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We introduce an explicit solution for the non-equilibrium steady state (NESS) of a ring that is
coupled to a thermal bath, and is driven by an external hot source with log-wide distribution of
couplings. Having time scales that stretch over several decades is similar to glassy systems. Conse-
quently there is a wide range of driving intensities where the NESS is like that of a random walker
in a biased Brownian landscape. We investigate the resulting statistics of the induced current I.
For a single ring we discuss how sign(I) fluctuates as the intensity of the driving is increased, while
for an ensemble of rings we highlight the fingerprints of Sinai physics on the abs(I) distribution.

The transport in a chain due to random non-symmetric
transition probabilities is a fundamental problem in sta-
tistical mechanics [1–5]. It can be regarded as a random
walk in a random environment [6, 7]. This type of dy-
namics is of great relevance for surface diffusion [8], ther-
mal ratchets [9–12] and was used to model diverse bio-
logical systems, such as molecular motors, enzymes, and
unidirectional motion of proteins along filaments [13–16].
Of particular interest are applications that concern the
conduction of DNA segments [17, 18], and thin glassy
electrolytes under high voltages [19–24].

Mathematically one can visualize the dynamics as a
random-walk of a particle that makes incoherent jumps
between “sites” in a network. In an unbounded quasi-
one-dimensional network we might have either diffu-
sion or sub-diffusive Sinai spreading [6], depending on
whether the transitions rates form a symmetric matrix
or not. In contrast, when the system is bounded it even-
tually reaches a well-defined steady state. This would be
an equilibrium canonical (Boltzmann) state if the transi-
tion rates were detailed-balanced, else it is termed non-
equilibrium steady state (NESS).

We would like to consider the NESS of a mesoscopically
glassy system. By “glassiness” we mean that the rates
that are induced by a bath, or by an external source,
have a log-wide distribution of transition rates, hence
many time scales are involved. Specifically we consider a
common setup for maintaining a NESS (Fig.1): coupling
the system to a driving source (“hot bath”) that spoils
the detailed-balance of the environment (“cold bath”).
The log wide distribution of the transition rates leads to
a novel NESS. In previous publications we have pointed
out that due to “glassiness” (also termed “sparsity”) the
physics of Sinai-type disorder is a relevant ingredient in
the analysis of energy absorption [25] and transport [26].

Scope.– Below we introduce an explicit NESS solu-
tion for a minimal model that has all the essential in-
gredients of the problem, involving transitions between
sites on a ring and a log-wide distribution of couplings
to an external driving source. The induced steady state
current I is the central quantity used to characterize the

FIG. 1: A ring made up of N sites is immersed in a “cold”
bath and subjected to a “hot” driving source [a]. As a result
a current is induced. In the numerics the the driving source
induces rates that are log-box distributed over 6 decades.

NESS in actual experiments. The purpose of the present
study is to investigate its statistics. Specifically, for a
single ring we discuss how sign(I) fluctuates as the in-
tensity of the driving is increased, while for an ensemble
of rings we highlight the fingerprints of Sinai physics on
the abs(I) distribution.
Remarks.– Previous study of Sinai-type disordered

systems [7], has considered an open geometry with
uncorrelated transition rates that have the same cou-
pling everywhere. Consequentially the random-resistor-
network aspect (which is related to local variation of
the couplings) has not emerged. Furthermore, in the
physically motivated setup that we have defined above
(ring+bath+driving) Sinai physics would not arise if the
couplings to the driving source were merely disorderly
random. The log-wide distribution is a crucial ingredi-
ent. Finally, in a closed (ring) geometry, unlike an open
(two terminal) geometry, the statistics of I is not only
affected by the distribution of transition rates, but also
by the spatial profile of the NESS. This is like “canoni-
cal” as opposed to “grand canonical” setting, leading to
remarkably different results.
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The model.– Consider a ring that consists of sites
labeled by n with positions x = n that are defined mod-
ulo N . The bonds are labeled as −→n ≡ (n−1 ; n). The
inverse bond is ←−n , and if direction does not matter we
label both by n̄. The position of the nth bond is defined
as xn ≡ n−(1/2). The on-site energies En are normally
distributed over a range ∆, and the transitions rates are
between nearest-neighboring sites:

w−→n = wβ−→n + νgn̄ (1)

Here wβ are the rates that are induced by a bath that
has a finite temperature TB . The gn̄ are couplings
to a driving source that has an intensity ν. These
couplings are log-box distributed within [gmin, gmax].
This means that ln(gn̄) are distributed uniformly
over a range σ = ln(gmax/gmin). The bath transi-

tion rates satisfy detailed-balance, namely wβ−→n /w
β
←−n =

exp[−(En−En−1)/TB ]. The driving spoils the detailed-
balance. We define the resulted stochastic field as follows:

E(xn) ≡ ln

[
w−→n
w←−n

]
≈ −

[
1

1 + gn̄ν

]
En−En−1

TB
(2)

where the last equality assumes ∆� TB , and without
loss of generality the gn̄ have been re-scaled such that
all the bath-induced transitions have the same average
transition rate w̄β = 1. See [b].
The direction of the current.– The stochastic mo-

tive force (SMF), also known as the affinity, or as the en-
tropy production [27–30] determines sign(I). It is defined
as follows:

E	 ≡ ln

[∏
n w−→n∏
n w←−n

]
=

∮
E(x) dx (3)

Using Eq.(2) one observes that for ν � g−1
max the SMF is

linear E	 ∝ ν, while for ν � g−1
min it vanishes E	 ∝ 1/ν.

In the intermediate regime, which we call below the Sinai
regime, the SMF changes sign several times, see Fig.2.
Using the notations

τ ≡ 1

σ
ln(gmaxν) (4)

and τn = (1/σ) ln(gmax/gn̄), the expression for the SMF
takes the following form:

E	(τ) = −
N∑
n=1

fσ(τ − τn)
En−En−1

TB
(5)

where fσ(t) ≡ [1 + eσt]−1 is like a step function. If f(t)
were a sharp step function it would follow that in the
Sinai regime E	(τ) is formally like a random walk [31–
33]. The number of sign reversals equals the number of
times the random walker crosses the origin. We have here
a coarse-grained random walk: the τn are distributed
uniformly over a range [0, 1], and each step is smoothed

by fσ(t) such that the effective number of coarse-grained
steps is σ. Hence we expect the number of sign changes
to be not ∼

√
πN but ∼

√
πσ, reflecting the log-width of

the distribution.
Adding bonds in series.– The NESS equations are

quite simple and can be solved using elementary algebra
as in [19, 20, 24, 26], or optionally using the network
formalism for stochastic systems [34–36]. Below we pro-
pose a generalized resistor-network approach that allows
to obtain a more illuminating version for the NESS, that
will provide better insight for the statistical analysis. Let
us assume that we have a NESS with a current I. The
steady state equations for two adjacent bonds are

I = w−→
1
p0 − w←−1 p1 (6)

I = w−→
2
p1 − w←−2 p2 (7)

We can combine them into one equation:

I =
−→
Gp0 −

←−
Gp2,

−→
G ≡

[
1

w−→
1

+
1

w−→
2

(
w←−

1

w−→
1

)]−1

(8)

and similarly for
←−
G , see [b]. We can repeat this procedure

iteratively. If we have N bonds in series we get

−→
G =

[
N∑
m=1

1

w−→m
exp

(
−
∫ m−1

0

E(x)dx

)]−1

(9)

Coming back to the ring, we can cut it at an arbitrary
site n, and calculate the associated Gs. It follows that

I = (
−→
Gn −

←−
Gn) pn. Consequently the NESS is

pn =
I

−→
Gn −

←−
Gn

(10)

and I can be regarded as the normalization factor:

I =

[
N∑
n=1

1
−→
Gn −

←−
Gn

]−1

(11)

In the next paragraph we show how to write these results
in an explicit way that illuminates the relevant physics.
The NESS formula.– We define the conductance

of a bond as the geometric mean of the clockwise and
anticlockwise transmission rates:

w(xn) =
√
w−→nw←−n (12)

Hence w−→n = w(xn) exp[(1/2)E(xn)]. Accordingly

−→
Gn =

[
N+n∑
m=n+1

1

w(xm)
exp

(
−
∫ xm

n

E(x)dx

)]−1

(13)

With the implicit understanding that the summation and
the integration are anticlockwise modulo N . With the

new notations it is easy to see that
←−
Gn = exp(−E	)

−→
Gn.
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We use the notation Gn for the geometric mean. Conse-
quently the formula for the current takes the form

I =

[
N∑
n=1

1

Gn

]−1

2 sinh

(
E	
2

)
(14)

while pn ∝ 1/Gn. Our next task is to work out a tangible
expression for the latter. Regarding x as an extended
coordinate, the potential V (x) that is associated with the
field E(x) is a tilted periodic potential. Adding [E	/N ]x
we get a periodic potential U(x), see Fig.3. Accordingly∫ x′′

x′
E(x)dx = U(x′)−U(x′′) +

E	
N

(x′′−x′) (15)

With any function A(x) we can associate a smoothed
version using the following definition

N∑
r=1

A(x+r) eU(x+r)−(1/N)E	r ≡ Aε(x) eUε(x) (16)

In particular the smoothed potential Uε(x) is defined
by this expression with A = 1. Note that without loss
of generality it is convenient to have in mind E	 > 0.
(One can always flip the x direction). Note also that the
smoothing scale N/E	 becomes larger for smaller SMF.
With the above definitions we can write the NESS ex-
pression as follows:

pn ∝
(

1

w(xn)

)
ε

e−(U(n)−Uε(n)) (17)

This expression is physically illuminating, see Fig.3. In
the limit of zero SMF it coincides, as expected, with
the canonical (Boltzmann) result. For finite SMF the
smoothed pre-factor and the smoothed potential are not
merely constants. Accordingly the pre-exponential fac-
tor becomes important and the “slow” modulation by the
Boltzmann factor is flattened. If we take the formal limit
of infinite SMF the Boltzmann factor disappears and we
are left with pn ∝ 1/wn as expected from the continuity
equation for a resistor-network.

Statistics of the current.– From the preceding
analysis it should become clear that the formula for the
current can be written schematically as

I(ν) ∼ 1

N
wε e−B 2 sinh

(
E	
2

)
(18)

In the absence of a potential landscape (U(x) = 0) the
formula becomes equivalent to Ohm law: it is a trivial ex-
ercise to derive it if all anticlockwise and clockwise rates
are equal to the same values −→w and←−w respectively, hence
wε = (−→w←−w )1/2, and E	 = N ln(−→w/←−w ). In the presence
of a potential landscape we have an activation barrier.
Assuming that the current is dominated by the highest
peak a reasonable estimate would be

B = max {U(x)−Uε(x)} ≈ 1
2

[
max{U} −min{U}

]
(19)

The implication of Eq.(18) with Eq.(19) for the statistics
of the current is as follows: in the Sinai regime we expect
that it will reflect the log-wide distribution of the activa-
tion factor, as discussed below, while outside of the Sinai
regime we expect it to reflect the normal distributions of
the total resistance w−1

ε , and of the SMF.
Statistics in the Sinai regime.– We now focus on

the statistics in the Sinai regime. In order to unfold the
log-wide statistics it is not a correct procedure to plot
blindly the distribution of ln(|I|). Rather one should
look on the joint distribution (E	, I). See Fig.4a. The
non-trivial statistics is clearly apparent. In order to de-
scribe it analytically we use the single-barrier estimate of
Eq.(19), which is tested in Fig.4b. We see that it over-
estimates the current for small B values (flat landscape)
as expected, but it can be trusted for large B where the
Sinai physics becomes relevant.

In an actual experiment it would be desired to extract
the statistics from the I(ν) measurements without re-
ferring to the SMF. See Fig.5. Either way this figure
confirms that the I statistics is the same as the barrier
exp(−B) statistics. We therefore turn to find an explicit
expression for the latter. The probability to have a ran-
dom walk trajectory Xn = U(xn) within [Xa, Xb] equals
the survival probability in a diffusion process that starts
as a delta function at X = 0 with absorbing boundary
conditions at Xa and Xb. Integrating over all possible
positions of the walls such that Xb −Xa = 2B is like
starting with a uniform distribution between the walls.
From here it is straightforward to deduce [b]

Prob {barrier < B} ∼ exp

[
−1

2

(πσU
2B

)2
]

(20)

where σ2
U = 2DN is the variance of the diffusing ‘points’,

which is determined ny the diffusion coefficient D ∝ ∆2.
Taking into account that for a given ν a fraction of the
elements in Eq.(5) are effectively zero we get

σ2
U = 2∆2N

ln(gmaxν)

σ
(21)

The validity of the exact version of Eq.(20), see [b], has
been verified in Fig.4. No fitting parameters are required.
Summary.– We have introduced a generalized

“random-resistor-network” approach for the purpose of
obtaining the NESS current due to nonsymmetric tran-
sition rates. Specifically our interest was focused on the
NESS of a “glassy” mesoscopic system. The NESS ex-
pression clearly interpolates the canonical (Boltzmann)
result that applies in equilibrium, with the resistor-
network result, that applies at infinite temperature. Due
to the “glassiness” the current has novel dependence on
the driving intensity, and it posseses unique statistical
properties that reflect the Brownian landscape of the
stochastic potential. This statistics is related to Sinai’s
random walk problem, and would not arise if the cou-
plings to the driving source were merely disordered.
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FIG. 2: We consider a ring withN = 1000 sites whose energies
are normally distributed with dispersion ∆ = 1. The bath
temperature is TB = 10. In the upper panel the SMF of
Eq. (5) is plotted for σ = ∞, and for σ = 50, 10, 4. The
smaller σ, the smoother ν dependence. This is reflected in
the current I(ν), which is imaged in the lower panel: each
row is for a different σ. In both panels the horizontal axis is
the scaled driving intensity as defined in Eq.(4).
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in the Sinai regime. Note that in the linear regime, see [b], it
looks like a perfect linear correlation with negligible transverse
dispersion. (b) The correlation between the current I and the
barrier B, within the slice E	 ∈ [2.0, 2.1]. One deduces that
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FIG. 5: The log-wide distribution P (I) of the current in
the Sinai regime is revealed provided a proper procedure is
adopted. For theoretical analysis it is convenient to plot an
histogram of the I values for a given SMF: the blue diamonds
refer to the data of Fig. 4b. In an actual experiment it is
desired to extract statistics from I(ν) measurements without
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The line is the exact version [b] of Eq.(21).
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Supplementary Material

THE EXPRESSION FOR THE STOCHASTIC FIELD

Form the detailed balance condition it follows that to leading order

wβ−→n ≈
[
1− 1

2

(
En − En−1

TB

)]
w̄βn̄ (22)

wβ←−n ≈
[
1 +

1

2

(
En − En−1

TB

)]
w̄βn̄ (23)

Hence

w−→n
w←−n

=
wβ−→n + νgn̄

wβ←−n + νgn̄
≈ 1 +

(En − En−1)/TB

1 + (gn̄/w̄
β
n̄)ν

(24)

Absorbing the bath couplings into the definition of the gn̄ we get

E(xn) ≡ ln

[
w−→n
w←−n

]
≈ −

[
1

1 + gn̄ν

]
En−En−1

TB
(25)

The SMF is obtained by integrating the stochastic field along the entire ring

E	 ≈ −
N∑
n=1

[
1

1 + gn̄ν

]
∆n

TB
(26)

STATISTICS OF CURRENT OUTSIDE OF THE SINAI REGIME

As the driving intensity is increased one observes a crossover from a linear regime, to a Sinai regime, and finally a
saturation regime:

Linear regime: ν < g−1
max (27)

Sinai regime: g−1
max < ν < g−1

min (28)

Saturation regime: ν > g−1
min (29)

Consequently we get for the SMF the following approximations:

E	 ≈ 1

TB

{
∆(0)ν, Linear regime
−∆(∞)/ν, Saturation regime

(30)

where

∆(0) ≡
∑
n

gn̄∆n ∼ ±
[
2N Var(g)

]1/2
∆ (31)

∆(∞) ≡
∑
n

1

gn̄
∆n ∼ ±

[
2N Var(g−1)

]1/2
∆ (32)

The estimates for ∆(0) and for ∆(∞) follow from the observation that we have sums of independent random variables.
For example ∆(0) can be re-arranged as

∑N
n=1(gn̄+1 − gn̄)En. Furthermore, we conclude that both ∆(0) and ∆(∞)

have normal statistics as implied by the central limit theorem. Consequently we expect normal statistics for the SMF,
and hence for the current, as verified in Fig.6.



7

RANDOM-WALK OCCUPATION-RANGE STATISTICS

In this section we derived the probability density function f(R) to have a random walk process x(·) of t steps that
occupies a range R. This is determined by the probability

Pt(xa, xb) ≡ Prob
(
xa < x(t′) < xb for any t′ ∈ [0, t]

)
(33)

Accordingly the joint probability density that a random walker would occupy an interval [xa, xb] is

f(xa, xb) = − d

dxa

d

dxb
Pt(xa, xb) (34)

It is convenient to use the coordinates

X =
xa + xb

2
(35)

R = xb − xa (36)

Consequently the expression for f(R) is

f(R) =

∫ 0

−∞

∫ ∞
0

dxadxb f(xa, xb) δ (R− (xb − xa)) (37)

f(R) = −
∫ R/2

−R/2

(
1

4
∂2
X − ∂2

R

)
Pt(R,X) dX (38)

Taking into account that Pt(R,X) and its derivatives vanish at the endpoints X = ±(R/2) we get

f(R) =

∫ R/2

−R/2
∂2
R Pt(R,X) dX = ∂2

R

[
R Pt(R)

]
(39)

where Pt(R) is the survival probability of a diffusion process that starts with an initial uniform distribution, instead
of a random walk that starts as a delta distribution. Optionally we can write

Prob(range < R) = ∂R

[
R Pt(R)

]
(40)

We now turn to find an explicit expression for Pt(R). This is done by solving the diffusion equation. Using Fourier
expansion the solution is

ρt(x) =

∞∑
n=1,3,5,...

exp

[
−D

(πn
R

)2

t

]
4

πnR
sin
(πn
R
x
)

(41)

For simplicity we have shifted above the domain to x ∈ [0, R]. For the survival probability we get

Pt(R) =

∫ R

0

ρt(x) dx =

∞∑
n=1,3,5,...

8

π2n2
exp

[
−D

(πn
R

)2

t

]
(42)

Using Eq.(42) in Eq.(39) we get

f(R) =
8σ2

R3

∞∑
n=1,3,5,...

[(πσn
R

)2

− 1

]
exp

[
−1

2

(πσn
R

)2
]

(43)

This result is in perfect agreement with the numerical simulation of Fig.7. Still we would like to have a more compact
expression. One possibility is to keep only the first term. The other possibility is to approximate the summation by
an integral:

Prob(range < R) ≈ 2

π2

∂

∂R

[
R

∫ ∞
1

dx

x2
exp

(
−π

2Dt

R2
x2

)]
= exp

(
−π

2Dt

R2

)
(44)

Either way we get

Prob(range < R) ∼ exp

(
−1

2

(πσ
R

)2
)

(45)

where σ2 = 2Dt. This asymptotic expression is illustrated in Fig.7. Though it does not work very well, it has the
obvious advantage of simplicity.
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RANDOM-WALK MAXIMAL-DISTANCE STATISTICS

The occupation-range statistics of the previous section should not be confused with the maximal-distance statistics.
The maximal distance from the initial point is defined as follows:

K = max[x(t)], where 0 < t < N (46)

Naively, one might think that the probability distribution of K is similar to the probability distribution of R that
has been discussed in the previous section. But this is not true. Furthermore, it is also very sensitive to whether the
random walk is constrained to end up at the origin, x(N) = x(0) = 0. Without the latter constraint f(K) is finite for
small K, but if the constraint is taken into account, it vanishes linearly in this limit.

It is the constrained random walk process that describes the potential U(x). The exact result for the the K statistics
in this case is known [33]:

Prob(K ≥ k;N) =

(
2N
N − k

)
(

2N
N

) , k = 0, 1, 2 · · ·N (47)

Switching variables to κ = k/N and taking the large N limit, one obtains the probability density function

f(κ) = N

[
(1− κ)κ−1

(1 + κ)κ+1

]N
ln

[
1 + κ

1− κ

]
(48)

which has a peak at κ ∼ 1/
√

2N . For κ� 1 this expression can be approximated by the simple function. Switching
back to K it takes the form

f(K) ≈ 2K

N
exp

[
−K

2

N

]
(49)

In Fig.8a we illustrate this distribution and demonstrate its applicability to the U(x) of the ring model. In Fig.8b we
illustrate the joint distribution of the extreme values xmin = min[x(·)] and xmax = max[x(·)]. The f(R) distribution
of the previous section corresponds to its projection along the diagonal direction, while the f(K) distribution of the
present section is its projection along the horizontal or vertical directions.

MORE DETAILS ON SERIAL ADDITION

Adding two bonds in series we have obtained Eq.(8) for
−→
G . The formula for

←−
G is similarly obtained:

←−
G ≡

[
1

w←−
2

+
1

w←−
1

(
w−→

2

w←−
2

)]−1

(50)

We can repeat this procedure iteratively. If we have N bonds in series we get

−→
G =

[
N∑
m=1

1

w−→m
exp

(
−
∫ m−1

0

E(x)dx

)]−1

(51)

←−
G =

[
N∑
m=1

1

w←−m
exp

(∫ N

m

E(x)dx

)]−1

(52)

One should notice the miss-match between m and m−1, that prevents of us treating the two formulas on equal footing.
For this reason we have introduced an improved convention for the description of the bonds in terms of w(x) leading
to Eq.(13).
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FIG. 6: In the linear regime, the current is strongly correlated with the SMF (left panel), and consequently it has normal
statistics (right panel). For the statistical analysis we have generated 105 realizations of the ring with σ = 6.
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FIG. 7: Plot of f(R). Red line is the outcome of a random walk simulation with t = 1000 steps that are Gaussian distributed
with unit dispersion. The black dashed line is the exact result Eq.(43), while the blue solid line is from the simple asymptotic
approximation Eq.(45).
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FIG. 8: [Left panel] Plot of f(K). The histogram of max[U(x)] values over many ring realizations (blue circles) is compared
with the K statistics in a constrained random walk process (red points). The analytical result Eq.(49) is represented by a black
line. [Right panel] Scatter plot of (xmin, xmax) for the same random walk simulation illustrating the strong correlation.


