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“Sparsity”

Htotal = diag{En} − f(t){Vnm} + F (t){Wnm}

Histogram of couplings
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gn = |Vn,n+1|2 = couplings

“sparsity” = log wide distribution of couplings



Current vs. driving

Driving ; Stochastic Motive Force ; Current

Regimes: LRT regime, Sinai regime, Saturation regime
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Extent of the “Sinai regime” is determined by width of distribution of rates



Master equation description of dynamics

Htotal = diag{En} − f(t){Vnm} + F (t){Wnm} + HBath

Quantum master equation for the reduced probability matrix:

dρ

dt
= −i[H0, ρ]− ε2

2
[V, [V, ρ]] +Wβρ ≡ Wρ

Stochastic rate equation:

dpn
dt

=
∑
m

wnmpm − wmnpn

Steady state equation:

ρ̇ = Wρ = 0

The transition rates:

wnm = wεnm + wβnm

wεnm = wεmn = gnmε
2

wβnm

wβmn
= exp

[
−En−Em

TB

]



The Stochastic Motive Force (SMF)

If we had only a bath

wnm
wmn

= exp

[
−En−Em

TB

]
We define a “field”

E(x) ≡ ln

[
wnm
wmn

]
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and “potentials”

E(x1 ; x2) =

∫ x2

x1

E(x)dx [potential variation]

E∩ ≡ maximum
{
|E(x1 ; x2)|

}
[activation barrier]

E	 ≡
∮
E(x)dx if no driving = 0 [SMF]

With driving, E	 6= 0. This means
∏

n wn,n+1 6=
∏

n wn+1,n.



Current vs. driving

Driving ; Stochastic Motive Force ; Current

Regimes: LRT regime, Sinai regime, Saturation regime
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Emergence of the “Sinai regime”

Sinai [1982]: Transport in a chain with random transition rates.

Assume transition rates are uncorrelated.
; build up of a potential barrier E∩ ∝

√
N .

; exponentially small current.

But... we have telescopic correlations: En,n+1 ∼ ∆n ≡ (En−En+1)

Yet... we have sparsely distributed couplings: wεn,n+1 = gnε
2

E	 ≈ −
∑
n

[
1

1 + gnε2

]
∆n

TB
∼ 1

TB


ε2, ε2 < 1/gmax

1/ε2, ε2 > 1/gmin

[±]
√
N∆, otherwise

Build up may occur if gn are from a log-wide distribution.
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Generalized Fluctuation-Dissipation phenomenology

Htotal = Enδnm − f(t)Vnm + F (t)Wnm

Ẇ = rate of heating =
D(ε)

Tsystem

Q̇ = rate of cooling =
DB

TB
− DB

Tsystem

Hence at the NESS:

Tsystem =

(
1 +

D(ε)

DB

)
TB

Q̇ = Ẇ =
1/TB

D−1B +D(ε)−1

Experimental way to extract response:

Q̇(∞) =
DB

TB

D(ε) =
Q̇(ε)

Q̇(∞)− Q̇(ε)
DB

Driving
System

Work (W)Heat (Q)

Bath

SB(ω) SA(ω)

D(ε) exhibits LRT to SLRT crossover
SLRT requires resistor network calculation

D(ε) =

[(
wn

wβ + wn

)][(
1

wβ + wn

)]−1

wn = gnε
2

D[LRT] = gnε
2 [weak driving]

D[SLRT] = [1/gn]−1ε2 [strong driving]



Topological term in EAR formula

Q̇ =
∑
n

[
wβ←−n pn − w

β
−→n pn−1

]
∆n

≈
[
DB

TB
− DB

T (0)

]
+ TBE	 I

≈ DB

TB

[
(gnε2)− (gnε2)2 + Var(g)ε4

]
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Topological term

Current

The EAR is correlated with the current.



Digression - derivation of the cooling rate formula

Q̇ = cooling rate = −
∑

n,m(En − Em) wβnm pm

pn − pm = occupation imbalance =
[
2 tanh

(
−En−Em

2Tnm

)]
p̄nm

wβnm−wβmn = up/down transitions imbalance =

[
2 tanh

(
−En − Em

2TB

)]
w̄βnm

Q̇ =
1

2

∑
n,m

(En−Em)2
w̄βnm
TB

p̄nm−
1

2

∑
n,m

(En−Em)2
w̄βnm
Tnm

p̄nm =
DB

TB
− DB

Tsystem

definition of the diffusion coefficient: DB ≡
[
1
2

∑
n(En−Em)2 wβnm

]

definition of effective system temperature: 1
Tsystem

≡
[

1
Tnm

]



The quantum mechanical steady state

Stochastic

dpn
dt

=
∑
m

wnmpm − wmnpn

In→m = wmnpn − wnmpm ≡ tr(În→mρ)

Îεn→m = |n〉wεmn〈n| − |m〉wεnm〈m|

Îβn→m = |n〉wβmn〈n| − |m〉wβmn〈m|

Quantum

dρ

dt
= −i[H0, ρ]− ε2

2
[V, [V, ρ]] +Wβρ

Îεn→m = iε2
[
Ĵ nm, V̂

]
Ĵ nm = i

(
|m〉Vmn〈n| − |n〉Vnm〈m|

)
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Summary of main results

1. Due to the sparsity of the perturbation matrix, the NESS is of
glassy nature [1].

2. An extension of the Fluctuation-Dissipation phenomenology
has been proposed [1].

3. A log-wide distribution of couplings is required in order to
have a Sinai regime.

4. The topological term in the EAR is correlated with the current
but sub-linear in driving intensity.

5. Novel saturation effect in the quantum model.

6. The quantum current operator in the reduced description
includes off diagonal elements of the probability matrix.

[1] D. Hurowitz and D. Cohen, Europhysics Letters 93, 60002 (2011).



References and Acknowledgements

1. D. Hurowitz and D. Cohen, Europhysics Letters 93, 60002 (2011).

2. D. Hurowitz, S. Rahav and D. Cohen, Europhysics Letters 98, 20002
(2012).

I Sparsity: Austin, Wilkinson, Prosen, Robnik, Alhassid, Levine, Fyodorov,
Chubykalo, Izrailev, Casati

I Energy absorption by sparse systems: Cohen, Kottos, Schanz, Wilkinson,
Mehlig

I Network theory: Schnakenberg, Zia, Hill

I Sinai physics: Sinai, Derrida, Pomeau, Burlatsky, Oshanin, Mogutov,
Moreau, Bouchard

Acknowledgement: Bernard Derrida


