The non-equilibrium steady state of sparse systems with non trivial topology

Daniel Hurowitz Ben-Gurion University

Doron Cohen (BGU) [1,2] Saar Rahav (Technion)[2]

- 1. D. Hurowitz and D. Cohen, Europhysics Letters 93, 60002 (2011)
- 2. D. Hurowitz, S. Rahav and D. Cohen, Europhysics Letters 98, 20002 (2012)

Let us go wireless

We would like to induce current in a closed device (no leads), even if the the particles have no charge.

[Left figure is courtesy of Amir Yacobi]

(Non Equilibrium) Statistical Mechanics of Small Systems

We would like to push down the laws of thermodynamics into the mesoscopic scale, where fluctuations and quantum mechanics dominate.

Sparse systems

In our study we consider systems that are "sparse" or "glassy", meaning that many time scales are involved. Standard thermodynamics does not apply to such systems.

Non Equilibrium Statistical Mechanics

Master Equation: $\dot{\mathbf{p}} = \mathcal{W}\mathbf{p}$ $\dot{p}_1 = -(w_{21} + w_{13}) p_1 + w_{12}p_2 + w_{13}p_3$ $\dot{p}_2 = w_{21}p_1 - (w_{12} + w_{32}) p_2 + w_{23}p_3$ $\dot{p}_3 = w_{31}p_1 + w_{32}p_2 - (w_{13} + w_{23}) p_3$

In equilibrium $\mathcal{E}_{12} + \mathcal{E}_{23} + \mathcal{E}_{31} = 0$ $\mathcal{E}_{12} = E_2 - E1$ $\mathcal{E}_{23} = E_3 - E_2$ $\mathcal{E}_{31} = E_1 - E_3$ $\mathbf{p_i} \propto \exp\left(-\mathbf{E_i}/\mathbf{T}\right)$

If $\oint \mathcal{E}(x)dx = 0$ for all closed loops the steady state will be an equilibrium state. Otherwise, the system will reach a Non-Equilibrium Steady State (NESS).

The model system

System + Bath + Driving

 w^{eta} corresponds to $T_B = {
m finite}$ $w^{
u}$ corresponds to $T_A = \infty$ Histogram of couplings

"sparsity" = \log wide distribution of couplings

Current vs. driving

Driving \rightsquigarrow Stochastic Motive Force \rightsquigarrow Current Regimes: LRT regime, Sinai regime, Saturation regime

Due to the **sparsity**, we have an intermediate **Sinai regime**. The width of the Sinai regime is determined by the **log-width of the distribution**.

Sinai Diffusion

Conventional random walk :

Equal & symmetric transition rates

 $I\propto \frac{1}{N}$

Sinai Random Walk:

Uncorrelated & non symmetric transition rates \sim build up of activation barrier

 $I \propto e^{-\sqrt{N}}$

Our model:

Telescopic correlations: $\mathcal{E}(x_n) \sim \Delta_n \equiv (E_n - E_{n+1})$ Yet... we have sparsely distributed couplings

$$I \sim \frac{1}{N} \overline{w} \exp\left[-\frac{\mathcal{E}_{\cap}}{2}\right] 2 \sinh\left(\frac{\mathcal{E}_{\circlearrowright}}{2}\right)$$

FD phenomenology for a "sparse" system

$$w_{nm} = w_{nm}^{\beta} + \nu g_{nm}$$

$$\dot{W}$$
 = rate of heating = $\frac{D(\nu)}{T_{\text{system}}}$
 \dot{Q} = rate of cooling = $\frac{D_B}{T_B} - \frac{D_B}{T_{\text{system}}}$

Hence at the NESS:

$$T_{\text{system}} = \left(1 + \frac{D(\nu)}{D_B}\right) T_B$$
$$\dot{Q} = \dot{W} = \frac{1/T_B}{D_B^{-1} + D(\nu)^{-1}}$$

Experimental way to extract response:

$$\frac{D(\boldsymbol{\nu})}{\dot{Q}(\boldsymbol{\infty}) - \dot{Q}(\boldsymbol{\nu})} D_B$$

 $D(\nu)$ exhibits LRT to SLRT crossover

$$D(\nu) = \left[\left(\frac{w_n}{w_{\beta} + w_n} \right) \right] \left[\left(\frac{1}{w_{\beta} + w_n} \right) \right]^{-1}$$

$$D_{[LRT]} = \overline{g_n} \nu \quad [\text{weak driving}]$$
$$D_{[SLRT]} = [\overline{1/g_n}]^{-1} \nu \quad [\text{strong driving}]$$

Expressions above assume n.n. transitions only.

Summary of main results

- 1. Due to the sparsity of the perturbation matrix, the NESS is of glassy nature [1].
- 2. An extension of the Fluctuation-Dissipation phenomenology has been proposed [1].
- 3. A log-wide distribution of couplings leads to Sinai-type physics [2].

Outlook

- 1. Novel saturation effect in the quantum model [1].
- 2. Fluctuations of the current.
- 3. Fluctuation relations in sparse systems.
- [1] D. Hurowitz and D. Cohen, Europhysics Letters 93, 60002 (2011).
- [2] D. Hurowitz, S. Rahav and D. Cohen, Europhysics Letters 98, 20002 (2012)