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As a whole new range of energies will be soon experimentally studied, we present predictions 
for hadronic cross sections at future very high energy accelerators. All calculations are based on 
results accumulated in reggeon field theory, where methods of field theory (in the continuum and 
on the lattice) and statistical mechanics have been used. We have employed these results and 
translated them into a manageable phenomenological analysis of existing FERMILAB-ISR data. 
The size of the non-leading terms is determined and enables us to predict cross sections at energies 
in the range of the near future ~p colfider. Parameter-free scaling functions and critical exponents 
which are exactly calculable in RFT are thus brought to an experimental test. 

1. Introduction 

I n  the very near future, particle scattering data at energies up to 540 GeV in the 
center of mass will be reached in the SPS ~p collider. Particle scattering will be 

measured in an entirely new regime of energies and several interesting questions will 
hopefully be answered (finding traces of the intermediate vector bosons, jet phenom- 

ena and the behavior of Oto t and oel at very high energies, etc. [1]). Present 
understanding of the theory of strong interactions (QCD) is unfortunately insuffi- 
cient to give unambiguously derived detailed predictions for the main bulk of .soft 
process data. Indeed, calculating a proton-proton cross section, starting from the 

QCD underlying theory, is still a formidable task. Analogously, one can easily find 
examples of measurable quantities in atomic and solid state physics impossible to 
calculate starting from the underlying QED lagrangian. In no way would this imply 
a deficiency in the theories, but rather that, in some problems, the degrees of 
freedom for describing the phenomena have to be properly chosen, and in many 

cases, they may be entirely different from the quanta of the fundamental theory. 
Thus, quarks and gluon fields are perfect for calculating many observables in strong 

interaction physics, certainly in processes dominated by the short-distance behavior 
of the theory. But it has been repeatedly suggested that different degrees of freedom 
are necessary for soft processes. These collective degrees of freedom are built in a 
complex manner [2] out of the fundamental fields of the theory resembling the 
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14 J. Baumel et al. / Cross sections at "asymptotic" energies 

construction of phonons and spin waves from the more fundamental lattice site 
variables. 

Reggeon field theory (RFT) long ago provided detailed predictions for scattering 
amplitudes at very high energies [3a]*'**. Methods of field theory and statistical 
mechanics had been used to perform very detailed calculations of the critical 
behavior of the pomeron singularity. This activity, almost extinct today, had 
provided unique, unambiguous results in the form of scaling functions [5] and 
critical exponents [6,7] analogously to the detailed calculations of any typical 
statistical mechanics problem near a phase transition [3,4, 7, 9]***. Though interest- 
ing work is still being carried out in an attempt to derive the RFT from the 
underlying strong interaction theory [2], the work aimed at sharpening the theory's 
predictions had come to a stand-still for several reasons. Among them is the fact that 
the theory had almost never been able to predict at what energies scaling behavior 
will set in. This question is still open and is left for the experimentalists to answer. 

In the past, the theoretical attitude employed in this field had been based on the 
feeling that only at high energies above the ISR regime can one hope that the results 
will be of practical use. This explains the lack of almost any phenomenological work 
in relation to RFT. Thus, many of the theory's predictions were left in a very rough 
state, such as the asymptotic expansion of the n-point Green function for the 
pomeron field, e = 4 -  D expanded scaling functions, and the high-temperature 
expansion for the lattice theory in dimension D = 1 and 2. 

As the operation of the SPS collider is approaching, we felt that it may be useful 
to bring some of the theory's predictions to a state that can be confronted with the 
data. We especially treated and emphasized the predictions of the approach to 
asymptotic scaring of the cross sections. At very high energy the approach to scaring 
is governed in RFT by a well-defined functional form that had been calculated in 
the past [10]. 

The plan of this work was to carry out a study, which though suggested a long 
time ago [11], seemed, at that time, to be lacking any appeal since the SPS collider as 
well as any other very high energy accelerator were still only plans for the far future. 
It was suggested to use the ISR energy regime data in order to extract the free 
parameters that determine the strength of both the leading term and non-leading 
approach to scaling terms. Using the fit at these low energies, one determines the 
parameters of the scaling Green functions describing the cross sections at much 
higher energies, namely, in the SPS ~p collider regime. 

In sects. 2 and 3 we present the predictions for the total cross section summarized 
in figs. 2a, b and 3. The predictions for the shape of the diffraction peak, the first 

* For order e 2 calculations see [3b]. 
** For reviews on RFT see ref. [4]. 

*** In ref. [7], a very detailed high-temperature expansion up to 10th and 21st orders had been performed. 
This model has been recently shown [8] to be in the same universality class of an interesting statistical 
mechanics problem (directed bond percolation [DBP]). 
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Fig. I. The n incoming, m outgoing pomeron Green functions whose asymptotic behavior determine the 
hadronic cross sections at high energies. 

minimum and the second maximum location are summarized in figs. 6-8. We leave 
the more technical details for the appendix. 

2. Total cross section for pp and ~p 

The total hadron-hadron cross section at high energy has been calculated in RFT 
from the pomeron Gn'm(k,, Ei) Green functions (fig. 1). It has the asymptotic large-s 
behavior 

o~symP(S) = flo(lns)n[1 + i l l(Ins) -x + f l2 ( lns ) - l -n] ,  (1) 

where we take the scale of s to be 1 GeV 2. The exponent 7/ and the approach to 
scaring exponent ?~ (?, is equal to the derivative of the beta function at the fixed point 
[10]) are known to a very good accuracy from the RFT on the lattice calculations 
[7]* (the reggeon quantum spin model) as well as the high order behavior of 
perturbation [6, 8, 9] theory; ~/= 0.26 -+ 0.02, ?~ = 0.49 -+ 0.01./3 i are not calculable by 
the theory. We also added two terms to o~symp: 

O T ( S ) = o ~ y m P ( s  ) ~- j~0(~3 S - 1 / 2  -~- ~4 S -1  ) (2) 

as low-energy remnants coming presumably from possible lower trajectories**. The 
powers - ½ and - 1 can be freely changed around these values without much change 
of our final results. 

The coefficients/30 and fll are related to the coupling of the one-particle irreduci- 
ble Green function Gl'~(k, E) of the pomeron to the particle fine; thus, in fitting the 
Fermilab-ISR data we demanded /30 =/~0 and fll =/31, where /30 and /~l are the 
corresponding coefficients used for the ~p data. The parameters/32, f13 and/~4 were 
free to vary and obtain values different from f12, f13 and /34 in the pp data. The 

* The approach to scaring exponent has also been calculated in DBP and shown to be the same as ~ in 
RFT [eq. (1)], see ref. [9]. 

**Abarbane l  and Sugar [12] calculated the logarithmic correction to a typical term in eq. (2) due to 
pomeron interactions. Their result to first order in e was s-aR(lns) ~', where ~, = 1~2 . , /is too small to be 
significant in the present phenomenological analysis. 
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Fig. 2. (a) Predictions for the proton-proton cross sections at very high energies. Also shown is the lower 
energy data (Fermilab-ISR) fitted with eqs. (1), (2). The shadowed area corresponds to the better X 2 
values (see appendix). (b) Same as (a) here for ~p. The shadowed area corresponds to the shadowed area 

fits of (a). 
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Fig. 3. Comparison of our predictions (between fines 1 and 2) and the results of ref. [14] (shadowed area). 

asymptotic relation oPP(s) = oPP(s), a natural result of RFT, is built into the fit and 
allows us to learn about a tip from o pp at high s. 

We have used the data of ref. [13] for the pp and Op total cross section and the 
results of our calculations and predictions are shown in figs. 2a, b. We also 
compared in fig. 3 our calculations to those of ref. [14], where the increase of the 
total cross section is predicted, using the measured real part of the proton-proton 
elastic amplitude from the Coulomb interference experiment. Our best X 2 predicted 
cross section in the high-s regime is somewhat lower than in ref. [14]. We have not 
used the cosmic ray data of ref. [15] in our fit; it tends to fall only slightly above our 
predicted OT(S ). Its quoted errors are too large to reach a definite conclusion and 
future ~p collider data are certainly much awaited here. The predicted values for/3. 
as well as other details on the results in figs. 2a, b and 3 are given in the appendix. 

3. Elastic cross section and the diffraction structure 

The elastic cross section for hadron-hadron scattering can be calculated from the 
scaling form of the pomeron Green function (fig. 1) in a manner similar to the way 
in which OT(S) was calculated. It has the form [5,10]: 

d--~-°=fl4(t)(lns)ZnFo(ct(lns)~){l + F,(c t ( Ins)Z) . ( lns)-X + . . .  ) (3) 
dt  
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Fig. 4. The scaling function Fo(x ) of eq. (3) normalized to F 0 = 1 for different values of 8 (see appendix) 
(8 = 5 • 10 2, 10-2, 5 • 10 -3 for lines, 1, 2, 3, respectively). 

The leading term scaling function, F0(x), is, in principle, parameter  free and exactly 

calculable in RFT.  However, when expressed as a function of  t, the scale of  t is, of  

course, a parameter.  Fo(x ) has been calculated [16] up to order e 2. It  shows the same 

general interesting behavior as the O(e) calculation [5] at low t up to the second 
maximum*. The exponent  z has been calculated in refs. [3, 6, 7]; z = 1.13 -+ 0.01. fl(t)  

has a typical exponential  behavior and is not  calculable by  the theory. There is no  
O(e 2) calculation of  Fl(ct(ln s)Z), but  its value at t = 0 is related to the coefficient fll 

in ox(s  ) and, therefore, certainly is not  negligible; neither are there any calculations 

of  even lower order terms in eq. (3). We will concentrate  on the forward diffractive 
peak, the first min imum and second maximum, a region where, as ment ioned above, 

O(e) and O(e 2) calculations do not  differ much, and since we are interested mainly 

in the approach to scaling, we will use the O(e) expression for Fo(x ) and fit 

(ln s) XFl(x ) f rom the ISR data. The expression for Fo(x ) is given by  a principal 

* Note that refs. [5, 16] use different numerical techniques for performing the integrations. 
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scaring, non-leading term in eq. (3). 
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Fig. 6. Same as in fig. 5 at ~ - =  62.1 GeV. 
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part integral [5] in the appendix, where we also explain some technical details about 
the end-point behavior of this integrand, leaving some freedom in the expression of 
Fo(x ) seen in fig. 4. The ISR data [17] is well described by eq. (3), as seen in figs. 5 
and 6. This fit determines all our free parameters. We are then able to predict the 
shape of the elastic cross section in fig. 7 and the location of the first minimum and 
the second maximum in fig. 8. At ~ -~ 500 GeV we find that the elastic cross section 
is mostly dominated by Fo(x ) and thus our predictions are for pp as well as for ~p 
data at this energy. Indeed, we found out that using the new data [18] on ~p leads us 
to the same "asymptotic" elastic cross section as in fig. 7. 

To summarize, the early appearance of the equality of the total cross sections and 
the similarity of the diffraction peak in pp and ~p is a remarkable fact which may 
indicate that the essential feature of the asymptotic RFT results shows up already at 
the top ISR energies. The presently performed experiments, and those planned for 
the near future with ~p beams at the ISR and in the SPS collider, will hopefully 
further confirm that we are indeed in the "asymptotic" energy regime. One should 
note, however, the following two facts that have to be seriously considered in 
relation to the predicted asymptotic t dependence in RFT: (a) The above mentioned 
difficulty with the end point of the integration region, which is explained in some 
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Fig. 7. Prediction for the elastic cross section at , /s= 500 GeV, using the fitted parameters from the ISR 
regime. 
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Fig. 8. Predictions for the location of the first minimum and the second maximum as a function of s. 
Data are from ref. [17]. 

detail in appendix A.2. (b) In the asymptotic RFT predictions there is no t-depen- 
dent signature factor and the effect of its real part is viewed as a subasymptotic term 

(in the phase-transition nomenclature these terms in the lagrangian would be called 
"irrelevant"). In practice, one does not know for sure whether such a real part could 
be significant at the t values at which the dip structure is predicted from the leading 
RFT terms. 

Appendix 

In this appendix we will present some details of calculations involved in reaching 
the fits and predictions in figs. 2a, 2b, 7 and 8. 

A. 1. TOTAL CROSS SECTION 

For the pp total cross section we have chosen the most precise data points at each 
given energy from ref. [13]. Altogether we used 17 data points, shown in fig. 2a. With 
eqs. (1) and (2) we get a X 2 of 9-11 for 12 degrees of freedom in our best fits, and 
thus find ,8o and fli (i = 1-4). The values of Ox(S ) for the range of parameters that 
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gave X 2=  9-11 for 12 DOF, lie in the shadowed area in fig. 2a. A typical fit in this 

region is* 

flo = 90-+ 2, Hi = --3.32-+0.06, H2 = 6.72-+0.10, 

H3= -1 .41  -+ o.o2, H4 = -4 .34-+0 .08 .  (A.1) 

In general, each individual value of Hi tends to vary in a much wider range of values 
than those in eq. (A.1), (as seen in fig. 2a), giving different minima Of X 2 within the 
range of 9 ~< X 2 ~< 11. We also present in fig. 2a the range of values of OT(S ), if we 
allow X 2 to vary up to X 2 = 17 (for 12 DOF). These values are included between the 
outer lines in fig. 2a. 

Using the values of H0 and fll for each fitted OT pp, we then fitted the ~p data with 
the three parameters/~(i  = 2-4) in eqs. (1), (2). In most cases the fitted fi2 in ~p data 
came out to lie very close to H2 from the pp data, whereas the "low energy" 
parameters, (H3, Ha} and (H3, Ha}, are different. This can be well understood within 
RFT and is of no surprise, as could be guessed from looking at the steeper decrease 
in the ~p data. We used altogether 8 data points of Carroll et al. in ref. [13], which 
have the smallest error, and found X 2-~ 7.8-8.8 for 5 degrees of freedom. The 
predicted ~p total cross section in the shadowed area and between the outer lines in 
fig. 2b correspond to fits with the same/30, H1 that lie in the shadowed area and 
outer lines of fig. 2a. Thus, for example, the typical fit in eq. (A.1) for pp produced 
for ~p a fit 

fi0 = 90, /3~ = - 3.32, (input),  

/~2 = 6.70 + 0.10, /~3 = - 0 . 9 2 + 0 . 0 4 ,  /~4 = - 3 . 1  +0 .1 .  (A.2) 

For the asymptotic predictions in fig. 3 we used only the best X 2 range and 
compared our predictions to ref. [14]. 

* Cardy and Moshe [19] have shown that due to the renormalization of the n-pomeron-part icle  vertex 
as a composite operator in RFT,  each multi-pomeron Green function is a sum of scaling terms that 
include the leading G ~' 1 ~ (In s) n term. Thus, the approach to scaling will be governed by terms like 
( lns )  n -x  given in eq. (1) and a lower term of the form ( lns)  n 2x It has been also shown that 
irrelevant operators (e.g., q72~b 2) will introduce terms of the form (In s ) -  1+ ot O. Numerically -71 + 2 ?, 
= - 0 . 2 6  + 2 × 0.49 is close to one and certainly ( lns )  n 2x cannot be distinguished phenomenologi- 
cally from (Ins)  l+O(~; thus we took in the fit of eq. (1) only the ( lns )  1 term to represent both. 
The coefficient of this term is f12 in eq. (1) and eq. (A.I). 
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A.2. ELASTIC CROSS SECTION 

The expression for the elastic cross section calculated in RFT is given in eq. (3). 
The scaling function, Fo(x ) = l,~(x), is given by Abarbanel et al. in ref. [5]: 

(I) I(X ) ~ -  0.8639x-2/ '3 cos(0.4833 -- 0.2702x'2/ '3)exp ( - 1.062x12/13) 

-O.1519x-2 /13P ( l dz ~p( x, z) So 13z - 7 ' 
(A.3) 

where 

~p(x,z) 1 3 z - 1  ( 0.126_______2 lx 12 / l____~ 3 ) 
-- Z15/13~ 2 2-)11/13 sin 0"4833 -- Zl/13(l _ Z)12/13 

0.5121X12/|3 ) 
×exp  -- 21/13( 1 _ z) 12/13 . (A.4) 

In order to integrate the principal value integral on the computer we used 

Pfol~g(x'Z) d z=  l[ ~3z----7 ] d z  + + ( x , ~ 3 ) "  13 fo ln( ) (A.5) 

The result for Fo(x ) = ~2(x)  normalized to Fo(0)= 1 is shown in fig. 4. Notice, 
however, the very rapid oscillatory nature of the integrand as z ~ 0. For example, at 
x ----- 4 we have: 

+,4Z,=oZ,  1,in(048 3 04   )exp( zl/13 zl/13 ). (A.6) 

Though, indeed, ~b(x ' z) ~ 0 as z --, 0 and is integrable, it oscillates wildly in the very 
low z region (z < 10-2-10-3) .  Physically, this region corresponds to large E = 1 - j  
values in the complex angular momentum plane [5]. In this regime the whole 
calculation is unreliable; our knowledge of G n' re(k, E)  is mostly in the E ~ 0 region. 
We thus put a cut-off at the lower region of integration and changed 0 to 

~ O(10-2-10 -3) in eq. (A.3). The final result depends slightly on 3, within this 
range, and is shown in fig. 4. Though not specified there, we found that in ref. [5] 

= 10 -2. As mentioned above, in the low-t region, up to the second maximum, the 
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results of  ref. [16] (O(e2)) are very close to those of  ref. (5) (O(e)). Relying on this 

stability, we conclude that the asymptot ic  ~l(X) is described to a very good 
approximat ion by eq. (A.3). In  fitting oT(s ) in the ISR regime only, the first two 

terms in eq. (1) suffice, thus we do not  have to use addit ional non-leading terms to 

those already specified in eq. (3) in fitting do /dr  at the ISR energies. 

We used the data  in ref. [17]; figs. 5 and 6 show our fit [eq. (3)] with f la(t)  ~ e 3"5t, 

and Fo(x ) f rom fig. 4. The scale for t is also fitted: 

x = ct( lns)  z= 0.398t(ln s)  H3. (A.7) 

We are then able to predict d o / d t  at higher energies. This is shown in fig. 7. The 
uncertainty as shown at the bo t tom of the graph with ~ = 500 GeV is an indication 

of  the error involved. It has its origin in the dependence of  our results on  choosing 6, 
as shown in fig. 4. We regard this as an uncertainty due to low energy components ,  

namely, lower trajectories contributing to Gl'l(k, E)  at large E = 1 - - j .  
In  fig. 8 we show our predictions for the location of  the min imum (tmi~(S)) and 

the second maximum (tmax(S)) in the elastic cross section. The data  are f rom ref. 

[17]. We also notice that the data  of  ref. [18] for Op are well described by  our  fit to 

the pp data; the significance of  this has been discussed in sect. 3. 
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