectory, while maintaining a reasonable
computation time. In the symmetric 2D network, the mean
position of the particle vanishes (as expected by symmetry)
and, within the accuracy of the simulations, the PDF’s are
Gaussian. Figure 4 shows the PDF of the symmetric network
along the x axis for f=0.6. We used 10° particles and 10°
steps, where each step corresponds to the physical time
7,=&/v. Similar results were obtained for motion along
the y axis. The numerical PDF is compared to the best-
fitting stretched Gaussian, Eq. (11), with an exponent y
=0.96£0.01 and correlation coefficient R=0.999. The PDF
was also compared to the best-fitting Gaussian. For this fit
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10* 10° 10°

FIG. 5. (Color online) 2D MSD in the symmetric 2D network
model for processivity f=0.6. The circles are simulation data,
and the solid line is a fit to (p?)=Ar® with A=1.164+0.001 and
@=1.3331x107*

R=0.999 and the fitted Gaussian is indistinguishable from
the corresponding stretched Gaussian.

Figure 5 shows the 2D MSD fitted to a power law,
(p?(t))=At* with @=1.3331+107%, in good agreement with
the analytical value a=4/3. The corresponding numerical
prefactor is A=1.164 = 0.001, about one-third of the theoret-
ical value A=2.9542. The origin of this discrepancy is not
clear and could be due to the approximation involved in the
self-consistent approach or because the simulation time does
not reach the asymptotic regime. In Fig. 6 we plot the MSD
for different values of the probability to stay on track f and,
correspondingly, different values of the processivity time 7,,.
The behavior of the MSD in the asymptotic regime is found
to be independent of f, as predicted by Eq. (19), although at
intermediate times we find some f dependence.

Figures 7(a) and 7(b) present simulation results for the
asymmetric 2D network for processivity parameter f=0.7
and asymmetry p=0.52. Figure 7(a) shows the MSD about
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FIG. 6. (Color online) 2D MSD in the symmetric 2D network
model for different processivities f in the range 0.5-0.9. Note that

all curves converge to a single line in the long-time limit with
(p?)~1*, a=4/3.
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FIG. 7. (Color online) MSDs in the asymmetric 2D network for
f=0.7 and p=0.52. The circles are simulation data, and the lines are
fits to Ar* in two regimes of times. (a) The MSD about the drift
along the x axis, ((x—(x))%(#)). For the intermediate-time regime
A=0.638*+0.002 and a=1.3304=*0.0003 (solid line); for the long
time regime A=0.1643*=0.0002 and a=1.4549+0.0001 (dashed
line). (b) The MSD along the y axis, {(y*(t)). For the intermediate
time regime A=1.101 £0.015 and @=1.246 = 0.002 (solid line); for
the long time regime A=10.1+0.1 and @=1.0191 +0.0002 (dashed
line).

the drift along the x axis, for which there is a net polarity
(p# q). We note the crossover from the ~#*3 behavior for
short and intermediate times (solid line) to the ~7>'> behavior
for long times (dashed line) as predicted in Eq. (21). More-
over, in Fig. 7(b) we show the MSD along the y axis, dis-
playing a crossover from ~1** behavior for short and inter-
mediate times (solid line) to ~¢ behavior for long times
(dashed line) as predicted in Eq. (20). The simulation values
for the two superdiffusion exponents are close to those pre-
dicted theoretically—namely, 4/3 and 3/2 (see figure cap-
tions).
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(@

(b)

FIG. 8. (Color online) Schematic presentation of 3D microtu-
bule networks. The arrows denote the polarity; i.e., they point to-
wards the minus end of the microtubule. (a) 3D network with both
orientational and polarity disorder. (b) 3D cubic lattice network
bearing polarity disorder, but no orientational disorder.

B. Disordered 3D network

Next we consider a 3D network that is similar in topology
to the 2D network, only that it has an additional dimension
[see Fig. 8(b)]. As in the 2D case, it includes quenched po-
larity disorder. We assume that the network in Fig. 8(b) can
mimic the dynamics of the more realistic network shown in
Fig. 8(a). In the following, we consider both symmetric and
asymmetric networks with respect to the mean polarity, and
obtain results from scaling and extension to scaling via a
self-consistent approach similar to the one used in 2D.

Symmetric 3D network. We commence, as before, with
the scaling approach valid in the long-time regime. There,
we may assume that the following relations hold:

<x2(t)> -~ PO,yz(t)vzt2’ (22)

<y2(t)> -~ PO,xz(t)Uztz’ (23)
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<Z2(t)> -~ PO,xy(t)vztz’ (24)

where Py .z is the probability of return to the origin of the
(a, B) plane. Moreover, the scaling relations between the re-
turn probabilities and the MSDs,

&
PO,xy(t) \’W’ (25)

52
P N —~ /= ’ 26
0,}z(t) \€'<y2><Z2> ( )

2
Py (1) ~ ﬁ (27)

are also expected to hold. Using statistical equivalence be-
tween the axes, (x*(1))={(y*(t))=(z*(1)), leads to the 3D MSD

(r’(1) ~ vér. (28)

Note that the time dependence is diffusivelike, (r?) ~1, de-
spite the active nature of the transport. We attribute this be-
havior to the effect of increased dimensionality, as explained
after Eq. (13).

Next, we use a more accurate approach that relies on Eq.
(4) and the statistical equivalence of the axes to obtain a
differential equation for the 1D MSD ¢(r) = (x*()),

d2
¢ ¢=2007¢, (29)
dt
with the initial conditions #(0)=0 and d¢/dt|,=0. (The
same equation also holds for the MSD along y and z.) Solv-
ing analytically Eq. (29) is possible; see Appendix B. How-
ever, the solution is implicit and we therefore concentrate on
the limit > 7,, where 7,=&/v. The asymptotic solution for
this limit is derived in Appendix A using directly Eq. (29)
and, in Appendix B, using the formal exact solution. Conse-
quently, the 3D MSD is

5 ( ¢ )1/2
(r*y=6Cvé&|In—| . (30)

This represents a weak correction to the scaling diffusivelike
result {(r*)~1 in terms of a sublogarithmic factor (In 7)!/2.
Asymmetric 3D network. In the asymmetric version of the
3D network, tracks along the x axis point to the right with
probability p and to the left with probability g=1-p. The
dynamics along the other two axes y and z remains symmet-
ric. We therefore expect a constant drift (x(r))=(p—q)vt
along the x axis. Consider now the motion along the y axis.
While at intermediate times we expect ~#(In £)!/> behavior as
in the symmetric case, at long times the MSD will grow
linearly with time. The latter is due to the polarity random-
ization along y that, in turn, results from the constant drift
along the x axis. The same behavior is expected in the z
direction; however, such crossover is barely observable.
Similar behavior is expected for the MSD (about the drift)
along the x axis. At intermediate times the MSD grows as
~t(In ). Since in the (y,z) plane motion is asymptotically
diffusive, we expect the long-time MSD (about the drift)
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FIG. 9. (Color online) PDF along the x axis for processivity f
=0.6 and at time #= 10’1, for the 3D network. The circles are simu-
lation data, and the line is the best-fitting stretched Gaussian PDF,
Eq. (11), with y=0.983 =0.006 and o=\{(x?)=244.6 + 0.6, correla-
tion coefficient R=0.9999.

along the x axis to behave in the same way as the MSD of
the (2+1)D RVM discussed in Sec. II—i.e., ~¢1Inz. Once
again, such crossover is barely noticeable, and therefore we
will not pursue the study of this model.

Computer simulations. Computer simulations of the sym-
metric 3D network have been carried out. As for the 2D
network, we assign at each junction a probability f=0.6 for
the particle to remain on the track on which it is moving and
a probability 1—f to bind to one of the two perpendicular
tracks (with equal probabilities). We have verified that the
mean position of the particle vanishes as required by sym-
metry. Figure 9 shows the PDF along the x axis for f=0.6.
We used 3 X 10* particles and 10° steps; each step corre-
sponds to a time 7,=§/v. The PDF is compared to the best-
fitting stretched Gaussian, Eq. (11), with y=0.983 %= 0.006
(R=0.9999). The PDF was also compared to the best-fitting
Gaussian. For this fit R=0.9997 and the fitted Gaussian is
indistinguishable from the corresponding stretched Gaussian.
Both fits show that, within the accuracy of our simulations,
the PDF is essentially Gaussian.

Figures 10(a) and 10(b) display the behavior of the 3D
MSD at long times. In Fig. 10(a), the horizontal axis is
t(In )" (log scale) and the MSD is compared to the best-
fitting A#(In ¢)"/2, yielding A=3.3126+0.0004. On the other
hand, in Fig. 10(b) the horizontal axis is In ¢ (log scale) and
the MSD, which is divided by 7 in this plot, is compared to
the best fitting A#(In 7)?, yielding 8=0.1132+0.0001 and A
=3.365*+0.001. While this value of B does not agree with
the analytical result S8=1/2, the prefactor A is not too far
from the corresponding prediction A=2.394.

C. Plane-oriented 3D network

Recently, transport in in vitro microtubule networks, with
topology similar to that depicted in Fig. 11(a), has been stud-
ied [13]. While in this system microtubules are nearly ori-
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FIG. 10. (Color online) MSD in the 3D network model for pro-
cessivity f=0.6. The circles are simulation data, and the solid lines
are fitting functions. (a) Plot of (%) vs #(In7)!/?; fitting function
(r)=AfIn f]“z with A=3.3126%0.0004. (b) Plot of gr_:z vs Int;
fitting function (+2)=Ar(In#)# with B=0.1132%0.0001 and A
=3.365=0.001.

ented in the 2D plane, the orientation distribution of fila-
ments within this plane is isotropic. Cargo particles that
posses a nuclear localization signal were shown to be carried
mostly or entirely by dynein motor proteins. Surprisingly,
the MSD obtained from single-particle tracking data shows
nearly diffusive behavior. This is somewhat counterintuitive,
since one would naively expect active transport to lead to
superdiffusive dynamics. However, in view of our results in
the previous section, these measurements may be understood
within the framework of disordered networks.

Our model for the experimental system in Ref. [13] is
shown in Fig. 11(b). It consists of planes on which the ori-
entation of microtubules alternates. Overall, the system is
isotropic in the projected 2D plane. Since the topology of the
network in Fig. 11(b) has the same key features as the ex-
perimental system depicted in Fig. 11(a), we believe that
both networks belong to the same ‘“universality class;”
namely, their corresponding anomalous diffusion exponents
are equal. The polarity of the microtubules is random with
50% probability for each direction. The motion of the cargo
particle includes stepping along the microtubules with a fi-
nite probability to disconnect and random walks between the

PHYSICAL REVIEW E 78, 051912 (2008)

FIG. 11. (Color online) Schematic presentation of the plane-
oriented 3D network. The arrows denote the polarity; i.e., they point
towards the minus end of the microtubule. (a) Network where the
microtubules are partially oriented in 2D, but where both orienta-
tional and polarity order within the 2D plane are absent. (b) Net-
work consisting of alternating (1+ 1)D model planes, bearing polar-
ity disorder within each plane, but no orientational disorder.

filaments. Thus, the structure within each plane is identical to
that of the (1+1)D model. A summary of the main results for
this model has been presented in Ref. [13] in conjunction
with the experimental results. Below we elaborate on the
analytical derivation and include simulation results. In addi-
tion, we expand our study to include the diffusion of the
cargo in the bulk solution. Although this does not change the
scaling of the MSD with time, it allows a more detailed
comparison with experiment. We focus here only on the
symmetric network case since, just as for the 3D network,
the effect of asymmetry is marginal.

We commence with the scaling approach. The only modi-
fication with respect to the 3D network model is that along
the z axis there is only diffusive transport that is independent
of the motion on microtubules, (z*(¢))=2D.t. Therefore, in
the long-time limit we expect that

(X(1)) ~ Py, (00?7, (31)
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<y2(t)> ~ PO,xz(t)vztz’ (32)
where
62
PO,yz(t) ~ \"m’ (33)
gz
Po,xz(f) V,m- (34)

Using the statistical equivalence between the x and y axes,
x(1))=(y*(1)), leads to the 2D MSD {p*(1))={(x*)+{(y*):

. (35)

(p*(1)) ~

As before, the time dependence is diffusivelike, (p*) ~1, de-
spite the active transport.

Next we use the more accurate self-consistent approach.
Applying Eq. (4) to the present geometry reads

d2
E()’z([» = 2U2P0,xz(t) s (36)
dZ
ﬁ<x2(t)> = 2U2P0,yz(t)’ (37)
where
__cg
PO,yz(t) - \*’W’ (38)
e
P(),)Cz(t) \/’477th<x2> > (39)

and C is given by Eq. (17). Using the statistical equivalence
between the two axes x and y, we obtain, for ¢(7)=(x?)

=%,

d* B
ns ,_ D
¢ dt2¢_t”2’ (40)
where
C 0252
B=——773. (41)
V7F_rDzl/z

While we were not able to obtain the analytical solution of
Eq. (40), the asymptote of the 2D MSD at long times is (see
Appendix A)

23
(p(1)) = 21/3(33)2/%[111(71)} , (42)
where 7,=¢/v. As for the random 3D network, here too we
find a small, sublogarithmic, correction to the scaling result
(p?)~t, implying that the motion is barely distinguishable
from regular diffusion.

Computer simulations. The simulated network is shown in
Fig. 11(b). At each virtual junction—i.e., a junction that ap-
pears on the projection of two neighboring (x,y) planes—the
particle has probability f to remain on a track and 1—f to
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FIG. 12. (Color online) PDF along the x axis for processivity
f=0.5 and at time t=10*7, for the plane-oriented 3D network. The
circles are simulation data, and the line is the best-fitting stretc@
Gaussian PDF, Eq. (11), with y=1.014+0.008 and o={(x?)
=77.7%0.2, correlation coefficient R=0.9997.

leave the track. If it leaves the track, it hops to one of the
four neighboring tracks with equal probabilities: the two
tracks that are parallel to the source track (same plane of
orientation) and the two tracks that are perpendicular to the
source track (neighboring planes of orientation). The simula-
tions were performed for the particular choice DZ:22§ and
f=0.5.

Figure 12 shows the PDF along the x axis for 10* com-
puter steps and 2 X 10° particles. The stretched Gaussian pro-
vides a good fit to the data, yielding a stretching exponent
very close to 1 (y=1.014=0.008), and the use of a Gaussian
makes no essential difference (not shown). Figures 13(a) and
13(b) show the (x,y) plane 2D MSD at long times. In Fig.
13(a) the horizontal axis is #(In7)*? and the MSD is com-
pared to the best fitting A#(In £)*?, yielding A=1.05=0.04.
This result is in good agreement with the analytical predic-
tion A=1.22. Moreover, in Fig. 13(b) the horizontal axis is
Int and the MSD, divided by ¢, is compared to the best-
fitting A(In ¢)?, yielding A=1.05=0.04 and $=0.63 =0.02,
in agreement with the prediction S=2/3.

To provide a more realistic model of the transport, we
included the diffusion in a bulk solution and the attachment-
detachment processes between the solution and the microtu-
bules. For this, we use a finer grid on which the random walk
that models the diffusion in the solution takes place. Since
the ratio of the physical mesh size ¢ to grid size a that we use
is 10, there are nine sites between neighboring filaments that
represent the solution. When the particle hops from a bulk

site to a microtubule site, it has a probability f to attach, in
which case it proceeds to move along the microtubule. A
particle that moves along a microtubule has, at each grid

point, a probability f to remain on the track and 1—f to fall
off—that is, to hop to one of its four neighboring grid sites of

the solution. Note that the processivity parameter f here is
different from the one defined before, f. The latter deter-
mines the probability to remain on the track at a network
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FIG. 13. (Color online) MSD in the plane-oriented 2D network
model for processivity f=0.5. The circles are simulation data, and
the solid lines are fitting functions. (a) Plot of (%) vs #(In£)*3;
fitting function (r2)=A[In -1** with A=1.05*0.04. (b) Plot of 472
vs Int; fitting function <r2$=At(ln )8 with 8=0.63+0.02 and A
=1.05%0.04.

mesh point, implying that f and f are related by f=f",
m=E&la.

Figure 14 shows the MSD behavior for 10* particles,
taking f=0.975, £/a=10, and v=0.01(a/7,), where 7, is
the hopping time on the grid. Note that the MSD is normal-
ized by a® rather than by & and that time is measured
in units of 75. We find that the normalized MSD increases
as At/ m)[In(t/ 7)1 with B=0.641+0.002 and A
=0.0988 =0.0004. The value of B is close to the theoretical
value 2/3 and is in agreement with the diffusion-free simu-
lations discussed above. Using the random walk expression
DZ=2“—TZU in Eq. (42), we find that the theoretical prefactor is
A=0.0567, similar to the numerical value. As expected, in-
cluding the details of bulk diffusion and attachment-
detachment processes did not change the scaling behavior in
time. It merely determined the timescale for the diffusive
motion between filaments.

D. Three-dimensional animal cell model

While the models studied above are important for the
analysis of previous and future in vitro experiments, they do
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FIG. 14. (Color online) MSD in the plane-oriented 2D network
where thermal diffusion in the solution is included for f=0.975,
&/a=10, and v=0.01(a/ 7). Note that the MSD is normalized by
a® and that time is measured in units of 7,. The circles are simu-
lation data, and the solid line is a fit to A(t/ 7)[In(¢/ 75)]# with
B=0.641£0.002 and A=0.0988 = 0.0004.

not provide full insight into the transport mechanisms in the
living cell. In particular, we seek to establish the purpose of
the finite processivity, as modeled by the processivity param-
eter f, for transport in the cell. For this reason, we designed
a 3D model in which the (animal) cell is modeled as a cube;
see Fig. 15. In this model, all microtubules originate from the
origin 7=0, the center of the box, representing the cen-
trosome. To mimic the network disorder that was observed in
animal cells (see Ref. [1], p. 807), the microtubule configu-
ration is modeled as a biased random walk on a 3D simple
cubic lattice, starting from the origin towards the membrane.
To allow for a high microtubule density near the origin, we
do not include an excluded-volume interaction between fila-
ments. While the microtubules’ minus ends are connected to
the centrosome (the origin) and their plus ends terminate at
the membrane, in between there remains significant configu-
rational disorder. As the cargo particles walk on the micro-
tubules, at each grid point they have a finite probability f to
stay on the filament and continue walking on it and a prob-
ability 1—f to fall off the filament and hop to one of the
available nearest grid points, whether it is occupied by an-
other microtubule or simply a solution site. If the particle
falls off the microtubule, it performs regular random walk on
the grid until it reaches another filament, attaching to it with
probability f. The linear dimension of the cubic cell is 100¢,
where ¢ here is the lattice constant, such that the membrane
is located on the planes x= = 50¢, y= = 50¢, and z= £ 50&.

Since here the MSD is not an appropriate measure of the
efficiency of transport, we study various “first-passage-time”
(or “first-arrival” and “first-exit”) problems in which the
cargo has to reach a certain target in the cell. We consider the
probability of the cargo to reach the target until time ¢,
P (1), the derivative of which represents the probability per
unit time (i.e., the flux) of the particle to arrive, for the first
time, at the target at time 7. We examine three cases differing
from each other in the starting location and/or the target lo-
cation: (i) cargo originating at the centrosome (which is usu-
ally near the nucleus) and having to reach the membrane via
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FIG. 15. (Color online) The 3D cell model used for the simulations in one of its realizations. The box size is 100X 100X 100. The
centrosome is at the origin 7=(0,0,0), and the membrane is situated at the box surface. Microtubules were simulated as a biased, phantom
(non-self-avoiding), random walk that starts at the origin and ends at the box surface. The results shown in Figs. 16—18 were obtained by

averaging over 100 realizations of the network.

kinesin-mediated transport, (ii) cargo originating at the mem-
brane and having to reach a small region around the
centrosome—i.e., a unit box—via dynein-mediated transport,
(iii) cargo leaving the centrosome and having to reach, via
kinesin-mediated transport, a localized target in the cyto-
plasm. The target is represented by a cube of linear dimen-
sion 10£ centered at 7=(25,25,25). In case (iii) we examine
two different boundary conditions at the membrane: reflec-
tive boundary condition and “radiative boundary conditions.”
In the latter case, when the particle reaches the membrane, it
may be “absorbed” (or expelled from the cell) with a finite
probability w, mimicking an exocytosis process. In particu-
lar, w=0 corresponds to absence of exocytosis (“reflective
boundary conditions”), whereas w=1 represents perfect exo-
cytosis efficiency (“absorbing boundary conditions™), albeit
unrealistic. In all three cases we consider different proces-
sivities.

All our results for this model, shown in Figs. (16)—(18),
were obtained from computer simulations. In cases (i) and
(ii), 100 realizations of the network were randomly chosen
and 100 particles were simulated for each network. In case
(iii), simulations were performed for 50 random realizations
of the network and 300 different particles for each network.

The results were averaged over all runs, from all the net-
works, to obtain the behavior in the “average” cell. For sim-
plicity, the bulk diffusion time scale 7, and the active motion
timescale 7,=§&/v were set to be equal. In each case we com-
pute the first arrival probability P ().

In Fig. 16, we show the probability to reach the mem-
brane until time ¢ for kinesin-mediated transport of a particle
that starts at the centrosome at r=0 and for different values
of f [case (i)]. We find that as processivity increases, so does
the efficiency of transport. In this case, diffusion is less effi-
cient than active motion along filaments. This is intuitively
clear, as all microtubule plus ends terminate at the mem-
brane, implying that the best choice for the cargo particle is
to stay on its track. The same is true for the probability to
reach the centrosome (or nucleus) starting at the membrane
in dynein mediated transport [case (ii)]; see Fig. 17. Here
P, is much more sensitive to motor processivity than in
case (i), which is due to the inefficiency of the diffusion
process to reach the origin.

However, when we consider the probability to reach a
localized target in the cell starting from the centrosome (via
kinesin-mediated transport), the higher the processivity, the
lower is the first arrival probability at long times; see Figs.
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FIG. 16. (Color online) First-passage-time problem, nucleus to
membrane. The probability of cargo originating at the centrosome
to reach, for the first time, the membrane until time ¢, via kinesin-
mediated transport. Different motor processivities f are shown. Free
diffusion, with hopping time 7, equal to 7, (the time it takes for a
motor to move a mesh size &), is also shown for comparison.

18(a)-18(c). Moreover, here diffusion is more efficient, at
long times, than active motion along filaments. This is due to
the fact that most initial, randomly chosen, tracks do not lead
to the target and therefore the cargo has to change tracks
along the way or simply diffuse in the bulk (i.e., the cyto-
plasm) to reach the target. Note, however, that in the short-
time regime of both boundary conditions [Figs. 18(a) and
18(c)], higher processivity increases the first arrival probabil-
ity. This is due to the very few tracks that do pass through the
target and on which the particle occasionally starts its mo-
tion. Processivity values are much more influential in the
radiative boundary conditions case, Fig. 18(a), than in reflec-
tive boundary conditions case, Figs. 18(b) and 18(c). This
occurs since higher processivity increases the chance of a
particle to reach the membrane, and thus be removed from

1.0

0.8

0.6

p exit

0.4

0.2 —=—f=1 —ef=075
e =095 < =05
—4f=09 —»f=025
0.0 W/ . =085
0 10000 20000
t/x,

FIG. 17. (Color online) First-passage-time problem, membrane
to nucleus. The probability of cargo originating at the membrane to
reach, for the first time, the centrosome until time #, via dynein-
mediated transport. Different motor processivities f are shown.
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the cytoplasm (with probability w) when radiative boundary
conditions are present. The reason for the simple diffusion to
be the more efficient process, in the long-time limit, is also a
consequence of our choice of time scales 7y=7,. This may
change somewhat if local motion along tracks is faster than
diffusion (7,<7y), a possible situation in the dense cyto-
plasm.

IV. CONCLUSIONS

Active transport on disordered microtubule networks, in-
volving only one type of motor proteins (be it kinesin or
dynein), is analogous to transport on random velocity net-
works. This is true because microtubules are relatively stiff
“semiflexible” polymers that form roughly straight rods.
Therefore, when they do not grow from a centrosome, mi-
crotubule networks display orientational and polarity disor-
der. In addition, this analogy holds only as long as small
cargo particles, which can pass freely through the mesh, are
considered. Otherwise, when the particle is larger than the
mesh of the network, it will have to deform the network and
move against its viscoelastic resistance [16,17]. If the cargo
can alternate between kinesin and dynein during transport or
attaches to both of them at the same time [16,17], this anal-
ogy is no longer valid, or in the least has to be modified.

All the model networks studied lead to superdiffusion—
i.e., an MSD exponent larger than 1. As the Euclidean di-
mensionality and/or the velocity field (“polarity field”) di-
mensionality of the network increases, the superdiffusion
exponent decreases and approaches unity. For example, the
simple (1+1)D model leads to ~#*2, the 2D network leads
to ~1*3, the plane-oriented 3D network leads to ~#(In ¢)*3,
and the 3D network leads to ~#(In #)"/?. In the latter two 3D
networks, motion is nearly diffusive and only slightly, sub-
logarithmically, enhanced. The plane-oriented 3D network
has been recently studied experimentally showing such dif-
fusivelike behavior, even though the transport was confirmed
to be of active, dynein mediated, type [13].

The reason for the reduction of the superdiffusion expo-
nent can be understood in terms of the particle “loss of ef-
fective memory” as the dimensionality grows. Regular ran-
dom walk are completely Markovian as at each step the
move is completely uncorrelated with the previous step. A
particle moving on a quenched random velocity network can
be viewed as possessing memory: it “remembers” the polar-
ity of the track it moved on and will always move in the
same direction whenever it returns to it. But as dimensional-
ity grows, the return probability to a particular track de-
creases, reducing this correlation effect. Evidently, in the 3D
networks this memory has essentially no effect.

Transport on networks originating from a centrosome can
mimic active transport in the living cell. It is difficult to
provide an accurate description of intracellular transport,
since in the cell the disorder of the microtubule network is ill
characterized and there are many unknown parameters. Nev-
ertheless, the 3D cell model used here is sufficiently complex
to reproduce the role of the finite motor processivity. The
processivity in our lattice model is represented by the prob-
ability f to stay on the microtubule at a grid point, with f
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FIG. 18. (Color online) First-passage-time problem, nucleus to a
localized target in the cytoplasm. The probability of cargo originat-
ing at the nucleus to reach, for the first time, a localized target in the
cytoplasm until time #, via kinesin-mediated transport. The target is
centered around 7=(25,25,25) and is taken as a box of linear size
10. Different motor processivities f are shown. Free diffusion, with
hopping time 7, equal to 7, (the time it takes a motor to move a
mesh size &), is shown for comparison. (a) Radiative boundary con-
ditions at the membrane surface, where the probability of exit at the
surface is w=0.01. (b) Reflective boundary conditions at the mem-
brane surface, w=0. (c) The short-time behavior for reflective
boundary conditions at the membrane surface (b).
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=1 corresponding to infinite processivity time (“infinite pro-
cessivity”). We have found that while infinite processivity is
best for transport from the nucleus to the membrane or for
the reverse, reaching a localized target in the cell is best
achieved at small motor processivities. We suggest that mo-
tor proteins have an intermediate, finite, processivity, in or-
der to optimize the efficiency of transport among the various
tasks of the network.
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APPENDIX A: ASYMPTOTIC SOLUTIONS
OF EQS. (29) AND (40)

Equations (29) and (40) can be written in the unified form

d2

—¢=Br". Al
& dt2¢ (A1)
For Eq. (29), u=1, v=0, and B=2C?v*&. For Eq. (40), u
=1/2, v=1/2, and B is given by Eq. (41). We attempt a
solution of the form ¢=At[ln(f)]ﬁ. The left-hand side of Eq.
(A1) becomes

B+pB-1
Al+,u.Bt/.L—l|:1n<i>:| M
Ty

| Brus-2
+AHB(B - 1)#*-‘{111(7)} . (A2)
v
Equation (A2) cannot be made exactly equal to Bt™”, since
the power of the In(---) is not the same in the two terms.
However, the second term is smaller than the first one by a
factor of ~1n(f). Therefore, for very long times compared to
7,, this term can be neglected. Demanding that only the first
term in Eq. (A2) be equal to Br ¥ leads to the following
requirements: (i) 1—-u=wv, (i) B+uB—-1=0, and (iii) A'**B
=B. The condition 1-u=v is satisfied for both cases (u=1,
v=0and w=1/2, v=1/2), and from the two other conditions
we find the unknown parameters 8 and A: B=1/(1+u) and
A=[B(1+u)]""*#) We conclude that the asymptotic solu-
tion ¢=At[1n(f)]ﬁ is reached only when ¢ is several orders
of magnitude lvarger than 7,, although it is approximately

valid at shorter times; e.g., for t/ 7, ~ 10* the error is roughly
10%.

APPENDIX B: EXACT FORMAL SOLUTION OF EQ. (29)

Equation (29) can be solved exactly. Writing in the form
of Eq. (A1),
2

d
¢ﬁ¢=3, (B1)

we multiply both sides by (ﬁ_l% to get
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d|1 d¢>2 d
—| =\ = =B—1In ¢. B2
dt{Z( dr } " ? (B2)
Integrating once we get
d 172
d—?:v%{ln((%)] , (B3)
0

where ¢, is a constant of integration. Integrating once more
leads to the formal solution

— ¢ 1/2
Narghyi™! erf{i(ln(z)) } = \/ﬁ(t — 1), (B4)
0

where erf(x) is the error function, i= \e"—_l, and 1, is a constant
of integration such that ¢(z,)= ¢, djf|,0=0
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Equation (B4) allows a systematic asymptotic expansion
in time for t>1, and ¢> ¢,. Here we recover only the lead-
ing term, also derived in Appendix A. For large ux,

i~terf(ix) = %, such that for large ¢

¢

W = \2Bt. (B5)

A single iteration yields the leading behavior

[, p 12
b= \%t{ln<£t” . (B6)
®o
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