Percolation, sliding, localization and relaxation in topologically closed circuits

Daniel Hurowitz, Doron Cohen

Ben-Gurion University

[2] D. Hurowitz and D. Cohen, Phys. Rev. E 90, 032129 (2014).

Types of random walk

Simple random walk, aka Brownian motion [Einstein] Strictly periodic lattice (a = 1). All rates are equal (w)

D = w (near-neighbor hopping)

Random walk on a disordered lattice [1]

Random lattice. Symmetric transition rates w_n

$$P(w) \propto w^{\alpha-1}$$
 (for small w)

$$D = \left\langle \frac{1}{w} \right\rangle^{-1}$$

Non-percolating for $\alpha < 1$ Percolation-like transition

Random walk in random environment [2] Rates allowed to be asymmetric: $\overleftarrow{w}_n \neq \overrightarrow{w}_n$ Sub-diffusion for low bias [Sinai, Derrida,...] Sliding transition

[1] Alexander, Bernasconi, Schneider, Orbach, Rev. Mod. Phys. (1981).

[2] Bouchaud, Comtet, Georges, Le Doussal, Annals Phys. (1990).

Definition of the model

Conservative rate equation

$$rac{doldsymbol{p}}{dt}$$
 = $oldsymbol{W}oldsymbol{p}$

Rates allowed to be asymmetric $\vec{w}_n / \vec{w}_n = e^{\mathcal{E}_n}$

Affinity: $S_{\circlearrowleft} = \sum \mathcal{E}_n = Ns$

Stochastic field: $\mathcal{E}_n = s + \varsigma_n$ where $\varsigma_n \in [-\sigma, \sigma]$

Transition rates across n^{th} bond are $w_n e^{\pm \mathcal{E}_n/2}$

Resistor network disorder: $P(w) \propto w^{\alpha-1}$

How do spectral properties of W depend on (α, σ, s) ? $\alpha \sim$ sparsity, $\sigma \sim$ field disorder, $s \sim$ affinity

$$\boldsymbol{W} = \begin{bmatrix} -\gamma_1 & w_{1,2} & 0 & \dots \\ w_{2,1} & -\gamma_2 & w_{2,3} & \dots \\ 0 & w_{3,2} & -\gamma_3 & \dots \\ \dots & \dots & \dots & \dots \end{bmatrix}$$

Sum of elements in each column is zero

Related models

Vortex depinning in type II superconductors (s = applied transverse magnetic field)

- Hatano, Nelson, PRL (1996), PRB (1997).
- Shnerb, Nelson, PRL (1998).
- Follow ups: Brouwer, Silvestrov, Beenakker, PRB (1997). Goldsheid, Khoruzhenko, PRL (1998). Feinberg, Zee, PRE (1999). Molinari, Linear Algebra and its Applications (2008).

Pulling pinned polymers, DNA denaturation (s = pulling force)

• Lubensky, Nelson, PRL (2000), PRE (2002).

Population biology (s = convective flow of bacteria relative to the nutrients)

- Nelson, Shnerb, PRE (1998).
- Dahmen, Nelson, Shnerb, Springer (1999).

Molecular motors (s = affinity of chemical cycle)

- Fisher, Kolomeisky, PNAS (1999).
- Rief et al, PNAS (2000).
- Kafri, Lubensky, Nelson, Biophysical Journal (2004), PRE (2005).

None of the above concern relaxation modes of a **conservative** system! Implications of the percolation and sliding transitions on relaxation modes of the ring?

The spectrum of W

- Due to conservativity $\lambda_0 = 0$
- The other eigenvalues are $\{-\lambda_k\}$
- Complex low-laying bubble for $s > s_c$
- Complexity saturation for $s \gg s_{\infty}$
- Implication of the percolation transition?
- Implication of the sliding transition?

The spectral equation

We are looking for the eigenvalues $\{-\lambda_k\}$ of the matrix \boldsymbol{W} . The characteristic equation is:

$$\det(z+W) = \det(z+\tilde{W}) = \det(z+H) - 2\left[\cosh\left(\frac{S_{\odot}}{2}\right) - 1\right](-\overline{w})^N = 0$$

$$W = \text{diagonal}\left\{-\gamma_n(s)\right\} + \text{offdiagonal}\left\{w_n e^{\pm \frac{\mathcal{E}_n}{2}}\right\} \qquad \qquad \mathcal{E}_n = s + \varsigma_n$$

$$\tilde{\varsigma} = N s$$

$$\tilde{W} = \text{diagonal}\left\{-\gamma_n(s)\right\} + \text{offdiagonal}\left\{w_n e^{\pm \frac{S_0}{2N}}\right\}$$
 $S_0 =$

$$\boldsymbol{H} = \operatorname{diagonal}\left\{-\gamma_n(\boldsymbol{s})\right\} + \operatorname{offdiagonal}\left\{w_n\right\} \quad \rightsquigarrow \quad \operatorname{diagonal}\left\{-\epsilon_k(\boldsymbol{s})\right\}$$

Diagonal always depends on s

The characteristic equation:

$$\prod_{k} \left(\frac{z - \epsilon_k(s)}{(-\overline{w})} \right) = 2 \left[\cosh\left(\frac{Ns}{2}\right) - 1 \right]$$

The electrostatic version (RHS is $\Psi(0)$ because $\lambda_0=0$ is in the spectrum)

$$\Psi(z) = \Psi(0)$$
 $\Psi(z) \equiv \sum_{k} \ln\left(\frac{z - \epsilon_k(s)}{(-\overline{w})}\right)$

Below we work with units such that $\bar{w} = 1$.

The electrostatic picture

The complex potential:

$$\Psi(z) = \sum_{k} \ln(z - \epsilon_k) + \text{const} = V(x, y) + iA(x, y)$$
$$V(x, y) = V(0) \qquad A(x, y) = 2\pi * \text{integer}$$

Characteristic equation:

The formation of a complex bubble

The λ spectrum is real if $V(\epsilon) > V(0)$. The characteristic equation is $V(\epsilon) = V(0)$ leading to $\lambda_k \sim \epsilon_k$

In the continuum approximation

$$\rho(\epsilon) = \epsilon^{\mu-1} \quad \text{(for small } \epsilon) \qquad [\mu \text{ depends on } s]$$
$$V(\epsilon) = \int \ln \left(|\epsilon - \epsilon'| \right) \rho(\epsilon') d\epsilon' \quad \sim \text{ inverse localization length}$$

The threshold s_c is determined from the condition V'(0) < 0

$$V'(\epsilon \to 0) \approx \frac{\epsilon^{\mu-1}}{\epsilon_c^{\mu}} \pi \mu \cot(\pi \mu)$$

The derivative changes sign from positive to negative at $\mu = 1/2$. We define $s_{1/2}$ as the value of s for which $\mu = 1/2$ For full disorder we make the identification $s_c = s_{1/2}$.

D = 0 for $s < s_{1/2}$, and v = 0 for $s < s_1$

- For Anderson problem $V(\epsilon)$ diverges at the band edge
- For Debye model $V(\epsilon)$ goes to zero at the band edge
- A conservative \boldsymbol{H} is formally like Debye model
- As the affinity is increased the conservativity of \boldsymbol{H} is spoiled.

Charge density:

$$\rho(\epsilon) \equiv \sum_{k} \delta(\epsilon - \epsilon_k(s))$$

Electrostatic potential:

Digression - the determination of μ

The thresholds s_{μ} are defined from

$$\left\langle e^{-\mu \mathcal{E}} \right\rangle \equiv e^{-(s-s_{\mu})\mu} = 1$$

For an infinite chain:

D = 0 for $s < s_{1/2}$, v = 0 for $s < s_1$.

For Gaussian disorder: $s_{\mu} = \frac{1}{2}\sigma^{2}\mu$ For Box disorder: $s_{\mu} = \frac{1}{\mu}\ln\left(\frac{\sinh(\sigma\mu)}{\sigma\mu}\right)$ In the latter case note that $s_{\infty} = \sigma$.

With a given s we associate μ such that $s = s_{\mu}$. This μ is reflected in the time dependent spreading $x \sim t^{\mu}$ Correspondingly it is reflected in the density of eigenvalues: $\rho(\epsilon) \propto \epsilon^{\mu-1}$ (for small ϵ) For $s > s_{\infty}$ a gap is opened.

Resistor network disorder

Without stochastic field:

- $\mu = \frac{\alpha}{1+\alpha} \quad \text{for } \alpha < 1$ $\mu = \frac{1}{2} \quad \text{for } \alpha > 1$
- $\mu = -\alpha$ adding large s

With stochastic field disorder:

The determination of s_c - sparse disorder

Sparse disorder

Clean ring with a single defected bond

$$s_c \propto \frac{S_c}{N} \ll s_1$$

For $M \ll N$ defects

$$s_c \propto \frac{\sqrt{M}}{N}$$

Non-percolating ring

 $s_c = \infty$ for $\alpha < 1/2$

In this regime the spectrum remains real

Residual percolation

$$s_c \sim \frac{1}{N} \quad \text{for } \alpha > 1/2$$

In this regime it is like sparse disorder

Complexity saturation

The cutoff frequency ϵ_c of the complex bubble is determined by the characteristic equation

$$\sum_{k} \ln |\epsilon - \epsilon_k(\mathbf{s})| = \ln \left\{ 2 \left[\cosh \left(\frac{N\mathbf{s}}{2} \right) - 1 \right] \right\}$$

We can solve it easily for $s \gg s_{\infty}$

 \equiv

$$\epsilon_k(s) \mapsto \gamma_n \approx w_n e^{\mathcal{E}_n/2}$$

$$\epsilon_n(s) = w_n e^{(s+\varsigma_n)/2} \qquad \varsigma_n \in [-\sigma, +\sigma]$$

$$\epsilon_c(s) \equiv \bar{w} e^{(s+\sigma_c)/2}$$

The characteristic equation takes the form

$$\frac{1}{N}\sum_{n}\ln\left|\bar{w}e^{(s+\sigma_c)/2} - w_n e^{(s+\varsigma_n)/2}\right| = \frac{s}{2}$$

We get an s independent equation for σ_c

$$\overline{\ln\left[\bar{w} \,\mathrm{e}^{\sigma_c/2} - w \,\mathrm{e}^{\varsigma/2}\right]} = 0$$

Summary

Relaxation properties of a closed circuit, whose dynamics is generated by a conservative rate-equation, is dramatically different from that of a biased non-hermitian Hamiltonian.

Type of disorder	Parameters	s_c	Remarks
No disorder	$\alpha {=} \infty, \ \sigma {=} 0$	$s_c = 0$	diffusive system
Resistor-network disorder	$\alpha < \frac{1}{2}, \ \sigma = 0$	$s_c = \infty$	non-percolating
Resistor-network disorder	$\frac{1}{2} < \alpha < 1, \ \sigma = 0$	$s_c \sim (1/N)$	residual percolation
Sparse disorder	$(M/N) \ll 1$	$s_c \sim (1/N)$	both disorder types
Stochastic field disorder	$\alpha {>}1, \ \sigma {\neq} 0$	$s_c pprox s_{1/2}$	percolating

- Relaxation becomes under-damped due to the appearance of a complex-bubble at the band floor.
- Sparse disorder the threshold s_c diminishes as 1/N
- Resistor network disorder Transition to complexity happens **before** the percolation transition.
- Stochastic field disorder Transition to complexity happens **before** the sliding transition.
- Increasing further the affinity "complexity saturation" is observed.