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Let us go wireless

We would like to induce current in a closed device (no leads),

even if the the particles have no charge.
[Left figure is courtesy of Amir Yacobi]



(Non Equilibrium) Statistical Mechanics of Small Systems

We would like to push down the laws of thermodynamics

into the mesoscopic scale,

where fluctuations and quantum mechanics dominate.



Sparse systems

In our study we consider systems that are ”sparse” or ”glassy”,

meaning that many time scales are involved.

Standard thermodynamics does not apply to such systems.



Non Equilibrium Statistical Mechanics

Master Equation: ṗ =Wp

ṗ1 = − (w21 + w13) p1 + w12p2 + w13p3

ṗ2 = w21p1 − (w12 + w32) p2 + w23p3

ṗ3 = w31p1 + w32p2 − (w13 + w23) p3
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Stochastic fields:

E12 = ln
w12

w21

E23 = ln
w23

w32

E31 = ln
w31

w13

In equilibrium

E12 + E23 + E31 = 0

E12 = E2 − E1

E23 = E3 − E2

E31 = E1 − E3

pi ∝ exp (−Ei/T)

Non equilibrium

E12 + E23 + E31 6= 0

m
w12w23w31 6= w13w32w21

If
∮
E(x)dx = 0 for all closed loops the steady state will be an equilibrium state.

Otherwise, the system will reach a Non-Equilibrium Steady State (NESS).



The model system

System + Bath + Driving

wtotaln+1,n = wβn+1,n + νgn

wβ corresponds to TB = finite

wν corresponds to TA =∞

Histogram of couplings
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←− few decades −→
gn = couplings

“sparsity” = log wide distribution of couplings



Current vs. driving

Driving ; Stochastic Motive Force ; Current

Regimes: LRT regime, Sinai regime, Saturation regime
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Due to the sparsity, we have an intermediate Sinai regime.

The width of the Sinai regime is determined by the log-width of the distribution.



Sinai Diffusion

Conventional random walk :
Equal & symmetric transition rates

I ∝
1

N

Sinai Random Walk:
Uncorrelated & non symmetric transition rates

; build up of activation barrier

I ∝ e−
√
N

E(x1) · · · E(xN )

Our model:
Telescopic correlations: E(xn) ∼ ∆n ≡ (En−En+1)

Yet... we have sparsely distributed couplings

I ∼
1

N
w exp

[
−
E∩
2

]
2 sinh

(
E	
2

)

∫ x

0
E(x′)dx′ ∼

√
N
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FD phenomenology for a “sparse” system

wnm = wβnm + νgnm

Ẇ = rate of heating =
D(ν)

Tsystem

Q̇ = rate of cooling =
DB

TB
−

DB

Tsystem

Driving
System

Work (W)Heat (Q)

Bath
SB(ω) SA(ω)

Hence at the NESS:

Tsystem =

(
1 +

D(ν)

DB

)
TB

Q̇ = Ẇ =
1/TB

D−1
B +D(ν)−1

Experimental way to extract response:

D(ν) =
Q̇(ν)

Q̇(∞)− Q̇(ν)
DB

D(ν) exhibits LRT to SLRT crossover

D(ν) =

[(
wn

wβ + wn

)][(
1

wβ + wn

)]−1

D[LRT] = gn ν [weak driving]

D[SLRT] = [1/gn]−1ν [strong driving]

Expressions above assume n.n. transitions only.



Summary of main results

1. Due to the sparsity of the perturbation matrix, the NESS is of glassy nature [1].

2. An extension of the Fluctuation-Dissipation phenomenology has been proposed [1].

3. A log-wide distribution of couplings leads to Sinai-type physics [2].

Outlook

1. Novel saturation effect in the quantum model [1].

2. Fluctuations of the current.

3. Fluctuation relations in sparse systems.
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