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Abstract. The stochastic resonance (SR) phenomenon in
human cognition (memory retrieval speed for arithmet-
ical multiplication rules) is addressed in a behavioral and
neurocomputational study. The results of an experiment
in which performance was monitored for various magni-
tudes of acoustic noise are presented. The average
response time was found to be minimal for some optimal
noise level. Moreover, it was shown that the optimal noise
level and the magnitude of the SR effect depend on the
difficulty of the task. A computational framework based
on leaky accumulators that integrate noisy information
and provide the output upon reaching a threshold
criterion is used to illustrate the observed phenomena.

1. Introduction

An important question in the debate regarding the nature
of the neural code is whether the irregularity of neural
responses (Softky and Koch 1993) reflects a complex
hidden signal or a noisy mode of information processing
(Shadlen and Newsome 1994; Ferster and Spruston 1995).
Although noise is usually thought to be detrimental to
information processing, the phenomenon of stochastic
resonance (SR) (Wiesenfeld and Moss 1995), whereby an
optimal level of noise enhances the performance of a non-
linear system, may provide an alternative rationale for a
noisy neural code. Recently, SR has been reported in
physiological systems affecting animal behavior (Dou-
glass et al. 1993; Levin and Miller 1996; Collins et al.
19964a; Russell et al. 1999) and in human tactile (Collins et
al. 1996b) and visual perception (Simonotto et al. 1997).
Moreover, computational studies have shown that SR is
expected to occur in neural responses (Collins et al. 1995;
Stemmler et al. 1995; Stemmler 1996). An important
question is whether the benefits of noisy processing are
confined to sensory processes or whether they extend to
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central cognition. Here we present experimental data
demonstrating SR in central cognitive processes and
develop a computational framework that illustrates the
mechanism that underlies this behavior.

2. Experimental evidence for SR in cognition

In our search for SR effects in central cognition, we
focused on the task of memory retrieval for single-digit
arithmetical multiplications (e.g. “7 x 8 =?""). We used
this task because it relies on a central cognitive process
that, due to a high degree of pre-experimental training, is
expected to show relatively low variability. We assumed
that irrelevant acoustic input would induce noise
(proportional to its loudness level in decibels) in the
neural representations that mediate the computation of
memory retrieval. The acoustic noise was delivered as
sequences of random frequency tones. To obtain a single
measure of performance that could be compared across
noise levels, we focused on the speed of response (or its
inverse, the response time — RT) while ensuring that
incorrect responses were prevented. Otherwise, two
independent measures, RT and accuracy, would be
obtained involving complex dependencies, such as
speed—accuracy tradeoffs (Luce 1986). To prevent errors
from affecting the performance measure, participants
were prompted by the computer software to make a new
response if they produced an error, until the correct
response was made. The RT recorded was the total time
from stimulus presentation to the correct response.

Using this method, 19 participants were tested on
their speed of memory retrieval for sets of arithmetical
multiplications at six levels of auditory noise delivered
by headphones, ranging from 51 dB to 90 dB.!

IThe questions were grouped in blocks of four that were delivered
at the same noise level (loudness of the tones). Six levels of noise
were used and all the participants performed a set of practice trials
with easier questions followed by two sets of six blocks. The first of
these two sets was presented in ascending order of loudness and the
second set in descending order.



L12

4.0 ¢

— 3.5 ¢

RT [sec

3.0t

2.5

50 60 70 80 90
noiselevel (dB)

Fig. 1. Average RT as a function of noise for the 19 participants in
the experiment (see text). Error bars correspond to one standard error

Response time performance as a function of noise
(Fig. 1) indicates that up to an optimal level, the noise
facilitates memory retrieval but at noise levels beyond
the optimum, it slows down retrieval speed. Since ex-
perimental data is subject to statistical fluctuations due
to a limited sample of measurements, it is necessary to
estimate the statistical significance of the results.

This is done by calculating the probability of rejecting
(or accepting) the null hypothesis, according to which
the minimum in the RT at 77 dB is due to random
fluctuations alone. Specifically, we estimate the proba-
bility, P, that the RT measured at 77 dB and the RTs
measured at 50 dB and at 90 dB are statistical samples
(based on 19 measurements, each one corresponding to
one of the 19 participants in the experiment) from the
same theoretical distribution.

Using the participant’s #-test for 18 degrees of free-
dom we find that the probability, P, of accepting the null
hypothesis is P < .01 (¢(18) =3.07) for 50 dB, and
P < .05 (#(18) = 2.37) for 90 dB, where ¢ is the difference
between the two RTs normalized by the average of their
standard errors.

It is standard in statistical analysis to reject the null
hypothesis when its probability is lower than .05.

This result indicates that effects of SR, previously
reported in perceptual processes (Collins et al. 1996b;
Simonotto et al. 1997), also take place in more central
cognitive processes. To understand the mechanism that
may mediate this effect, we present in the following a
simple neurocomputational model for noisy processing
that provides a framework within which this behavior
can be quantitatively examined.

3. A computational framework

The computational framework that we discuss in this
section represents a highly simplified model of the actual
process, a mere description that illustrates the main
ingredients leading to SR-type behavior. It certainly
does not describe the complex neural mechanism

involved in retrieval of multiplication rules. This task
is beyond the scope of this letter. Subject to these
important limitations and for the sake of brevity, in
what follows, we shall refer to the set of equations
describing the competition between the correct and the
incorrect answers as the “model”.

In the process of performing single-digit multiplica-
tions, the participants in our experiment needed to make
a connection between two input digits and a range of
possible answers to decide which was the correct one.
The answers can be thought off as response units that
receive activation from the inputs on the basis of asso-
ciations stored in memory. For simplicity, we assume
that the unit that corresponds to the correct response, x1,
receives a standard input /; (chosen without restricting
generality to be unity), whereas other units corre-
sponding to incorrect answers receive a weaker input.
Such input to the incorrect response units may be due
to overlaps in the digit representations as proposed
in previous neurocomputational models of numerical
processing (Dehaene and Changeux 1996) and generates
a distractor-type competition. We denote the unit that
receives the second highest input as x; and its corre-
sponding input as /.

The level of this input to an incorrect answer unit
should reflect the difficulty of the question, namely, well-
learned answers are thought to have lower competing
distractors than less well learned ones.

Memory retrieval is modeled by activating the two
inputs and generating a race process of the two response
units, the correct one, x;, and the incorrect one, x,, (all
other units receiving weaker inputs are neglected). To
model the response time , we adopt the framework of
race models, which are regularly used in computational
models for choice RT in psychology (Luce 1986).
Accordingly, when several response units are activated
by the input, the one selected is the one that first reaches
the activation level corresponding to the threshold.
Moreover, the time it takes to select the response, RT,
corresponds to the time it takes the activation to reach
the firing rate threshold (see, for example, Grice 1972;
Luce 1986). In these models, the variability that is
ubiquitous in experimental RT data is accounted for by
noise in the accumulation stage, resulting in a diffusion
process (Ratcliff 1978). Recently, neural traces that
provide support for this approach were reported (Hanes
and Schall 1996). It was shown that the RT for eye
movement is determined by the time it takes neural ac-
tivation in the corresponding neurons to reach a specific
level.

Here we assume that each response unit has the dy-
namics of noisy leaky accumulators (Grice 1971; Usher
and McClelland 2000). This corresponds to the firing
rate dynamics in cell populations (e.g. Wilson and Co-
wan 1972; Amit and Tsodyks 1991; but see Eggert and
van Hemmen 2000, for a more complex scheme of neural
population dynamics that takes into consideration pat-
terns of synchrony within the population). In previous
work (Usher and Niebur 1996), we found that the firing
rate dynamics (Wilson and Cowan 1972; Amit and
Tsodyks 1991) are well approximated by large computer
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Fig. 2. The effect of noise on memory activations in the model for two
accumulators. Eq. (1) is solved numerically with time step d¢ = 0.1,
and independent Gaussian noise, ¢, with variance 02, is added to each
unit at each iteration step. The activation of the correct unit, xj, is
shown by the solid curve; that of the distractor, x,, corresponds to the
dashed curve. a ¢ = 0.036;b ¢ =0.39 (I, =1, =0.23,A = 1.2, and
0=0.77)

simulations of integrate-and-fire neurons under condi-
tions of noisy input and low firing rate. Since the units
are assumed to receive Gaussian noise, the race process
can be described as a diffusion process with drift /; and
with leak of activation, 4,

dx; = (—Ax; + I)dr + &Vdr | (1)

where dr is the time step and ¢ is a Gaussian random
variable with zero mean and standard deviation (SD) .
The v/ds factor in Eq. (1) is a result of the fact that the
variances rather than the SDs add up linearly in time
(see Ricciardi 1977). This results in an Ornstein—
Uhlenbeck diffusion process, which was recently used
to explain a large amount of data from visual detection
and choice latency paradigms (Smith 1995; Usher and
McClelland 2000). The neural input—output response
function assumed in this model is threshold linear. This
is different from the logistic functions assumed in many
connectionist and neural network models. However, in
the range of low firing rates that prevails in cortical
activity it provides a good approximation to experimen-
tal results (Ahmed et al. 1998). The race process between
the two leaky accumulators and the effect of the neural
noise (assumed to increase with the loudness of the
auditory input) on this process is illustrated in Fig. 2.
The noise speeds up the arrival of both accumulators to
the response threshold. This speedup, however, is
accompanied by a decrease in accuracy. Higher noise
increases the probability of incorrect responses, that is,
situations in which the unit with low match, I, reaches
the threshold before the unit with high match, 7;.

To model the experimental data, we numerically
simulated the process described above for different levels
of noise, ¢. In each simulation trial, the RT is the time
when the correct unit reaches the threshold, 0. When the
incorrect unit, x,, reaches the threshold before the cor-
rect unit, x;, the two accumulators are reset to zero and
the process is restarted after a time delay of K iterations,
which is a model parameter and accounts for the dead
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Fig. 3. The effect of noise on retrieval speed according to the model.
Each point in the simulation is obtained by averaging the RT over
300,000 trials. 7; = 1,1, =0.23,K = 14,A=1.2, and 0 = 0.77. The
solid line is obtained by simulating the process in which multiple
attempts are made until the correct response is reached. The symbols
are obtained by computing the values of 77,7, in single-attempt
simulations and n (see text)

time spent during the production of the incorrect re-
sponse and the participants’ preparation for a new at-
tempt. The effect of noise on the speed of retrieval for
the computer simulations is shown in Fig. 3 (solid line),
demonstrating a stochastic resonance effect. This be-
havior is due to the fact that whereas a small degree of
neural noise speeds up memory retrieval, larger amounts
of noise induce incorrect retrievals that, in turn, cause
delay. The tradeoff between the arrival times of the two
racing accumulators to the response threshold, 7; and
75, and the number of retrieval attempts, n, required for
a correct response of total latency RT can be explicitly
formulated as

RT=T1+(T2+K)(I1—1). (2)

The prediction of this equation was verified using the
numerically computed values of Tj, 7>, and n at different
noise levels (Fig. 3, bullets). Moreover, Eq. (2) allows us
to derive an analytic approximation of the dependence
of RT on the parameters of the model (see Appendix).

Computer simulations demonstrate that SR-type be-
havior also takes place in models with more than two
competing accumulators corresponding to multiple di-
stractors. In this case, one observes a faster increase in
RT at the high-noise end that is due to the increase in the
error rate with the number of distractors.

4. The effect of the difficulty level

Using the analytical approximation formulas derived in
the Appendix [Egs. (A3, A4)] we put to the test a few of
the model’s predictions involving the effect of noise on
RT as a function of the difficulty of the questions. The
model indicates that the SR effect will be larger, that is, a
deeper minimum, for easy questions (where I} — I is
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Fig. 4. Effects of task difficulty on RT performance. Error bars
represent the average RT data pooled over the 19 participants (bullets
easy, diamonds difficult). The solid lines result from fitting the
analytical approximation of Eqs. (A3, A4) and the dashed lines are
obtained from the model simulation with the parameters of the fit.
Increased difficulty corresponds to a lower value of I} — I (0.89 for
easy condition and 0.32 for difficult condition; Easy: I, = 1,1, = 0.08;
Difficult: I; = 1,1, = 0.68; for both cases K = 74,1 =1.2,0 = 1.38)

high) than for difficult questions (where I} — I, is low;
see Fig. 4). To test this prediction we first classified the
data in our experiment into two categories of difficulty
established in a control experiment in which separate
groups of participants performed the same experiment in
the absence of noise. The mean RTs as a function of
noise for the ‘“‘easy” (bullets) and the ‘difficult”
(diamonds) conditions are shown in Fig. 4. For ques-
tions that were classified as easy there is a strong
reduction in RT with noise levels up to 63 dB
[RT(63dB) = RT(50dB); t(18) = 3.73, P < 0.001) fol-
lowed by an increase between 77 dB and 90 dB
(RT(90dB) = RT(77dB); t(18) = 1.49; P < 0.08]. No
significant variation between the RT values at different
noise levels was found in the case of the difficult
questions. Second, we used the analytical formula of
Eqgs. (A3, A4) to fit the data for the two conditions. The
fit is done using a Metropolis-type optimization algo-
rithm that varies the model parameters in order to
minimize the y*> function, that is, the sum of squared
distances between the data and the theory divided by the
squares of the corresponding standard errors. Moreover,
we assumed that the noise SD in the simulation is
linearly related to the level of noise in the experiment,
noiselevel (dB) = a, + b, * o, and that the experimental
RT is linearly related to the RT of the model, RT(s) =
a, + by, - RT(iterations). The linear scaling parameters
were varied together with those of the model to minimize
the y* function. A single parameter, [,, was varied to
account for the difference between the easy and the
difficult conditions.

We observe (Fig. 4) that the analytic fits (solid lines)
closely reproduce the experimental data, namely, a
deeper minimum is obtained for the easy questions and a
relatively flat behavior for the difficult ones. The com-
puter simulation for the corresponding parameters

shows similar behavior. Although better agreement be-
tween the computer simulation of Eq. (1) and the ex-
perimental data could have been obtained for slightly
different values of the parameters, it is impractical to
obtain a systematic fit between the two. We therefore
choose to determine the parameters of the model that
correspond to the experiment via the approximate RT
formula of Eqgs. (A3, A4). The fit allows us to obtain the
relation between the variables of the model and those in
the experiment. We find that the corresponding scaling
parameters are a, = 27.57, b, = 33.61, a, = 0.62, and
b, = 0.04. This allows us to characterize the outcome of
the experiments in terms of the parameters of the model.
We find that the value of the I, parameter for the fitted
RT curve is higher for the difficult questions (0.68) than
for the easy ones (0.08). Since /; corresponds to the input
received in incorrect responses with a partial match, this
result can be interpreted in the framework of the model.
Specifically, difficult questions are likely to be those that
relate to single-digit representations with wider, less
localized activation profiles that should then generate
more input for the partial match competitors.

An important feature of the RT data for the easy
tasks is that the strength of the SR effect, namely, the
depth of the minimum, is significantly larger than that
observed in the experiment of Fig. 1. This is a conse-
quence of the fact that the data of that experiment
represent a mixture of two different processes, one which
displays a pronounced SR minimum and the other
which is relatively flat.

The inspection of Eq. (2) allows us to understand the
enhancement of the SR effect in the case of easy tasks.
On one hand, T;(o) is a monotonically decreasing func-
tion. For a fixed value of ¢, both T; and d7;/do grow as [;
decreases. Therefore, T;(o) goes down faster for the easy
tasks than for the difficult ones. On the other hand, the
average number of errors, (n— 1)(g), is a sigmoidal
function that grows at larger o for larger Iy — I, differ-
ences. Therefore, for the easy tasks, RT (o) will display a
sharper decrease at low ¢ due to the mean arrival times,
T;, and a slower increase at larger ¢ due to the errors,
(n—1), leading to an overall more pronounced mini-
mum. In other words, the SR effect is stronger for easy
tasks due to enhanced sensitivity of the response times to
noise and lower error rates.

5. Discussion

The model we presented here is highly simplified. Future
work should address in greater detail the dynamics of
neural populations (Eggert and van Hemmen 2000).
Moreover, one could extend the model to include the
effect of varying difficulty in the experiment by allowing
the I — I, difference to take values from a distribution.

Nevertheless, we believe that our simplified scheme
captures the essential features of the process we set out
to measure. In particular, the parameterization of the
experimental curves on the basis of the model indicates
that we observed a novel mode of SR. Unlike in previ-
ous studies in which SR improves the perceived quality



of a transmitted signal, for example, effective signal to
noise ratio, here, SR results from the competition be-
tween two opposed factors that characterize many as-
pects of cognitive performance: speed and accuracy.
Since task performance often depends on a combination
of speed and accuracy, this is a generic type of SR that
operates at the cognitive level and should have impor-
tant implications for optimizing the efficiency of infor-
mation processing in this domain. Further investigation
within this framework may shed light on the adaptive
role played by stochastic processes in cognition (Oaks-
ford and Chater 1998).

6. Appendix

Since an analytic solution for the arrival time of an OU
process to threshold is difficult (Ricciardi 1977), in this
appendix we present a simple analytical approximation
for this process. As illustrated in Fig. 4, this approxi-
mation provides results that are close to those obtained
from the simulation of the model.

The basis for the analytical approximation is an as-
sumption similar to the principle of probability summa-
tion over time (Watson 1978), which has been
successfully used in computational models of visual
threshold detection. Accordingly, the time axis is parti-
tioned into windows of width A¢. The activations of the
response units in each window are represented by two
random variables, x; and x;, that are independent, un-
correlated, and distributed according to P(x;) and
Py (x3), respectively. To satisfy the lack of correlations
across successive windows, the width of the time window
should satisfy Az > 1/4. The distribution of activations,
P;(x;), for each unit is, according to the OU diffusion
process, a Gaussian with mean and variance determined
by the OU process with drifts /; (Ricciardi 1977),

i

<x; > (1) /1 1 —exp(—41)], (A1)

o2

2

where Var,, is the variance of x; and x;(0) = 0. A simple
approximation can be obtained by neglecting the
transients, namely, assuming that the accumulators are
reaching the steady state equilibrium instantaneously
such that neither the means nor the variances of the OU
process are time dependent. This assumption leads to
constant probabilities for the correct and the incorrect
unit to reach the threshold during a time window Az , P
and P,, respectively,

1 04
PZ.ZE erfc( %"> ,

where erfc(x) is the complementary error function,
defined as 2= [ exp(—y?)dy. The mean Tj, 75, and n
can be estimated with the following assumptions: [1] The
time for a correct response corresponds to the first time

Var,, () [1 —exp(—241)] , (A2)

(A3)
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window where the discretized trajectories, x;, x;, satisfy
x1 > 0; x5 < 0. [2] If during a time window preceding the
one in [1] x;, x, satisfy x; < 0; x, > 0, then the process is
restarted after a time delay K; [3] If during a time window
preceding the one in [1] both accumulators are above
threshold (x; > 6; x, > 6), then a tie is declared and
therefore with probability 0.5 the window is considered to
render the correct RT and with probability 0.5 the process
isreset asin [2]. Summing the series of all possible paths to
a correct answer and using Eq. (2), we obtain

At At 2P, — PP,

RT = + K .
P +P—-PP \P+P—-PP 2P — PP,

(A4)
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