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The celebrated Einstein relation between the diffusion coefficient D and the drift velocity v is
violated in non-equilibrium circumstances. We analyze how this violation emerges for the simplest
example of a Brownian motion on a lattice, taking into account the interplay between the periodicity,
the randomness and the asymmetry of the transition rates. Based on the non-equilibrium fluctuation
theorem the v/D ratio is found to be a non-linear function of the entropy production, that depends
in a non-trivial way on the microscopics of the sample. In practice it is implied that v/D transport
measurements can be used in order to extract information on the underlying network.

The Einstein-Smoluchowski relation (ESR) [1, 2] be-
tween the diffusion coefficient (D) and the mobility (µ)
of a Brownian particle is a landmark in the history of
statistical mechanics. It states that D = µkBT , where T
is the temperature, and kB is the Boltzmann constant.
Thus it reflects the microscopics of the stochastic process
(via kB) in a very universal way. Below we set kB = 1.

The ESR constitues the simplest example for a
fluctuation-disspation relation. In a modern perspective
it can be regarded as a consequence of a general non-
equilibrium fluctuation theorem (NFT) [3–6] that con-
cerns the evolving probability distribution p(x; t) that
describes the stochastic motion of the particle. The ESR
is in essence a relation between the second moment of the
spreading Var(x) = 2Dt, and its first moment 〈x〉 = vt,
where v = µF is the drift velocity, and F is the field of
force. Using this language it can be re-written as follows:

v

D
= fσ(s) (1)

where s = F/T is the entropy production per unit dis-
tance, and fσ(s) = s is a universal function that does not
depend on the microscopic details of the sample.

Model of interest.– We shall consider below the
dynamics of a particle on an N site ring of length
a(N) = Na(0), with transition rates −→w n and ←−w n across
the nth bond. In general the transition rates are ran-
dom and asymmetric. In previous publications [7, 8] we
have highlighted the relevance of Sinai spreading [9] to
the analysis of the induced v. Optionally one may have
in mind the unfolded version of our ring. The latter con-
cerns the motion of a Brownian particle in a tilted peri-
odic array of identically disordered unit cells.

Previous studies.– The dramatic influence of a tilt
on the transport in a one-dimensional biased periodic po-
tential has been explored experimentally for a colloidal
particle on a corrugated optical vortex [10, 11], and has
been exploited for optical particle fractionation and sep-
aration [12–14]. Explicit expressions for v and for D for
the case of a tilted cosine potential were first given in
[15–18] and further generalised in [19–22].

Several works have studied the effect of weak spatial
disorder on the non-linear bias dependence of the trans-
port coefficients [23–25]. Tractable expressions for v and
for D were available for a completely disordered lattice
(N =∞) [26, 27]. The prediction is that for small s one

obtains v = 0. This anomaly is related to the work of
Sinai [9] regarding random walk in random environment.

Strangely enough there was no attempt, as far as we
know, to bridge between the implied v/D dependence
on s, and the ESR that is expected close to equilibrium.
Furthermore there was no attempt to settle what looks
like a contradiction with the NFT-based derivation of the
ESR, which relies on the central limit theorem. It is the
purpose of the present work to illuminate the departure
from the ESR, and to explore the route that leads to the
N =∞ Sinai anomaly.

For completeness we note that extensions of the
fluctuation-dissipation phenomenology far from equilib-
rium have been considered in [28–31], but from a different
perspective. In [32] it has been pointed out that a vio-
lation of the ESR is expected in a Markovian network,
however this has not been explicitly demonstrated for a
model of interest, neither related to the Sinai anomaly.

NFT based derivation.– The NFT relates the prob-
ability of a stochastic trajectory r(t) to the probability
of the time reversed process:

P [r(−t)]
P [r(t)]

= exp [−S[r]] (2)

where S[r] is the entropy production that is associated
with the trajectory. The implicit assumption here is that
S[r] is well defined. This is a very strong assumption
because in an actual experiment S might depend on ad-
ditional ”hidden” microscopic coordinates that cannot
be resolved by the measuring device. This can be sum-
marized by saying that coarse-graining might make the
”bare” NFT inapplicable: possibly an effective version of
S[r] should be defined [33]. In our model S[r] is a well
defined functional, still we shall see later that in some
sense s is renormalized due to coarse-graining.

We proceed with a critical overview of the the deriva-
tion of the traditional ESR based on Eq.(2). The entropy
production during one trip around the ring is

S	 =
∑
n∈ring

ln

[ −→w n
←−w n

]
(3)

In the context of molecular motors this is known as the
affinity. The entropy production for a general trajectory
that has a winding number q is S[r] = q × S	. We
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disregard here small fractional-loop error that can be ne-
glected in the infinite time limit. We define formally the
distance as x = qa(N), and the entropy per unit distance
as s = S	/a(N). If follows from Eq.(2) that the evolving
probability distribution satisfies

p(−x; t)

p(x; t)
= e−sx (4)

In the long time limit, by virtue of the central limit theo-
rem (CLT), one can introduce a Gaussian approximation
p(x) ≈ p(x), where

p(x; t) =
1√

4πDt
exp

[
− (x− vt)2

4Dt

]
(5)

Substitution in Eq.(4) leads to the standard ESR, namely
v/D = s. Below we are going to argue that the last step
should be handled with much more care. The coarse-
grained distribution p(x) that appears in the CLT, is in
fact a convoluted (”smoothed”) version of the bare p(x).
If follows that p(x) obeys a ”dressed” version of Eq.(4),
with effective affinity s = fσ(s), where

fσ(s) =
2

as
tanh

(ass
2

)
(6)

The length scale as is related to the microscopic details of
the model. We first clarify this statement for the simplest
case of a non-disordered ring, for which as = a(0) is the
lattice constant, and later discuss the general case.

Effective s for periodic lattice.– Consider the sim-
plest discrete model with asymmetry. All the bonds are
identical; the transition rates from left to right are −→w ,
and the transition rates from right to left are ←−w . Hence
it follows from Eq.(3) that S	 = ln(−→w/←−w ). Without loss
of generality we set the units such that a(0)=1. It is not
difficult to find the exact expression for the the evolving
probability distribution p(x; t). Following the standard
procedure (see SM [a]) one obtains

p(x; t) =

∫ ∞
−∞

dk eikx+(−→we−ik+←−weik−(←−w+−→w ))t (7)

This distribution obviously satisfies the NFT Eq. (4),
which can be easily verified. Expanding the expression
in the exponent in powers of k one obtains

p(x; t) =

∫ ∞
−∞

dk eik(x−(
−→w−←−w )t)− k22 (−→w+←−w )t+O(k3t) (8)

The average vt and the variance 2Dt are implied by the
coefficients of the k and k2 terms in the exponent, namely

v = (←−w −−→w ) (9)

D =
1

2
(←−w +−→w ) (10)

The v/D ratio is given by Eq. (6) with a = a(0) = 1.
We now take one step back and apply the CLT before

calculating the ratio. Recall that the CLT procedure is
to introduce the re-scaled variable (x− vt)/(2Dt) and to
claim that in the t→∞ limit the higher order cumulants
O(k3t) can be neglected. We use the notation p(x; t) for
the normal distribution that is obtained via CLT. One
observes that it satisfies Eq. (4), but with an effective
value of s that is given by Eq.(6).

We conclude that the normal approximation for p(x; t),
which is implied by CLT, obeys the NFT provided s is
replaced by a renormalized value s. The reason for that
is as follows: The CLT procedure is the same as cutting
off the high k modes, which is the same as smoothing the
function p(x, t). Due to the smoothing the effective value
of s becomes smaller.

Diffusion in a disordered lattice.– We now turn
to describe a general procedure for exact calculation of v
and D. Any rate equation can be written schematically
as dp/dt = Wp, where p = {pn} is a column vector that
contains the occupation probabilities, and W is a matrix
that contains the transition rates. Note that this matrix
is non-symmetric, hence one should distinguish between
right and left eigenvectors. If the lattice is periodic, with
a unit cell that consists of N sites, the eigenevectors sat-
isfy the Bloch theorem. The reduced equation for the
eigenmodes becomes W (ϕ)ψ = −λψ, where W (ϕ) is an
N × N matrix, and the presence of the phase ϕ implies
that ψn+N = eiϕψn, where n is the site index mod(N).
The Bloch quasi-momentum is formally defined via the
relation ϕ ≡ ka(N). The outcome of the diagonalization
process are the Bloch state |k, ν〉, where ν is the band in-
dex, and the corresponding eigenvalues are −λν(k). The
bottom line is that the time dependent solution of the
rate equation can be written as

pn(t) ≈ 1

L

∑
k,ν

Ck,ν e−λν(k)t eikn (11)

where Ck,ν are constants that depend on the initial
preparation. For technical details see SM [a]. The long
time spreading is dominated by the lowest band ν = 0. It
is not difficult to show (see [a]) that the drift velocity and
the diffusion coefficient are determined by the derivatives
of λ0(k). Namely,

v = i
∂λ0(k)

∂k

∣∣∣∣
k=0

(12)

D =
1

2

∂2λ0(k)

∂k2

∣∣∣∣
k=0

(13)

Simple example.– As an explicit example for the
outcome of this procedure we consider a periodic lattice
that has unit cell with N=2 sites. The transition rates
(
−→
A,
←−
A,
−→
B,
←−
B ) are characterized by ln(

−→
A/
←−
A ) = s+σ and

ln(
−→
B/
←−
B ) = s−σ, such that σ is the “disorder” (in a later

example σ will stand for the width of a box distribution).
The result is

v =

−→
A
−→
B −

←−
A
←−
B

−→
A +

←−
A +

−→
B +

←−
B

(14)
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FIG. 1: The ratio v/(2D) for a Brownian motion in a one-
dimensional regular lattice. The number of sites per unit cell
is N=1 (black stars) and N=2 (red circles). The numeri-
cal results (symbols) are based on simulations with ensembles
of 103 trajectories, while the lines are exact analytical ex-
pressions. The dashed line is the ESR. The upper and lower
thick solid lines are Eq.(6) with a=1 and a=2 respectively. In

the N=2 case
←−
A
−→
A =

←−
B
−→
B = 1 and σ = 2. The intermediate

thick solid line is Eq.(6) with a = a∞ = 1.58. It barely can
be resolved from the exact result (thin red line).

and

D =
1

2

[−→
A
−→
B +

←−
A
←−
B − 2v2

−→
A +

←−
A +

−→
B +

←−
B

]
(15)

The v/D ratio is given by Eq.(1) with

fσ(s) =
2

1 + tanh2
(
σ
2

)
tanh2

(
s
2

) tanh
(s

2

)
(16)

This result is compared to a numerical simulation of a
random walk in Fig.1, which was obtained by standard
simulation methods (Gillespie’s algorithm). As s is in-
creased the v/D ratio approaches a limiting value which
we define as 2/a∞. In Fig.1 we have added a curve of
the function Eq.(6) with as = a∞. We observe that for
practical purpose a∞ can be regarded as an effective lat-
tice constant. As the “disorder” σ increases tanh2(σ/2)
grows from 0 to 1, and consequently a∞ grows from the
value a(0) = 1 to the value a(N) = 2. In spite of the sim-
plicity of this example we shall see that it provides partial
insight with regard to the general N case.

General N .– Let us explore how fσ(s) looks like
when N becomes larger. Fig. 2 provides a few exam-
ples that were calculated analytically using Eq.(12) and
Eq.(13) for N=20. The rates were chosen as −→w n = eSn/2

and ←−w n = e−Sn/2, where Sn are box distributed within
[s− σ, s+ σ]. This implies that the rates have log-box
distribution as in ”glassy” systems.

We observe that fσ(s) has some typical properties.
Namely: (1) For small values of s we have fσ(s) = s in
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FIG. 2: The same as Fig.1 but with N=20 sites per unit cell.
The upper and lower thick solid lines are for zero disorder
(σ=0) and for infinite disorder (σ→∞), as implied by Eq.(6)
with a=1 and a=20 respectively. The thin solid curves are
based on exact analytical calculation for various realizations
of disorder that is characterized by σ=3.5. The intermediate
thick solid line is Eq.(6) with a = a∞ = 1.9316, estimated
using Eq.(17). The linear dashed line is the ESR while the
second dashed line that exhibits a “Sinai step” is the N=∞
prediction of [26] (see text).

consistency with the ESR. (2) For no disorder (σ = 0)
we already have established that fσ(s) obeys Eq.(6) with
a = a(0), reflecting the microscopic discreteness of the
lattice. (3) For finite disorder we see that for mod-
erate values of s the function fσ(s) can be approximated
by Eq.(6) with as = a(N), reflecting the length of the unit
cell. (4) For very large values of s the function fσ(s) sat-
urates, reflecting an effective lattice constant a∞ that we
discuss in the “Poisson limit” paragraph below. (5) As
N becomes larger our results approach those of [26], as
discussed below in the “Completely disordered lattice”
paragraph.

The Poisson limit.– Going to the extreme of very
large s it is possible to get a simple analytical expression
for the asymptotic value a∞. Setting −→w n = wn and
←−w n = 0, the characteristic equation becomes [a]

det(λ+ W (ϕ)) =

N∏
n=1

(λ−wn) + e−iϕ
N∏
n=1

wn = 0

The Taylor expanded solution is

λ = −i

( N∑
n=1

1

wn

)−1
ϕ +

1

2

( N∑
n=1

1

wn

)−3( N∑
n=1

1

w2
n

)ϕ2

Using Eq. (12) and Eq. (13) one deduces the effective
lattice constant

a∞ =

(
2D

v

)
s→∞

=

[〈
(1/−→w )2

〉〈
(1/−→w )

〉2
]
a(0) (17)
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The sample average is 〈R〉 ≡ (1/N)
∑
nRn. For large N

the sample average can replaced by an ensemble average.
Note that the expression in the square brackets consti-
tutes a measure for the ”glassiness” of the network: it
becomes much larger than unity due to the presence of
weak links. For the log-box distributed transition rates
of Fig.2

a∞ =
σ

2
coth

(σ
2

)
(18)

In Fig.3 we test this estimate for N=6. We observe (not
shown) that the statistical result Eq.(18) becomes indis-
tinguishable from the exact sample average Eq.(17) for
large values of N .

Completely disordered lattice.– For a non-
periodic disordered lattice (N = ∞) it has been found
[26] that the the drift velocity is

v = max

{
0,

1− 〈(←−w/−→w )〉
〈(1/−→w )〉

}
(19)

A lengthy expression is available there for D too. The
result of the v/D calculation is displayed in Fig.2. Due
to the Sinai anomaly we have v = 0 within a finite range
s < sc, hence the ESR is completely violated.

For large but finite N we observe in Fig.2 the rem-
nants of the Sinai anomaly, which we call “Sinai step”.
The question arises what does it mean “large N”. For
this purpose let us use a hand-waving argument in order
to illuminate the reason for having a vanishingly small
drift velocity. In a quasi-equilibrium situation we have
−→w npn =←−w npn+1. It follows that pn ∼ αn where

α ≡
〈←−w
−→w

〉−1
=

σ

sinh(σ)
es (20)

Transport into the sample is possible provided α > 1,
else, if [log(1/α)]N � 1, the probability for penetration
is blocked. Thus a small s regime with vanishingly small
drift velocity is feasible if N � a(σ), where

a(σ) =

[
ln

(
sinhσ

σ

)]−1
(21)

The dependence of a(σ) on σ is illustrated in Fig.3. In the
numerics we assume large σ values, so there are remnants
of the Sinai anomaly. For weak disorder (σ � 1) only a
very large sample will exhibit the “Sinai step” that we
see in Fig.2.

Discussion.– In general non-equilibrium circum-
stances the ESR is not valid. For the model system of
interest we write its generalized version as Eq.(1) with
Eq.(6), where as is an s dependent effective scale that
depends on microscopics of the sample. It is only in the
quasi-equilibrium limit s → 0 that the traditional ESR
becomes valid. For a periodic lattice, as the disorder σ is
increased, the length-scale as grows gradually from the
minimal value a(0) (site to site distance) to the maximal
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a ∞
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FIG. 3: The effective length scale a∞ = (2D/v)s→∞. The
number of sites per unit cell is N=6. The symbols are the
outcome of an exact analytical calculation. The exact sam-
ple specific expression Eq. (17) (solid line) works perfectly,
independent of N . The statistical approximation Eq. (18)
(dashed line) becomes indistinguishable for large values of N

(not shown). The dotted line is a(σ) of Eq.(21).

value a(N) (the periodicity). For very large s it saturates
to the disorder dependent value a∞.

The first impression is that the generalized ESR Eq.(1)
with Eq.(6) is very wrong. Naively the ESR should ap-
ply also in non-equilibrium circumstances because it can
be derived from the NFT assuming CLT. We have ex-
plained that the resolution of this puzzle is related to the
implicit coarse-graining procedure. Consequently the ef-
fective affinity is s = fσ(s). One wonders what is the
”small parameter” on which the ESR is based. Consid-
ering Brownian motion on a simple periodic lattice the
answer is that the entropy production per unit site should
be small (sa(0) � 1). For a disordered lattice the effec-
tive lattice constant as becomes larger, and hence the
condition becomes more demanding.

In order to understand the s dependence of v/D one
should taken into account the interplay of several length
scales. In a fully developed scenario one observes two
steps: one is related to the periodicity of the sample, and
the other to the strength of the disorder. The latter can
be regarded as the remnant of the Sinai anomaly.

From an experimental perspective the measurement
of v/D can provide us with information about the mi-
croscopics of the sample. Contrary to the ESR, there is
no universal dependence fσ(s) = s. Rather fσ(s) reflects
the details of the underlying lattice. In particular the
“glassiness” of the disorder is reflected in the effective
lattice constant a∞. Else, in the absence of disorder, it
equals the bare lattice constant.



5

Acknowledgments.– This research was supported
by the Israel Science Foundation (grant No.29/11). We
thank Saar Rahav (Technion) for motivating discussions.

References.–

[1] A. Einstein, Annalen der Physik 322, 549 (1905).

[2] M. Smoluchowski, Annalen der Physik 326, 756
(1906).

[3] J. L. Lebowitz and H. Spohn, J. Stat. Phys. 95, 333
(1999).

[4] P. Gaspard, J. Chem. Phys., 120, 8898 (2004).

[5] U. Seifert, Phys. Rev. Lett. 95, 040602 (2005).

[6] D. Andrieux and P. Gaspard, J. Stat. Phys., 127, 107
(2007).

[7] D. Hurowitz, S. Rahav, D. Cohen, Europhys. Lett.
98, 20002 (2012).

[8] D. Hurowitz, S. Rahav, D. Cohen, Phys. Rev. E. 88,
062141 (2013).

[9] Ya. G. Sinai, Theory Probab. Appl. 27, 247 (1982).

[10] S.H. Lee and D.G. Grier, Phys. Rev. Lett. 96, 190601
(2006).

[11] Evstigneev, M., Zvyagolskaya, O., Bleil, S., Eich-
horn, R., Bechinger, C., and Reimann, P. Phys. Rev.
E. 77(4), 041107 (2008).

[12] MacDonald, M. P., Spalding, G. C., Dholakia, K.
Nature, 426(6965), 421-424 (2003).

[13] Ladavac, K., Kasza, K., Grier, D. G. . Phys. Rev. E
70(1), 010901 (2004).

[14] Milne, G., Rhodes, D., MacDonald, M., Dholakia, K.
Optics letters, 32(9), 1144-1146 (2007).

[15] H. Risken, The Fokker Planck Equation (Springer,
1984).

[16] G. Costantini and F. Marchesoni, Europhys. Lett. 48,
491 (1999)

[17] M. Borromeo and F. Marchesoni, CHAOS 15, 026110
(2005)

[18] C. Cattuto and F. Marchesoni Phys. Rev. Lett. 79,
5070 (1997)

[19] P. Reimann, C. Van den Broeck, H. Linke, P. Hanggi,
J. M. Rubi, and A. Perez-Madrid, Phys. Rev. Lett.
87(1), 010602 (2001).

[20] P. Reimann, C. Van den Broeck, H. Linke, P. Hanggi,
J. M. Rubi, and A. Perez-Madrid, Phys. Rev. E. 65,
031104 (2002).

[21] B. Lindner, M. Kostur, and L. Schimansky-Geier,
Fluctuation and Noise Letters, 1, R25 (2001).

[22] V. Blickle, T. Speck, U. Seifert, and C. Bechinger
Phys. Rev. E. 75, 060101 (2007).

[23] Lindenberg, K., et al. Fluctuation and Noise Letters
11.01 (2012).

[24] Reimann, P., Eichhorn, R. Phys. Rev. Lett. 101(18),
180601 (2008).

[25] M. Khoury, A.M. Lacasta, J.M. Sancho, K. Linden-
berg, Phys. Rev. Lett. 106, 090602 (2011).

[26] B. Derrida, J. Stat. Phys. 31, 3, (1983).

[27] C. Aslangul, N. Pottier and D. Saint-James, J. Phys.
France 50, 899-921 (1989).

[28] V. Blickle, T. Speck, C. Lutz, U. Seifert, and C.
Bechinger, Phys. Rev. Lett. 98, 210601 (2007).

[29] U. Seifert, T. Speck, Europhys. Lett. 89, 10007
(2010).

[30] T. Speck, U. Seifert, Europhys. Lett. 74, 391 (2006).

[31] D. Hurowitz, D. Cohen, Europhys. Lett. 93, 60002
(2011).

[32] U. Seifert Phys. Rev. Lett. 104, 138101 (2010).

[33] S. Rahav, C. Jarzynski, J. Stat. Mech. P09012 (2007).

[a] See supplementary material at URL for some extra
technical details regarding the derivation of the NFT
for p(x) and for p(x); the procedure for calculating v
and D; and the derivation of the Poisson limit.



6

Supplementary Material

I. THE NFT FOR A SIMPLE ASYMMETRIC RANDOM WALK

The dynamics that is generated by a rate equation can be simulated as a random walk process with infinitesimal time
steps τ . Setting a(0) = 1 for the unit cell, the traversed distance is x = X1 + ...+XN . The transition probabilities
per step are

P (X = +1) = p ≡ −→wτ (22)

P (X = −1) = q ≡ ←−wτ (23)

P (X = 0) = 1− p− q (24)

The probability distribution can be obtained from the moment generating function of the process

Z(k) = 〈e−ikx〉 =
[
pe−ik + qe+ik + (1− p− q)

]N
(25)

In the continuous time limit p, q � 1, hence one can expand

lnZ(k) = N
[
pe−ik + qe+ik − (p+ q)

]
+ O(N τ2) (26)

Accordingly

p(x; t) =

∫ ∞
−∞

dk exp
[
ikx+

(−→w e−ik +←−w eik − (←−w +−→w )
)
t
]

(27)

In the expression for p(−x; t) one can invert the sign of the dummy integration variable and then shift it by a constant,
namely k → k + ln(←−w/−→w ). Taking the ratio one can verify that the a-priori expected NFT relation holds:

p(−x; t)

p(x; t)
= e−sx, s = ln

(−→w
←−w

)
(28)

We now take one step back and apply the central limit theorem (CLT) before taking the ratio. Recall the the CLT
procedure is to expand lnZ(k) in powers of k, leading to

p(x; t) =

∫ ∞
−∞

dk exp

[
ik(x− (−→w −←−w )t)− k2

2
(−→w +←−w )t+O(k3t)

]
(29)

The average µ and the dispersion σ are implied by the coefficients of the k and k2 terms in the exponent. By introducing
the re-scaled variable y = (x− µ)/σ one observes that in the t→∞ limit the O(k3t) terms can be neglected, leading
to the CLT.

Anticipating a subtlety we use the notation p for the normal distribution that is obtained by neglecting the higher
order comulants. One observes that within the framework of this approximation

p(−x; t)

p(x; t)
= e−sx, s =

−→w −←−w
−→w +←−w

(30)

One observes that the relation between the ”effective” and ”bare” value is

s = 2 tanh
(s

2

)
(31)
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II. PROCEDURE FOR CALCULATING v AND D

We present here the general procedure for calculating v and D of a diffusive particle on a lattice that has an N site
unit cell. Without loss of generality we set a(0) = 1, so the lattice constant is a(N) = N . For presentation purpose let
us consider for example a lattice with a 2 site unit cell. The rate equation for (say) sites n = 3, 4 takes the form

ṗ3 =
−→
Ap2 − (

←−
A +

−→
B )p3 +

←−
Bp4 (32)

ṗ4 =
−→
Bp3 − (

←−
B +

−→
A )p4 +

←−
Ap5 (33)

where pn are the occupation probabilities of the infinite lattice. Applying Bloch theorem the right eigenvectors are
determined by two amplitudes ψ1 and ψ2, and the recursion ψn+2 = eiϕψn, where the Bloch phase ϕ ≡ ka(N) is used
to define the quasi-momentum k. The reduced equation for the Bloch amplitudes is(

−(
←−
A +

−→
B )
−→
Ae−iϕ +

←−
B

−→
B +

←−
Aeiϕ −(

←−
B +

−→
A )

)(
ψ1

ψ2

)
= −λ

(
ψ1

ψ2

)
(34)

The minus sign in front of the eigenvalues is a matter of convention. Note that for ϕ = 0 one obtains the lowest
eigenvalue λ0 = 1 which is associated with the NESS. Schematically we write the reduced equation as Wψ = −λψ.
The generalization for N site unit cell is straightforward. Using Dirac notations the reduced Bloch equation is

W (ϕ)|ϕ, ν〉 = −λν(ϕ)|ϕ, ν〉 (35)

Since W is not a symmetric matrix, one should distinguish between left and right eigenvectors. The left eigenvectors
are defined via the equation

〈ϕ, ν̃|W (ϕ) = −λν(ϕ)〈ϕ, ν̃| (36)

Optionally the latter can be regarded as the right eigenvectors of W†

W †(ϕ)|ϕ, ν̃〉 = −λ∗ν(ϕ)|ϕ, ν̃〉 (37)

The left and right eigenvectors form a complete basis∑
ϕ,ν

|ϕ, ν〉〈ϕ, ν̃| = 1 (38)

〈ϕ, ν̃|ϕ′, ν′〉 = δϕ,ϕ′δν,ν′ (39)

Turning back to the full lattice, disregarding normalization and gauge issues, the Bloch states can be written in the
traditional way as a modulated plane wave:〈

n
∣∣k, ν〉 =

〈
nmod(N)

∣∣ϕk, ν〉 eikn (40)

where ϕk is related to k as defined previously. Consequently the time dependent solution of the rate equation is

pn(t) =
∑
k,ν

e−λν(k)t 〈n|k, ν〉〈k, ν̃|initial-state〉 (41)

Averaging the probability within each unit cell, we get rid of the intra-cell modulation, leading to

pn(t) ≈ 1

L

∑
k,ν

Ck,ν e−λν(k)t eikn (42)

where L is the length of the sample, and Ck,ν are constants that depend on the initial preparation. Note that in the
limit k → 0 the lower bands degenerate, reflecting a unique NESS. Furthermore, due to normalization C0,0 = C = 1.
The moment generating function that is associated with pn(t) is

Z(k) =
∑
n

e−iknpn(t) ≈
∑
ν

Ck,ν e−λν(k)t (43)
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The first and second moments of n can be deduced by taking the first and second derivative of Z(k) at k = 0. In the
long time limit, only the ν = 0 band survives. Expanding to second order in k we get

Z(k) ≈
[
C + C ′k +

1

2
C ′′k2 + ...

] [
1−

(
λ′k +

1

2
λ′′k2 + ...

)
t+

1

2

(
λ′k + ...

)2
t2 + ...

]
(44)

From which we deduce that in the long time limit

〈n〉 ≈ i(C ′ − Cλ′t) (45)

〈n2〉 ≈ −(C ′′ − Cλ′′t− 2C ′λ′t+ Cλ′2t2) (46)

Var(n) ≈ Cλ′′t− C ′′ + C ′2 (47)

where C=1, while λ′ and λ′′ are Taylor coefficients in the expansion of λ0(k). The mobility and the diffusion coefficient
are determined accordingly:

v = lim
t→∞

[
〈n〉
t

]
= i

∂λ0(k)

∂k

∣∣∣∣
k=0

(48)

D = lim
t→∞

[
1

2

Var(n)

t

]
=

1

2

∂2λ0(k)

∂k2

∣∣∣∣
k=0

(49)

III. CALCULATION OF v AND D FOR N=2 LATTICE

For the two site system, the lowest eigenvalue λ0(k) is

λ0(k) =
1

2

[
(
−→
A +

←−
A +

−→
B +

←−
B )−

√
(
−→
A +

←−
A +

−→
B +

←−
B )2 − 4(1− e−iϕ)

←−
A
←−
B − 4(1− eiϕ)

−→
A
−→
B

]
(50)

≈ −i

[ −→
A
−→
B −

←−
A
←−
B

−→
A +

←−
A +

−→
B +

←−
B

]
ϕ+

 −→
A
−→
B +

←−
A
←−
B

2(
−→
A +

←−
A +

−→
B +

←−
B )
−

(−→
A
−→
B −

←−
A
←−
B
)2

(−→
A +

←−
A +

−→
B +

←−
B
)3
ϕ2 (51)

From which the mobility and diffusion coefficients are derived

v =

−→
A
−→
B −

←−
A
←−
B

−→
A +

←−
A +

−→
B +

←−
B

(52)

D =

−→
A
−→
B +

←−
A
←−
B

2(
−→
A +

←−
A +

−→
B +

←−
B )
−

(−→
A
−→
B −

←−
A
←−
B
)2

(−→
A +

←−
A +

−→
B +

←−
B
)3 (53)

IV. THE v/D RATIO IN THE POISSON LIMIT

The dynamics that is generated by a rate equation can be simulated as a random walk process with infinitesimal
time steps τ . Setting a0 = 1 for the unit cell, the traversed distance is x = X1 + ...+XN . Taking s→∞ corresponds
to the Poisson limit in the following sense:

P (X = 1) = p (54)

P (X = 0) = 1− p (55)

P (X = −1) = 0 (56)

with p = −→wτ . Taking the continuous time limit one deduces that in the Poisson limit the ratio between the first and
the second moment is unity, in consistency with Eq.(6) with a = a(0) = 1.

Below we would like to derive Eq.(17) which applies for a disordered sample. We use the same procedure as in the
previous section. The rates are −→w n = wn and ←−w n = 0 for n = 1...N . The characteristic equation for the eigenvalues
of W (ϕ) is

N∏
n=1

(λ− wn) + e−iϕ
N∏
n=1

wn = 0 (57)
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This can be re-written as

N∏
n=1

(
1− λ

wn

)
= e−iϕ (58)

Expanding to second order we get

1−
N∑
n=1

λ

wn
+
∑
i 6=j

λ2

wnwm
= 1− iϕ− 1

2
ϕ2 +O(ϕ3) (59)

with the solution

λ = −i

( N∑
n=1

1

wn

)−1ϕ +
1

2

( N∑
n=1

1

wn

)−3( N∑
n=1

1

w2
n

)ϕ2 +O(ϕ3) (60)

Using Eq.(48) and Eq.(49) we deduce that

v

2D
=

〈
(1/w)

〉2〈
(1/w)2

〉 (61)

where the sample average is 〈R〉 ≡ (1/N)
∑
nRn.


