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Types of random walk

Simple random walk, aka Brownian motion [Einstein]

Strictly periodic lattice (a = 1). All rates are equal (w)

D = w (near-neighbor hopping)

Random walk on a disordered lattice [1]

Random lattice. Symmetric transition rates wn

P (w) ∝ wα−1 (for small w)

D =

〈
1

w

〉−1

Non-percolating for α < 1

Percolation-like transition

α ∼ sparsity parameter

(resistor network calculation)

Random walk in random environment [2]

Rates allowed to be asymmetric: ←−wn 6= −→wn
Sub-diffusion for low bias [Sinai, Derrida,...]

Sliding transition

[1] Alexander, Bernasconi, Schneider, Orbach, Rev. Mod. Phys. (1981).

[2] Bouchaud, Comtet, Georges, Le Doussal, Annals Phys. (1990).



Definition of the model

Conservative rate equation

dp

dt
= Wp

Rates allowed to be asymmetric −→wn/←−wn = eEn

Affinity: S	 =
∑
En = Ns

Stochastic field: En = s+ ςn where ςn ∈ [−σ, σ]

Transition rates across nth bond are wne±En/2

Resistor network disorder: P (w) ∝ wα−1

W =


−γ1 w1,2 0 ...

w2,1 −γ2 w2,3 ...

0 w3,2 −γ3 ...

... ... ... ...


Sum of elements in each column is zero

How do spectral properties of W depend on (α, σ, s)?

α ∼ sparsity, σ ∼ field disorder, s ∼ affinity



Related models

Vortex depinning in type II superconductors (s = applied transverse magnetic field)

• Hatano, Nelson, PRL (1996), PRB (1997).

• Shnerb, Nelson, PRL (1998).

• Follow ups: Brouwer, Silvestrov, Beenakker, PRB (1997). Goldsheid, Khoruzhenko, PRL (1998). Feinberg, Zee,

PRE (1999). Molinari, Linear Algebra and its Applications (2008).

Pulling pinned polymers, DNA denaturation (s = pulling force)

• Lubensky, Nelson, PRL (2000), PRE (2002).

Population biology (s = convective flow of bacteria relative to the nutrients)

• Nelson, Shnerb, PRE (1998).

• Dahmen, Nelson, Shnerb, Springer (1999).

Molecular motors (s = affinity of chemical cycle)

• Fisher, Kolomeisky, PNAS (1999).

• Rief et al, PNAS (2000).

• Kafri, Lubensky, Nelson, Biophysical Journal (2004), PRE (2005).

None of the above concern relaxation modes of a conservative system!

Implications of the percolation and sliding transitions on relaxation modes of the ring?



The spectrum of W
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s < sc sc < s < s∞ s > s∞

• Due to conservativity λ0 = 0

• The other eigenvalues are {−λk}

• Complex low-laying bubble for s > sc

• Complexity saturation for s� s∞

• Implication of the percolation transition?

• Implication of the sliding transition?
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The spectral equation

We are looking for the eigenvalues {−λk} of the matrix W .

The characteristic equation is:

det(z + W ) = det(z + W̃ ) = det(z + H) − 2

[
cosh

(
S	

2

)
− 1

]
(−w)N = 0

W = diagonal
{
− γn(s)

}
+ offdiagonal

{
wne±

En
2

}
W̃ = diagonal

{
− γn(s)

}
+ offdiagonal

{
wne±

S	
2N

}
H = diagonal

{
− γn(s)

}
+ offdiagonal

{
wn
}

; diagonal
{
− εk(s)

}
En = s+ ςn

S	 = N s

Diagonal always depends on s

The characteristic equation:∏
k

(
z − εk(s)

(−w)

)
= 2

[
cosh

(
Ns

2

)
− 1

]

The electrostatic version (RHS is Ψ(0) because λ0=0 is in the spectrum)

Ψ(z) = Ψ(0) Ψ(z) ≡
∑
k

ln

(
z − εk(s)

(−w)

)
Below we work with units such that w̄ = 1.



The electrostatic picture

The complex potential: Ψ(z) =
∑
k

ln(z − εk) + const = V (x, y) + iA(x, y)

Characteristic equation: V (x, y) = V (0) A(x, y) = 2π ∗ integer
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The formation of a complex bubble

The λ spectrum is real if V (ε) > V (0).

The characteristic equation is V (ε) = V (0)

leading to λk ∼ εk

In the continuum approximation

ρ(ε) = εµ−1 (for small ε) [µ depends on s]

V (ε) =

∫
ln
(
|ε− ε′

∣∣)ρ(ε′)dε′ ∼ inverse localization length

The threshold sc is determined from the condition V ′(0) < 0

V ′(ε→ 0) ≈
εµ−1

εµc
πµ cot(πµ)

The derivative changes sign from positive to negative at µ = 1/2.

We define s1/2 as the value of s for which µ = 1/2

For full disorder we make the identification sc = s1/2.

D = 0 for s < s1/2, and v = 0 for s < s1

• For Anderson problem - V (ε) diverges at the band edge

• For Debye model - V (ε) goes to zero at the band edge

• A conservative H is formally like Debye model

• As the affinity is increased the conservativity of H is spoiled.

Charge density:

ρ(ε) ≡
∑
k

δ(ε− εk(s))

Electrostatic potential:
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Digression - the determination of µ

The thresholds sµ are defined from〈
e−µE

〉
≡ e−(s−sµ)µ = 1

For an infinite chain:

D = 0 for s < s1/2,

v = 0 for s < s1.

For Gaussian disorder: sµ =
1

2
σ2µ

For Box disorder: sµ =
1

µ
ln

(
sinh(σµ)

σµ

)
In the latter case note that s∞ = σ.

With a given s we associate µ such that s = sµ.

This µ is reflected in the time dependent spreading x ∼ tµ

Correspondingly it is reflected in the density of eigenvalues:

ρ(ε) ∝ εµ−1 (for small ε)

For s > s∞ a gap is opened.

Resistor network disorder

Without stochastic field:

µ = α
1+α

for α<1

µ = 1
2

for α>1

µ = α adding large s

With stochastic field disorder:
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The determination of sc - sparse disorder

Sparse disorder

Clean ring with a single defected bond

sc ∝
Sc

N
� s1

For M � N defects

sc ∝
√
M

N

Non-percolating ring

sc = ∞ for α < 1/2

In this regime the spectrum remains real

Residual percolation

sc ∼
1

N
for α > 1/2

In this regime it is like sparse disorder
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Complexity saturation

The cutoff frequency εc of the complex bubble

is determined by the characteristic equation

∑
k

ln |ε− εk(s)| = ln

{
2

[
cosh

(
Ns

2

)
− 1

]}
We can solve it easily for s� s∞

εk(s) 7→ γn ≈ wneEn/2

εn(s) = wn e(s+ςn)/2 ςn ∈ [−σ,+σ]

εc(s) ≡ w̄ e(s+σc)/2

The characteristic equation takes the form

1

N

∑
n

ln
∣∣∣w̄e(s+σc)/2 − wne(s+ςn)/2

∣∣∣ =
s

2

We get an s independent equation for σc

ln
[
w̄ eσc/2 − w eς/2

]
= 0
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Summary

Relaxation properties of a closed circuit, whose dynamics is generated by a conservative rate-equation,

is dramatically different from that of a biased non-hermitian Hamiltonian.

Type of disorder Parameters sc Remarks

No disorder α=∞, σ=0 sc = 0 diffusive system

Resistor-network disorder α< 1
2
, σ=0 sc =∞ non-percolating

Resistor-network disorder 1
2
<α<1, σ=0 sc ∼ (1/N) residual percolation

Sparse disorder (M/N)� 1 sc ∼ (1/N) both disorder types

Stochastic field disorder α>1, σ 6=0 sc ≈ s1/2 percolating

• Relaxation becomes under-damped due to the appearance of a complex-bubble at the band floor.

• Sparse disorder - the threshold sc diminishes as 1/N

• Resistor network disorder - Transition to complexity happens before the percolation transition.

• Stochastic field disorder - Transition to complexity happens before the sliding transition.

• Increasing further the affinity - “complexity saturation” is observed.


