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Brownian motion

The Einstein-Smoluchowski Relation (ESR):
D = ,ukBT, kB =1

Relation between mobility () and diffusion (D) reflecting microscopics (kp) in universal way.

This is a special case of a fluctuation-dissipation relation between first and second moments.
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FDT is valid close to equilibrium.
To what extent does the ESR hold?
Can it be derived from the NFT?

Non-equilibrium version?




Sinai spreading

Wn

Stochastic field: &, = In {<_ o = 1/ Var(&Ep)

w
Stochastic Motive Force: Sy = Z In { U_” ]
mn

nering

Ep — Ep_
If 1} ~ Sy =0

T

For small s [1]:

Sub-diffusive spreading ©x ~ [log(t)]Q,
~VN_

Exponentially small drift v ~ e

For arbitrary s [2,3]: 1000 2000 3000

Complicated expressions for v and D.
[1] Sinai (1982)
[2] Derrida (1983)

For a periodic lattice, no disorder: . ]
[3] Aslangul, Pottier, Saint-James (1989)
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a 2 ESR is violated for large s




Observations for finite N

General N

O Numerics
—Sample specific
- = =Statistical

Generalized ESR for a given disorder o

(1) For small values of s we have v/D = s, in consistency with the ESR.

(2) For no disorder (o = 0) we have as = 1, reflecting the discreteness of the lattice.

(3) For finite disorder and moderate s we have as ~ N, reflecting the length of the unit cell.
(4) For finite disorder and large s we have as = ao, reflecting the disorder o.

(5) As N becomes larger our results approach those of [2,3], which we call ”Sinai step”.
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General s dependence
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o is the log-width of the stochastic field distribution




Nonequilibrium Fluctuation Theorem (NFT)
derivation of the ESR

Define x as the winding number times the length of the ring.
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Gaussian approximation (Central Limit Theorem)
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Does the ESR really hold?




NFT and coarse graining
Asymmetric random walk traversing a distance x = X1 + ... + X/
P(X =+1) p = Wr
P(X = —1) g = Wr
P(X=0) = 1—-p—gq

Moment generating function Z (k)
In the continuous time limit p,q < 1, InZ(k)

Accordingly, one obtains:
o) . ——1k ik -
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Correct application of the CLT:
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The naive reasoning, based on CLT, is wrong, If we smear p(x) we get

p(—=z;t) _
p(z; 1)




Recipe for computing v and D on a periodic array

Dynamics determined by rate equation: (d/dt)p = Wp

W is not symmetric yet periodic, thus Bloch’s theorem applies.

Reduced equation for the eigenmodes W (p)1p = —Ap, where W () is an N X N matrix.
Bloch’s theorem: ,, | v = €*?,,, where n is the site index mod (V).

Bloch quasi-momentum ¢ = kN.

Diagonalizing W () ~ {|k,v),—A.(k)}, where v is the band index.

Time dependent solution of the rate equation
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In the long time limit only Ag survives
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The Poisson Limit (s — oc0)

The limit s — oo corresponds to a uni-directional

random walk traversing a distance x = X1 + ... + X/
P(Xn,=1) = wpT
P(X, =0) 1 —wn,T

P(X, =-1) 0
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Characteristic polynomial for eigenvalues of W ()

N ‘ 0o 15 20
det(A + W (¢ HA wn) +e~ [[wn =0
n=1 n=1

Effective lattice constant (N = 6)

Expanding to second order in A and ¢

N N
(Sa) (Sa)]e o

From the recipe for v and D:
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Spreading analysis and the ”Sinai step”

<<W o~ (s—su)p | defines s, |

The values sq/2, s1 and s2 determine crossover points between transport regimes.

For s = 0, anomalous time dependent spreading [Sinail,

VN

z ~ [log(t)]? ~> v o~ e

For finite s < s; [Bouchaud, Comtet, Georges, Le Doussal, 1987],

[ 1 is the value for which s, = s |
Time required to drift x ~ N is t ~ NY/#_ hence we deduce

x (1)%—1
t N

Crossover at s = s1 /9 from sub-Ohmic to super-Ohmic behaviour.

For large s > s; and N — oo [Derridal,

1— <(%/ﬁ>)> [1 _ e_(s_sl)] Voo
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The affinity dependent length scale

From ”Derrida” we have an expression for

v in the N — oo limit.

From our reasoning we have in general

2 asS
— = tanh =2 with some Qs.
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By ”reverse engineering” we deduce

CLSNN, S<82
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v=2Ds
~ exp (—\/N)




Summary

To what extent does the ESR hold?

As long as s < 1/N, for a disordered lattice.
Can it be derived from the NFT?

Yes, provided s is replaced by coarse grained s.

Non-equilibrium version?
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