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Types of random walk

Simple random walk, aka Brownian motion [Einstein]

-€
O

Strictly periodic lattice (a = 1). All rates are equal (w)

= w (near-neighbor hopping)
Random walk on a disordered lattice [1]
Random lattice. Symmetric transition rates wp,

1
P(w) o w® (for small w) « ~ sparsity parameter

< (resistor network calculation)

Non-percolating for @ < 1

Percolation-like transition

Random walk in random environment [2]
Rates allowed to be asymmetric: ﬁn +~ Un
Sub-diffusion for low bias [Sinai, Derrida,...]

Sliding transition

[1] Alexander, Bernasconi, Schneider, Orbach, Rev. Mod. Phys. (1981).
[2] Bouchaud, Comtet, Georges, Le Doussal, Annals Phys. (1990).




Definition of the model

Conservative rate equation

dp

_ W
dt p

Rates allowed to be asymmetric ﬁn / Un — ebn

Affinity: Sy = > &, = Ns

Stochastic field: &, = s + ¢, where ¢, € [—0, 7] ’
2

Transition rates across nt" bond are wy,eTtn/2 w32 773

Resistor network disorder: P(w) oc w®™ Sum of elements in each column is zero

How do spectral properties of W depend on («,0,s)?

o ~ sparsity, o ~ field disorder, s ~ affinity




Related models

Vortex depinning in type II superconductors (s = applied transverse magnetic field)
Hatano, Nelson, PRL (1996), PRB (1997).
Shnerb, Nelson, PRL (1998).

Follow ups: Brouwer, Silvestrov, Beenakker, PRB (1997). Goldsheid, Khoruzhenko, PRL (1998). Feinberg, Zee,
PRE (1999). Molinari, Linear Algebra and its Applications (2008).

Pulling pinned polymers, DNA denaturation (s = pulling force)

e Lubensky, Nelson, PRL (2000), PRE (2002).

Population biology (s = convective flow of bacteria relative to the nutrients)

e Nelson, Shnerb, PRE (1998).

e Dahmen, Nelson, Shnerb, Springer (1999).

Molecular motors (s = affinity of chemical cycle)
e Fisher, Kolomeisky, PNAS (1999).
e Rief et al, PNAS (2000).

e Kafri, Lubensky, Nelson, Biophysical Journal (2004), PRE (2005).

None of the above concern relaxation modes of a conservative system!

Implications of the percolation and sliding transitions on relaxation modes of the ring?




The spectrum of W
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Re[A]

s < S¢

Due to conservativity Ag = 0
The other eigenvalues are {—\p}
Complex low-laying bubble for s > s,

Complexity saturation for s > soo

# complex eigenvalues

Implication of the percolation transition?

Implication of the sliding transition?




The spectral equation

We are looking for the eigenvalues {—\.} of the matrix W.
The characteristic equation is:

det(z 4+ W) = det(z4+W) = det(z+H) — 2|:COSh (517@

dlagonal{ Y ( s)} —l—offdlagonal{wne Tn

)
diagonal{ — Yn (s)} + offdiagonal{wn _J(\?* }
~

diagonal{ — Yn (S)} + offdiagonal{wn}

Diagonal always depends on s

diagonal{ — €k (s)}

The characteristic equation:

— N
H (Z—EE(S)) = 2 [cosh (—S> — 1}
; (—w) 2

The electrostatic version (RHS is W(0) because A\p=0 is in the spectrum)

W(z) = ¥(0)

Below we work with units such that w = 1.




The complex potential:

Characteristic equation:

0.5

The electrostatic picture

U(z) = Zln(z —€g) +const = V(z,y) +iA(z,y)
k

A(z,y) = 27 * integer




The formation of a complex bubble

The A spectrum is real if V' (e) > V(0). Charge density:
The characteristic equation is V' (e) = V(0) ple) = Z d(e —er(s))
leading to A\ ~ € k

In the continuum approximation . .
Electrostatic potential:

e~ (for small €) (v depends on s]

Vie) = /ln (Je — e’|)p(e/)de/ ~ inverse localization length

The threshold s, is determined from the condition V/(0) < 0 7 |

Vi(e—0) = T cot(mp)
C

HH
elu' —1 .

The derivative changes sign from positive to negative at u = 1/2.
We define sq /o as the value of s for which u =1/2

For full disorder we make the identification sc = s1 /2.

D =0 for s < s1/9, and v =0 for s < s1

e For Anderson problem - V' (€) diverges at the band edge
e For Debye model - V' (¢) goes to zero at the band edge

e A conservative H is formally like Debye model

e As the affinity is increased the conservativity of H is spoiled.




Digression - the determination of u

The thresholds s, are defined from Resistor network disorder

<e_“8> = e (5=sun _— 1 Without stochastic field:

Q= for a<1
For an infinite chain:

D=0 fors < sq/g, =
v=0 for s < s7. == adding large s

for a>1

For Gaussian disorder: s, = 302 L With stochastic field disorder:

1 inh
For Box disorder: s, = —In <M>

L4
In the latter case note that s = 0.

op

With a given s we associate p such that s = s,,.

o Numerics

This p is reflected in the time dependent spreading x ~ t* .ty
fa
Correspondingly it is reflected in the density of eigenvalues: _ Bessel

p(e) o< €*~1  (for small ¢)

For s > s a gap is opened.




The determination of s. - sparse disorder

Sparse disorder

Clean ring with a single defected bond

C

N<< S1

For M <« N defects

Non-percolating ring

00 for a < 1/2

In this regime the spectrum remains real

Residual percolation

1
— for o > 1/2
N

In this regime it is like sparse disorder




Complexity saturation

The cutoff frequency €. of the complex bubble 59y

is determined by the characteristic equation

zk:ln\e—ek(s)\ = 1n{2{cosh<%)—1}}

We can solve it easily for s > soo

ex(s) —= Yo =~ wneg”/2

en(s) = wpelston)/2 Sn € [—0o,+0]
(stoc)/2

ec(s) = w e

The characteristic equation takes the form

1 S
— 3 " In|@elstoe)/2 — <s+<n>/z‘ _ 7
N 4 n|we Wn€ 5

# complex eigenvalues

We get an s independent equation for o,

ln[’u_Je"c/2 — weg/Q} = 0




Summary

Relaxation properties of a closed circuit, whose dynamics is generated by a conservative rate-equation,

is dramatically different from that of a biased non-hermitian Hamiltonian.

Type of disorder Parameters Se Remarks

No disorder Se =0 diffusive system
Resistor-network disorder s, o= Se = OO non-percolating
Resistor-network disorder sc ~ (1/N) | residual percolation

Sparse disorder sc ~ (1/N) | both disorder types

Stochastic field disorder Sc A 812 percolating

Relaxation becomes under-damped due to the appearance of a complex-bubble at the band floor.
Sparse disorder - the threshold s, diminishes as 1/N

Resistor network disorder - Transition to complexity happens before the percolation transition.
Stochastic field disorder - Transition to complexity happens before the sliding transition.

Increasing further the affinity - “complexity saturation” is observed.




