
Chapter 15

Partial differential equations

15.1 Introduction

In the Natural Sciences we often encounter problems with many variables constrained by boundary con-

ditions and initial values. Many of these problems can be modelled as partial differential equations. One

case which arises in many situations is the so-called wave equation whose one-dimensional form reads

∂2u

∂x2
= A

∂2u

∂t2
, (15.1)

where A is a constant. The solution u depends on both spatial and temporal variables, viz. u = u(x, t). In

two dimension we have u = u(x, y, t). We will, unless otherwise stated, simply use u in our discussion

below. Familiar situations which this equation can model are waves on a string, pressure waves, waves

on the surface of a fjord or a lake, electromagnetic waves and sound waves to mention a few. For e.g.,

electromagnetic waves we have the constant A = c2, with c the speed of light. It is rather straightforward

to extend this equation to two or three dimension. In two dimensions we have

∂2u

∂x2
+

∂2u

∂y2
= A

∂2u

∂t2
, (15.2)

In Chapter 9 we saw another case of a partial differential equation widely used in the Natural Sciences,

namely the diffusion equation whose one-dimensional version we derived from a Markovian random

walk. It reads
∂2u

∂x2
= A

∂u

∂t
, (15.3)

and A is in this case called the diffusion constant. It can be used to model a wide selection of diffusion

processes, from molecules to the diffusion of heat in a given material.

Another familiar equation from electrostatics is Laplace’s equation, which looks similar to the wave

equation in Eq. (15.1) except that we have set A = 0

∂2u

∂x2
+

∂2u

∂y2
= 0, (15.4)

or if we have a finite electric charge represented by a charge density ρ(x) we have the familiar Poisson

equation

∂2u

∂x2
+

∂2u

∂y2
= −4πρ(x). (15.5)

409

Partial differential equations

Other famous partial differential equations are the Helmholtz (or eigenvalue) equation, here special-

ized to two dimensions only

− ∂2u

∂x2
− ∂2u

∂y2
= λu, (15.6)

the linear transport equation (in 2 + 1 dimensions) familiar from Brownian motion as well

∂u

∂x
+

∂u

∂x
+

∂u

∂y
= 0, (15.7)

and Schrödinger’s equation

−∂2u

∂x2
− ∂2u

∂y2
+ f(x, y)u = ı

∂u

∂t
.

Important systems of linear partial differential equations are the famous Maxwell equations

∂E

∂t
= curlB; −curlE = B; divE = divB = 0.

Similarly, famous systems of non-linear partial differential equations are for example Euler’s equations

for incompressible, inviscid flow

∂u

∂t
+ u∇u = −Dp; divu = 0,

with p being the pressure and

∇ =
∂

∂x
ex +

∂

∂y
ey,

in the two dimensions. The unit vectors are ex and ey . Another example is the set of Navier-Stokes

equations for incompressible, viscous flow

∂u

∂t
+ u∇u−∆u = −Dp; divu = 0.

Ref. [88] contains a long list of interesting partial differential equations.

In this chapter we focus on so-called finite difference schemes and explicit and implicit methods.

The more advanced topic of finite element methods are not treated in this text. For texts with several

numerical examples, see for example Refs. [84, 89].

As in the previous chapters we will focus mainly on widely used algorithms for solutions of partial

differential equations. A text like Evans’ [88] is highly recommended if one wishes to study the mathe-

matical foundations for partial differential equations, in particular how to determine the uniqueness and

existence of a solution. We assume that our problems are well-posed, strictly meaning that the prob-

lem has a solution, this solution is unique and the solution depends continuously on the data given by

the problem. While Evans’ text provides a rigorous mathematical exposition, the texts of Langtangen,

Ramdas-Mohan, Winther and Tveito and Evans et al. contain a more practical algorithmic approach see

Refs. [84, 86, 89, 90].

A general partial differential equation with two given dimensions reads

A(x, y)
∂2u

∂x2
+ B(x, y)

∂2u

∂x∂y
+ C(x, y)

∂2u

∂y2
= F (x, y, u,

∂u

∂x
,
∂u

∂y
), (15.8)

and if we set

B = C = 0, (15.9)

410

15.2 – Diffusion equation

we recover the 1 + 1-dimensional diffusion equation which is an example of a so-called parabolic partial

differential equation. With

B = 0, AC < 0 (15.10)

we get the 2+1-dim wave equation which is an example of a so-called elliptic PDE, where more generally

we have B2 > AC . For B2 < AC we obtain a so-called hyperbolic PDE, with the Laplace equation

in Eq. (15.4) as one of the classical examples. These equations can all be easily extended to non-linear

partial differential equations and 3 + 1 dimensional cases.

The aim of this chapter is to present some of the more familiar difference methods and their possible

implementations.

15.2 Diffusion equation

The diffusion equation describes in typical applications the evolution in time of the density u of a quantity

like the particle density, energy density, temperature gradient, chemical concentrations etc.

The basis is the assumption that the flux density ρ obeys the Gauss-Green theorem

∫

V
divρdx =

∫

∂V
ρndS,

where n is the unit outer normal field and V is a smooth region with the space where we seek a solution.

The Gauss-Green theorem leads to

divρ = 0.

Assuming that the flux is proportional to the gradient ∇u but pointing in the opposite direction since the

flow is from regions of high concetration to lower concentrations, we obtain

ρ = −D∇u,

resulting in

div∇u = D∆u = 0,

which is Laplace’s equation, an equation whose one-dimensional version we met in chapter 4. The

constant D can be coupled with various physical constants, such as the diffusion constant or the specific

heat and thermal conductivity discussed below. We will discuss the solution of the Laplace equation later

in this chapter.

If we let u denote the concetration of a particle species, this results in Fick’s law of diffusion, see

Ref. [54]. If it denotes the temperature gradient, we have Fourier’slaw of heat conduction and if it refers

to the electrostatic potential we have Ohm’s law of electrical conduction.

Coupling the rate of change (temporal dependence) of u with the flux density we have

∂u

∂t
= −divρ,

which results in
∂u

∂t
= Ddiv∇u = D∆u,

the diffusion equation, or heat equation.

411

Partial differential equations

If we specialize to the heat equation, we assume that the diffusion of heat through some material

is proportional with the temperature gradient T (x, t) and using conservation of energy we arrive at the

diffusion equation
κ

Cρ
∇2T (x, t) =

∂T (x, t)

∂t
(15.11)

where C is the specific heat and ρ the density of the material. Here we let the density be represented by

a constant, but there is no problem introducing an explicit spatial dependence, viz.,

κ

Cρ(x, t)
∇2T (x, t) =

∂T (x, t)

∂t
. (15.12)

Setting all constants equal to the diffusion constant D, i.e.,

D =
Cρ

κ
, (15.13)

we arrive at

∇2T (x, t) = D
∂T (x, t)

∂t
. (15.14)

Specializing to the 1 + 1-dimensional case we have

∂2T (x, t)

∂x2
= D

∂T (x, t)

∂t
. (15.15)

We note that the dimension of D is time/length2 . Introducing the dimensionless variables αx̂ = x we get

∂2T (x, t)

α2∂x̂2
= D

∂T (x, t)

∂t
, (15.16)

and since α is just a constant we could define α2D = 1 or use the last expression to define a dimensionless

time-variable t̂. This yields a simplified diffusion equation

∂2T (x̂, t̂)

∂x̂2
=

∂T (x̂, t̂)

∂t̂
. (15.17)

It is now a partial differential equation in terms of dimensionless variables. In the discussion below, we

will however, for the sake of notational simplicity replace x̂ → x and t̂ → t. Moreover, the solution to

the 1 + 1-dimensional partial differential equation is replaced by T (x̂, t̂) → u(x, t).

15.2.1 Explicit scheme

In one dimension we have the following equation

∇2u(x, t) =
∂u(x, t)

∂t
, (15.18)

or

uxx = ut, (15.19)

with initial conditions, i.e., the conditions at t = 0,

u(x, 0) = g(x) 0 < x < L (15.20)

412

15.2 – Diffusion equation

with L = 1 the length of the x-region of interest. The boundary conditions are

u(0, t) = a(t) t ≥ 0, (15.21)

and

u(L, t) = b(t) t ≥ 0, (15.22)

where a(t) and b(t) are two functions which depend on time only, while g(x) depends only on the position

x. Our next step is to find a numerical algorithm for solving this equation. Here we recur to our familiar

equal-step methods discussed in Chapter 3 and introduce different step lengths for the space-variable x
and time t through the step length for x

∆x =
1

n + 1
(15.23)

and the time step length ∆t. The position after i steps and time at time-step j are now given by

{

tj = j∆t j ≥ 0
xi = i∆x 0 ≤ i ≤ n + 1

(15.24)

If we then use standard approximations for the derivatives we obtain

ut ≈
u(x, t + ∆t)− u(x, t)

∆t
=

u(xi, tj + ∆t)− u(xi, tj)

∆t
(15.25)

with a local approximation error O(∆t) and

uxx ≈
u(x + ∆x, t)− 2u(x, t) + u(x−∆x, t)

∆x2
, (15.26)

or

uxx ≈
u(xi + ∆x, tj)− 2u(xi, tj) + u(xi −∆x, tj)

∆x2
, (15.27)

with a local approximation error O(∆x2). Our approximation is to higher order in coordinate space. This

can be justified since in most cases it is the spatial dependence which causes numerical problems. These

equations can be further simplified as

ut ≈
ui,j+1 − ui,j

∆t
, (15.28)

and

uxx ≈
ui+1,j − 2ui,j + ui−1,j

∆x2
. (15.29)

The one-dimensional diffusion equation can then be rewritten in its discretized version as

ui,j+1 − ui,j

∆t
=

ui+1,j − 2ui,j + ui−1,j

∆x2
. (15.30)

Defining α = ∆t/∆x2 results in the explicit scheme

ui,j+1 = αui−1,j + (1− 2α)ui,j + αui+1,j . (15.31)

Since all the discretized initial values

ui,0 = g(xi), (15.32)

413

Partial differential equations

are known, then after one time-step the only unknown quantity is ui,1 which is given by

ui,1 = αui−1,0 + (1− 2α)ui,0 + αui+1,0 = αg(xi−1) + (1− 2α)g(xi) + αg(xi+1). (15.33)

We can then obtain ui,2 using the previously calculated values ui,1 and the boundary conditions a(t) and

b(t). This algorithm results in a so-called explicit scheme, since the next functions ui,j+1 are explicitely

given by Eq. (15.31). The procedure is depicted in Fig. 15.1.

We specialize to the case a(t) = b(t) = 0 which results in u0,j = un+1,j = 0. We can then

reformulate our partial differential equation through the vector Vj at the time tj = j∆t

Vj =









u1,j

u2,j

. . .
un,j









. (15.34)

This results in a matrix-vector multiplication

Vj+1 = ÂVj (15.35)

with the matrix Â given by

Â =









1− 2α α 0 0 . . .
α 1− 2α α 0 . . .

.
0 . . . 0 . . . α 1− 2α









(15.36)

which means we can rewrite the original partial differential equation as a set of matrix-vector multiplica-

tions

Vj+1 = ÂVj = · · · = Âj+1V0, (15.37)

where V0 is the initial vector at time t = 0 defined by the initial value g(x). In the numerical implementa-

tion one should avoid to treat this problem as a matrix vector multiplication since the matrix is triangular

and at most three elements in each row are different from zero.

It is rather easy to implement this matrix-vector multiplication as seen in the following piece of code

/ / F i r s t we s e t i n i t i a l i s e t h e new and o l d v e c t o r s

/ / Here we have ch o sen t h e boundary c o n d i t i o n s to be z e r o .

/ / n+1 i s t h e number o f mesh p o i n t s in x

u [0] = unew [0] = u [n] = unew = 0 . 0 ;

f o r (i n t i = 1 ; i < n ; i ++) {

x = i ∗ s t e p ;

/ / i n i t i a l c o n d i t i o n

u [i] = fu n c (x) ;

/ / i n t i t i a l i s e t h e new v e c t o r

unew [i] = 0 ;

}

/ / Time i t e r a t i o n

f o r (i n t t = 1 ; t <= t s t e p s ; t ++) {

f o r (i n t i = 1 ; i < n ; i ++) {

/ / D i s c r e t i z e d d i f f eq

unew [i] = a l p h a ∗ u [i −1] + (1 − 2∗ a l p h a) ∗ u [i] + a l p h a ∗ u [i + 1] ;

}

/ / n o t e t h a t t h e b o u n d a r i e s a r e n o t changed .

414

15.2 – Diffusion equation

However, although the explicit scheme is easy to implement, it has a very weak stability condition,

given by

∆t/∆x2 ≤ 1/2. (15.38)

This means that if ∆x2 = 0.01, then ∆ = 5 × 10−5. This has obviously bad consequences if our time

interval is large. In order to derive this relation we need some results from studies of iterative schemes.

If we require that our solution approaches a definite value after a certain amount of time steps we need to

require that the so-called spectral radius ρ(Â) of our matrix Â satisfies the condition

ρ(Â) < 1, (15.39)

see for example chapter 10 of Ref. [27] or chapter 4 of [24] for proofs. The spectral radius is defined as

ρ(Â) = max
{

|λ| : det(Â− λÎ) = 0
}

, (15.40)

which is interpreted as the smallest number such that a circle with radius centered at zero in the complex

plane contains all eigenvalues of Â. If the matrix is positive definite, the condition in Eq. (15.39) is

always satisfied.

We can obtain analytic expressions for the eigenvalues of Â. To achieve this it is convenient to rewrite

the matrix as

Â = Î − αB̂,

with

B̂ =









2 −1 0 0 . . .
−1 2 −1 0 . . .
.
0 . . . 0 . . . −1 2

.









The eigenvalues of Â are λi = 1 − αµi, with µi being the eigenvalues of B̂. To find µi we note that the

matrix elements of B̂ are

bij = 2δij − δi+1j − δi−1j ,

meaning that we have the following set of eigenequations for component i

(B̂x̂)i = µixi, (15.41)

resulting in

(B̂x̂)i =

n
∑

j=1

(2δij − δi+1j − δi−1j) xj = 2xi − xi+1 − xi−1 = µixi. (15.42)

If we assume that x can be expanded in a basis of x = (sin(θ), sin(2θ), . . . , sin(nθ)) with θ = lπ/n+1,

where we have the endpoints given by x0 = 0 and xn+1 = 0, we can rewrite the last equation as

2sin(iθ)− sin((i + 1)θ)− sin((i− 1)θ) = µisin(iθ),

or

2 (1− cos(θ)) sin(iθ) = µisin(iθ),

which is nothing but

2 (1− cos(θ))xi = µixi,

with eigenvalues µi = 2− 2cos(θ).
Our requirement in Eq. (15.39) results in

−1 < 1− α2 (1− cos(θ)) < 1,

which is satisfied only if α < (1− cos(θ))−1
resulting in α ≤ 1/2 or ∆t/∆x2 ≤ 1/2.

415

Partial differential equations

15.2.2 Implicit scheme

In deriving the equations for the explicit scheme we started with the so-called forward formula for the

first derivative, i.e., we used the discrete approximation

ut ≈
u(xi, tj + ∆t)− u(xi, tj)

∆t
. (15.43)

However, there is nothing which hinders us from using the backward formula

ut ≈
u(xi, tj)− u(xi, tj −∆t)

∆t
, (15.44)

still with a truncation error which goes like O(∆t). We could also have used a midpoint approximation

for the first derivative, resulting in

ut ≈
u(xi, tj + ∆t)− u(xi, tj −∆t)

2∆t
, (15.45)

with a truncation error O(∆t2). Here we will stick to the backward formula and come back to the latter

below. For the second derivative we use however

uxx ≈
u(xi + ∆x, tj)− 2u(xi, tj) + u(xi −∆x, tj)

∆x2
, (15.46)

and define again α = ∆t/∆x2. We obtain now

ui,j−1 = −αui−1,j + (1− 2α)ui,j − αui+1,j . (15.47)

Here ui,j−1 is the only unknown quantity. Defining the matrix Â

Â =









1 + 2α −α 0 0 . . .
−α 1 + 2α −α 0 . . .
.

0 . . . 0 . . . −α 1 + 2α









, (15.48)

we can reformulate again the problem as a matrix-vector multiplication

ÂVj = Vj−1 (15.49)

meaning that we can rewrite the problem as

Vj = Â−1Vj−1 = Â−1
(

Â−1Vj−2

)

= · · · = Â−jV0. (15.50)

This is an implicit scheme since it relies on determining the vector ui,j−1 instead of ui,j+1. If α does

not depend on time t, we need to invert a matrix only once. Alternatively we can solve this system

of equations using our methods from linear algebra discussed in chapter 4. These are however very

cumbersome ways of solving since they involve ∼ O(N3) operations for a N × N matrix. It is much

faster to solve these linear equations using methods for tridiagonal matrices, since these involve only

∼ O(N) operations. The function tridag of Ref. [36] is suitbale for these tasks.

The implicit scheme is always stable since the spectral radius satisfies ρ(Â) < 1. We could have

inferred this by noting that the matrix is positive definite, viz. all eigenvalues are larger than zero. We see

this from the fact that Â = Î +αB̂ has eigenvalues λi = 1+α(2−2cos(θ)) which satisfy λi > 1. Since

it is the inverse which stands to the right of our iterative equation, we have ρ(Â−1) < 1 and the method

is stable for all combinations of ∆t and ∆x. The calculational molecule for the implicit scheme is shown

in Fig. 15.2.

416

15.2 – Diffusion equation

a(t)

t

g(x)

b(t)

x

ui−1,j ui,j

ui,j+1

ui+1,j

-

6

Figure 15.1: Discretization of the integration area used in the solution of the 1 + 1-dimensional diffusion

equation. This discretization is often called calculational molecule.

a(t)

t

g(x)

b(t)

x

ui−1,j+1ui,j+1 ui+1,j+1

ui,j

-

6

Figure 15.2: Calculational molecule for the implicit scheme.

417

Partial differential equations

Program example for implicit equation

We show here parts of a simple example of how to solve the one-dimensional diffusion equation using

the implicit scheme discussed above. The program uses the function to solve linear equations with a

tridiagonal matrix discussed in chapter 4.

/ / p a r t s o f t h e f unc t i on f o r backward E u l e r

v o id b a c k w a r d _ e u l e r (i n t x s t e p s , i n t t s t e p s , double d e l t a _ x , double a l p h a)

{

double ∗v , ∗ r , a , b , c ;

v = new double [x s t e p s + 1] ; / / Th i s i s u

r = new double [x s t e p s + 1] ; / / R i g h t s i d e o f m a t r i x e q u a t i o n Av= r

/ / I n i t i a l i z e v e c t o r s

f o r (i n t i = 0 ; i < x s t e p s ; i ++) {

r [i] = v [i] = fu n c (d e l t a _ x ∗ i) ;

}

r [x s t e p s] = v [x s t e p s] = 0 ;

/ / Ma t r ix A, only c o n s t a n t s

a = c = − a l p h a ;

b = 1 + 2∗ a l p h a ;

/ / Time i t e r a t i o n

f o r (i n t t = 1 ; t <= t s t e p s ; t ++) {

/ / h e r e we s o l v e t h e t r i d i a g o n a l l i n e a r s e t o f e q u a t i o n s

t r i d a g (a , b , c , r , v , x _ s t e p s +1) ;

/ / boundary c o n d i t i o n s

v [0] = 0 ;

v [x s t e p s] = 0 ;

f o r (i n t i = 0 ; i <= x _ s t e p s ; i ++) {

r [i] = v [i] ;

}

}

. . .

}

/ / Funct ion used to s o l v e s y s t e m s o f e q u a t i o n s f o r t r i d i a g o n a l m a t r i c e s

v o id t r i d a g (double a , double b , double c , double ∗ r , double ∗u , i n t n)

{

double b e t , ∗gam ;

gam = new double [n] ;

b e t = b ;

/ / f o r w a r d s u b s t i t u t i o n

u [0] = r [0] / b e t ;

f o r (i n t j =1 ; j <n ; j ++) {

gam [j] = c / b e t ;

b e t = b − a∗gam [j] ;

i f (b e t == 0 . 0) { c o u t << !""#" $ %& '"%()* << e n d l ; }

u [j] = (r [j] − a∗u [j −1]) / b e t ;

}

/ / backward s u b s t i t u t i o n

f o r (i n t j =n−2; j >=0; j−−) {u [j] −= gam [j +1]∗ u [j + 1] ; }

d e l e t e [] gam ;

}

418

15.2 – Diffusion equation

15.2.3 Crank-Nicolson scheme

It is possible to combine the implicit and explicit methods in a slightly more general approach. Introduc-

ing a parameter θ (the so-called θ-rule) we can set up an equation

θ

∆x2
(ui−1,j − 2ui,j + ui+1,j) +

1− θ

∆x2
(ui+1,j−1 − 2ui,j−1 + ui−1,j−1) =

1

∆t
(ui,j − ui,j−1) ,

(15.51)

which for θ = 0 yields the forward formula for the first derivative and the explicit scheme, while θ = 1
yields the backward formula and the implicit scheme. These two schemes are called the backward and

forward Euler schemes, respectively. For θ = 1/2 we obtain a new scheme after its inventors, Crank and

Nicolson. This scheme yields a truncation in time which goes like O(∆t2) and it is stable for all possible

combinations of ∆t and ∆x.

Using our previous definition of α = ∆t/∆x2 we can rewrite the latter equation as

− αui−1,j + (2 + 2α) ui,j − αui+1,j = αui−1,j−1 + (2− 2α) ui,j−1 + αui+1,j−1, (15.52)

or in matrix-vector form as
(

2Î + αB̂
)

Vj =
(

2Î − αB̂
)

Vj−1, (15.53)

where the vector Vj is the same as defined in the implicit case while the matrix B̂ is

B̂ =









2 −1 0 0 . . .
−1 2 −1 0 . . .
.
0 . . . 0 . . . 2









(15.54)

We can rewrite the Crank-Nicolson scheme as follows

Vj =
(

2Î + αB̂
)

−1 (

2Î − αB̂
)

Vj−1. (15.55)

We have already obtained the eigenvalues for the two matrices
(

2Î + αB̂
)

and
(

2Î − αB̂
)

. This means

that the spectral function has to satisfy

ρ(
(

2Î + αB̂
)

−1 (

2Î − αB̂
)

) < 1,

meaning that
∣

∣

∣((2 + αµi)
−1 (2− αµi)

∣

∣

∣ < 1,

and since µi = 2 − 2cos(θ) we have 0 < µi < 4. A little algebra shows that the algorithm is stable for

all possible values of ∆t and ∆x.

The calculational molecule for the Crank-Nicolson scheme is shown in Fig. 15.3.

Parts of code for the Crank-Nicolson scheme

We can code in an efficient way the Crank-Nicolson algortihm by first multplying the matrix

Ṽj−1 =
(

2Î − αB̂
)

Vj−1,

419

Partial differential equations

with our previous vector Vj−1 using the matrix-vector multiplication algorithm for a tridiagonal matrix,

as done in the forward-Euler scheme. Thereafter we can solve the equation

(

2Î + αB̂
)

Vj = Ṽj−1,

using our method for systems of linear equations with a tridiagonal matrix, as done for the backward

Euler scheme.

We illustrate this in the following part of our program.

v o id c r a n k _ n i c o l s o n (i n t x s t e p s , i n t t s t e p s , double d e l t a _ x , double a l p h a)

{

double ∗v , a , b , c , ∗ r ;

v = new double [x s t e p s + 1] ; / / Th i s i s u

r = new double [x s t e p s + 1] ; / / R i g h t s i d e o f m a t r i x e q u a t i o n Av= r

. . . .

/ / s e t t i n g up t h e m a t r i x

a = c = − a l p h a ;

b = 2 + 2∗ a l p h a ;

/ / Time i t e r a t i o n

f o r (i n t t = 1 ; t <= t s t e p s ; t ++) {

/ / C a l c u l a t e r f o r use in t r i d a g , r i g h t hand s i d e o f t h e Crank

N i c o l s o n method

f o r (i n t i = 1 ; i < x s t e p s ; i ++) {

r [i] = a l p h a∗v [i −1] + (2 − 2∗ a l p h a) ∗v [i] + a l p h a ∗v [i + 1] ;

}

r [0] = 0 ;

r [x s t e p s] = 0 ;

/ / Then s o l v e t h e t r i d i a g o n a l m a t r i x

t r i d a g (a , b , c , r , v , x s t e p s +1) ;

v [0] = 0 ;

v [x s t e p s] = 0 ;

. . . .

}

15.2.4 Numerical truncation

We start with the forward Euler scheme and Taylor expand u(x, t + ∆t), u(x + ∆x, t) and u(x−∆x, t)

u(x + ∆x, t) = u(x, t) + ∂u(x,t)
∂x ∆x + ∂2u(x,t)

2∂x2 ∆x2 +O(∆x3), (15.56)

u(x−∆x, t) = u(x, t) − ∂u(x,t)
∂x ∆x + ∂2u(x,t)

2∂x2 ∆x2 +O(∆x3),

u(x, t + ∆t) = u(x, t) + ∂u(x,t)
∂t ∆t +O(∆t2).

With these Taylor expansions the approximations for the derivatives takes the form

[

∂u(x,t)
∂t

]

approx
= ∂u(x,t)

∂t +O(∆t), (15.57)

[

∂2u(x,t)
∂x2

]

approx
= ∂2u(x,t)

∂x2 +O(∆x2).

420

15.2 – Diffusion equation

It is easy to convince oneself that the backward Euler method must have the same truncation errors as the

forward Euler scheme.

For the Crank-Nicolson scheme we also need to Taylor expand u(x+∆x, t+∆t) and u(x−∆x, t+
∆t) around t′ = t + ∆t/2.

u(x + ∆x, t + ∆t) = u(x, t′) + ∂u(x,t′)
∂x ∆x + ∂u(x,t′)

∂t
∆t
2 + ∂2u(x,t′)

2∂x2 ∆x2 + ∂2u(x,t′)
2∂t2

∆t2

4 +

∂2u(x,t′)
∂x∂t

∆t
2 ∆x +O(∆t3)

u(x−∆x, t + ∆t) = u(x, t′)− ∂u(x,t′)
∂x ∆x + ∂u(x,t′)

∂t
∆t
2 + ∂2u(x,t′)

2∂x2 ∆x2 + ∂2u(x,t′)
2∂t2

∆t2

4 −
∂2u(x,t′)

∂x∂t
∆t
2 ∆x +O(∆t3)

u(x + ∆x, t) = u(x, t′) + ∂u(x,t′)
∂x ∆x− ∂u(x,t′)

∂t
∆t
2 + ∂2u(x,t′)

2∂x2 ∆x2 + ∂2u(x,t′)
2∂t2

∆t2

4 −
∂2u(x,t′)

∂x∂t
∆t
2 ∆x +O(∆t3)

u(x−∆x, t) = u(x, t′)− ∂u(x,t′)
∂x ∆x− ∂u(x,t′)

∂t
∆t
2 + ∂2u(x,t′)

2∂x2 ∆x2 + ∂2u(x,t′)
2∂t2

∆t2

4 +

∂2u(x,t′)
∂x∂t

∆t
2 ∆x +O(∆t3)

u(x, t + ∆t) = u(x, t′) + ∂u(x,t′)
∂t

∆t

2 + ∂2u(x,t′)
2∂t2

∆t2 +O(∆t3)

u(x, t) = u(x, t′)− ∂u(x,t′)
∂t

∆t
2 + ∂2u(x,t′)

2∂t2 ∆t2 +O(∆t3)

We now insert these expansions in the approximations for the derivatives to find

[

∂u(x,t′)
∂t

]

approx
= ∂u(x,t′)

∂t +O(∆t2), (15.58)

[

∂2u(x,t′)
∂x2

]

approx
= ∂2u(x,t′)

∂x2 +O(∆x2).

The following table summarizes the three methods.

Scheme: Truncation Error: Stability requirements:

Crank-Nicolson O(∆x2) and O(∆t2) Stable for all ∆t and ∆x.

Backward Euler O(∆x2) and O(∆t) Stable for all ∆t and ∆x.

Forward Euler O(∆x2) and O(∆t) ∆t ≤ 1
2∆x2

Table 15.1: Comparison of the different schemes.

15.2.5 Analytic solution for the one-dimensional diffusion equation

It cannot be repeated enough, it is always useful to find cases where one can compare the numerics and

the developed algorithms and codes with analytic solution. The above case is also particularly simple.

We have the following partial differential equation

∇2u(x, t) =
∂u(x, t)

∂t
,

with initial conditions

u(x, 0) = g(x) 0 < x < L.

421

Partial differential equations

The boundary conditions are

u(0, t) = 0 t ≥ 0, u(L, t) = 0 t ≥ 0,

We assume that we have solutions of the form (separation of variable)

u(x, t) = F (x)G(t). (15.59)

which inserted in the partial differential equation results in

F ′′

F
=

G′

G
, (15.60)

where the derivative is with respect to x on the left hand side and with respect to t on right hand side.

This equation should hold for all x and t. We must require the rhs and lhs to be equal to a constant. We

call this constant −λ2. This gives us the two differential equations,

F ′′ + λ2F = 0; G′ = −λ2G, (15.61)

with general solutions

F (x) = A sin(λx) + B cos(λx); G(t) = Ce−λ2t. (15.62)

To satisfy the boundary conditions we require B = 0 and λ = nπ/L. One solution is therefore found to

be

u(x, t) = An sin(nπx/L)e−n2π2t/L2

. (15.63)

But there are infinitely many possible n values (infinite number of solutions). Moreover, the diffusion

equation is linear and because of this we know that a superposition of solutions will also be a solution of

the equation. We may therefore write

u(x, t) =
∞
∑

n=1

An sin(nπx/L)e−n2π2t/L2

. (15.64)

The coefficient An is in turn determined from the initial condition. We require

u(x, 0) = g(x) =
∞
∑

n=1

An sin(nπx/L). (15.65)

The coefficient An is the Fourier coefficients for the function g(x). Because of this, An is given by (from

the theory on Fourier series)

An =
2

L

∫ L

0
g(x) sin(nπx/L)dx. (15.66)

Different g(x) functions will obviously result in different results for An. A good discussion on Fourier

series and their links with partial differential equations can be found in Ref. [86].

422

15.3 – Laplace’s and Poisson’s equations

15.3 Laplace’s and Poisson’s equations

Laplace’s equation reads

∇2u(x) = uxx + uyy = 0. (15.67)

with possible boundary conditions u(x, y) = g(x, y) on the border δΩ. There is no time-dependence.

We seek a solution in the region Ω and we choose a quadratic mesh with equally many steps in both

directions. We could choose the grid to be rectangular or following polar coordinates r, θ as well. Here

we choose equal steps lengths in the x and the y directions. We set

h = ∆x = ∆y =
L

n + 1
,

where L is the length of the sides and we have n + 1 points in both directions.

The discretized version reads

uxx ≈
u(x + h, y)− 2u(x, y) + u(x− h, y)

h2
, (15.68)

and

uyy ≈
u(x, y + h)− 2u(x, y) + u(x, y − h)

h2
, (15.69)

which we rewrite as

uxx ≈
ui+1,j − 2ui,j + ui−1,j

h2
, (15.70)

and

uyy ≈
ui,j+1 − 2ui,j + ui,j−1

h2
, (15.71)

which gives when inserted in Laplace’s equation

ui,j =
1

4
[ui,j+1 + ui,j−1 + ui+1,j + ui−1,j] . (15.72)

This is our final numerical scheme for solving Laplace’s equation. Poisson’s equation adds only a minor

complication to the above equation since in this case we have

uxx + uyy = −ρ(x, y),

and we need only to add a discretized version of ρ(x) resulting in

ui,j =
1

4
[ui,j+1 + ui,j−1 + ui+1,j + ui−1,j] +

h2

4
ρi,j. (15.73)

The boundary condtions read

ui,0 = gi,0 0 ≤ i ≤ n + 1,

ui,L = gi,0 0 ≤ i ≤ n + 1,

u0,j = g0,j 0 ≤ j ≤ n + 1,

and

uL,j = gL,j 0 ≤ j ≤ n + 1.

The calculational molecule for the Laplace operator of Eq. (15.72) is shown in Fig. 15.4.

With n + 1 mesh points the equations for u result in a system of (n + 1)2 linear equations in the

(n + 1)2 unknown ui,j . One can show that there exist unique solutions for the Laplace and Poisson

problems, see for example Ref. [86] for proofs. However, solving these equations using for example the

LU decomposition techniques discussed in chapter 4 becomes inefficient since the matrices are sparse.

The relaxation techniques discussed below are more efficient.

423

Partial differential equations

a(t)

t

g(x)

b(t)

x

ui−1,j+1ui,j+1 ui+1,j+1

ui−1,j ui+1,jui,j

-

6

Figure 15.3: Calculational molecule for the Crank-Nicolson scheme.

g(x, y)

y

g(x, y)

g(x, y)

x

ui,j+1

ui−1,j ui+1,jui,j

ui,j−1

-

6

Figure 15.4: Five-point calculational molecule for the Laplace operator of Eq. (15.72). The border δΩ
defines the boundary condition u(x, y) = g(x, y).

424

15.3 – Laplace’s and Poisson’s equations

15.3.1 Jacobi Algorithm for solving Laplace’s equation

It is fairly straightforward to extend this equation to the three-dimensional case. Whether we solve

Eq. (15.72) or Eq. (15.73), the solution strategy remains the same. We know the values of u at i = 0 or

i = n + 1 and at j = 0 or j = n + 1 but we cannot start at one of the boundaries and work our way into

and across the system since Eq. (15.72) requires the knowledge of u at all of the neighbouring points in

order to calculate u at any given point.

The way we solve these equations is based on an iterative scheme called the Jacobi method or relax-

ation method. See for example Refs. [86, 88] for a discussion of the relaxation method and its pertinent

proofs. Its steps are rather simple. We start with an initial guess for u
(0)
i,j where all values are known. To

obtain a new solution we solve Eq. (15.72) or Eq. (15.73) in order to obtain a new solution u
(1)
i,j . Most

likely this solution will not be a solution to Eq. (15.72). This solution is in turn used to obtain a new and

improved u
(2)
i,j . We continue this process till we obtain a result which satisfies some specific convergence

criterion. Summarized, this algorithm reads

1. Make an initial guess for ui,j at all interior points (i, j) for all i = 1 : n and j = 1 : n

2. Use Eq. (15.72) to compute um at all interior points (i, j). The index m stands for iteration number

m.

3. Stop if prescribed convergence threshold is reached, otherwise continue on next step.

4. Update the new value of u for the given iteration

5. Go to step 2

A simple example may help in visualizing this method. We consider a condensator with parallel

plates separated at a distance L resulting in e.g., the voltage differences u(x, 0) = 100sin(2πx/L) and

u(x, 1) = −100sin(2πx/L). These are our boundary conditions and we ask what is the voltage u
between the plates? To solve this problem numerically we provide below a Fortran program which solves

iteratively Eq. (15.72). Only the part which computes Eq. (15.72) is included here.

. . . .

! d e f i n e t h e s t e p s i z e

h = (xmax−xmin) / FLOAT(ndim +1)

l e n g t h = xmax−xmin

! a l l o c a t e space f o r t h e v e c t o r u and t h e temporary v e c t o r t o

! be upgraded i n e v e r y i t e r a t i o n

ALLOCATE (u (ndim , ndim))

ALLOCATE (u_temp (ndim , ndim))

p i = ACOS(−1 .)

! s e t up o f i n i t i a l c o n d i t i o n s a t t = 0 and boundary c o n d i t i o n s

u = 0 .

DO i =1 , ndim

x = i ∗h∗ p i / l e n g t h

u (i , 1) = fu n c (x)

u (i , ndim) = −fu n c (x)

ENDDO

! i t e r a t i o n a l g o r i t hm s t a r t s here

i t e r a t i o n s = 0

DO WHILE ((i t e r a t i o n s <= 2 0) .OR. (d i f f > 0 . 0 0 0 0 1))

u_temp = u ; d i f f = 0 .

425

Partial differential equations

DO j = 2 , ndim − 1

DO l = 2 , ndim −1

u (j , l) = 0 . 2 5 ∗ (u_temp (j +1 , l) +u_temp (j −1 , l) + &

u_temp (j , l +1)+u_temp (j , l −1))

d i f f = d i f f + ABS(u_temp (i , j)−u (i , j))

ENDDO

ENDDO

i t e r a t i o n s = i t e r a t i o n s + 1

d i f f = d i f f / (ndim +1) ∗∗2

ENDDO

The important part of the algorithm is applied in the function which sets up the two-dimensional Laplace

equation. There we have a do-while statement which tests the difference between the temporary vector

and the solution ui,j . Moreover, we have fixed the number of iterations to be at most 20. This is suffi-

cient for the above problem, but for more general applications you need to test the convergence of the

algorithm.

While the Jacobi iteration scheme is very simple and parallelizable, its slow convergence rate renders

it impractical for any "real world" applications. One way to speed up the convergent rate would be to

"over predict" the new solution by linear extrapolation. This leads to the Successive Over Relaxation

scheme, see chapter 19.5 on relaxation methods for boundary value problems of Ref. [36].

15.4 Wave equation in two dimensions

The 1 + 1-dimensional wave equation reads

∂2u

∂x2
=

∂2u

∂t2
, (15.74)

with u = u(x, t) and we have assumed that we operate with dimensionless variables. Possible boundary

and initial conditions with L = 1 are















uxx = utt x ∈ (0, 1), t > 0
u(x, 0) = g(x) x ∈ (0, 1)

u(0, t) = u(1, t) = 0 t > 0
∂u/∂t|t=0 = 0 x ∈ (0, 1)

. (15.75)

We discretize again time and position,

uxx ≈
u(x + ∆x, t)− 2u(x, t) + u(x−∆x, t)

∆x2
, (15.76)

and

utt ≈
u(x, t + ∆t)− 2u(x, t) + u(x, t−∆t)

∆t2
, (15.77)

which we rewrite as

uxx ≈
ui+1,j − 2ui,j + ui−1,j

∆x2
, (15.78)

and

utt ≈
ui,j+1 − 2ui,j + ui,j−1

∆t2
, (15.79)

426

15.4 – Wave equation in two dimensions

resulting in

ui,j+1 = 2ui,j − ui,j−1 +
∆t2

∆x2
(ui+1,j − 2ui,j + ui−1,j) . (15.80)

If we assume that all values at times t = j and t = j − 1 are known, the only unknown variable is ui,j+1

and the last equation yields thus an explicit scheme for updating this quantity. We have thus an explicit

finite difference scheme for computing the wave function u. The only additional complication in our

case is the initial condition given by the first derivative in time, namely ∂u/∂t|t=0 = 0. The discretized

version of this first derivative is given by

ut ≈
u(xi, tj + ∆t)− u(xi, tj −∆t)

2∆t
, (15.81)

and at t = 0 it reduces to

ut ≈
ui,+1 − ui,−1

2∆t
= 0, (15.82)

implying that ui,+1 = ui,−1. If we insert this condition in Eq. (15.80) we arrive at a special formula for

the first time step

ui,1 = ui,0 +
∆t2

2∆x2
(ui+1,0 − 2ui,0 + ui−1,0) . (15.83)

We need seemingly two different equations, one for the first time step given by Eq. (15.83) and one for

all other time-steps given by Eq. (15.80). However, it suffices to use Eq. (15.80) for all times as long as

we provide u(i,−1) using

ui,−1 = ui,0 +
∆t2

2∆x2
(ui+1,0 − 2ui,0 + ui−1,0) , (15.84)

in our setup of the initial conditions.

The situation is rather similar for the 2 + 1-dimensional case, except that we now need to discretize

the spatial y-coordinate as well. Our equations will now depend on three variables whose discretized

versions are now






tl = l∆t l ≥ 0
xi = i∆x 0 ≤ i ≤ nx

yj = j∆y 0 ≤ j ≤ ny

, (15.85)

and we will let ∆x = ∆y = h and nx = ny for the sake of simplicity. The equation with initial and

boundary conditions reads now















uxx + uyy = utt x, y ∈ (0, 1), t > 0
u(x, y, 0) = g(x, y) x, y ∈ (0, 1)

u(0, 0, t) = u(1, 1, t) = 0 t > 0
∂u/∂t|t=0 = 0 x, y ∈ (0, 1)

. (15.86)

We have now the following discretized partial derivatives

uxx ≈
ul

i+1,j − 2ul
i,j + ul

i−1,j

h2
, (15.87)

and

uyy ≈
ul

i,j+1 − 2ul
i,j + ul

i,j−1

h2
, (15.88)

427

Partial differential equations

and

utt ≈
ul+1

i,j − 2ul
i,j + ul−1

i,j

∆t2
, (15.89)

which we merge into the discretized 2 + 1-dimensional wave equation as

ul+1
i,j = 2ul

i,j − ul−1
i,j +

∆t2

h2

(

ul
i+1,j − 4ul

i,j + ul
i−1,j + ul

i,j+1 + ul
i,j−1

)

, (15.90)

where again we have an explicit scheme with ul+1
i,j as the only unknown quantity. It is easy to account

for different step lengths for x and y. The partial derivative is treated in much the same way as for the

one-dimensional case, except that we now have an additional index due to the extra spatial dimension,

viz., we need to compute u−1
i,j through

u−1
i,j = u0

i,j +
∆t

2h2

(

u0
i+1,j − 4u0

i,j + u0
i−1,j + u0

i,j+1 + u0
i,j−1

)

, (15.91)

in our setup of the initial conditions.

15.4.1 Analytic solution

We develop here the analytic solution for the 2+1 dimensional wave equation with the following bound-

ary and initial conditions















c2(uxx + uyy) = utt x, y ∈ (0, L), t > 0
u(x, y, 0) = f(x, y) x, y ∈ (0, L)

u(0, 0, t) = u(L,L, t) = 0 t > 0
∂u/∂t|t=0 = g(x, y) x, y ∈ (0, L)

.

Our first step is to make the ansatz

u(x, y, t) = F (x, y)G(t),

resulting in the equation

FGtt = c2(FxxG + FyyG),

or
Gtt

c2G
=

1

F
(Fxx + Fyy) = −ν2.

The lhs and rhs are independent of each other and we obtain two differential equations

Fxx + Fyy + Fν2 = 0,

and

Gtt + Gc2ν2 = Gtt + Gλ2 = 0,

with λ = cν. We can in turn make the following ansatz for the x and y dependent part

F (x, y) = H(x)Q(y),

which results in
1

H
Hxx = − 1

Q
(Qyy + Qν2) = −κ2.

428

15.4 – Wave equation in two dimensions

Since the lhs and rhs are again independent of each other, we can separate the latter equation into two

independent equations, one for x and one for y, namely

Hxx + κ2H = 0,

and

Qyy + ρ2Q = 0,

with ρ2 = ν2 − κ2.

The second step is to solve these differential equations, which all have trigonometric functions as

solutions, viz.

H(x) = A cos(κx) + B sin(κx),

and

Q(y) = C cos(ρy) + D sin(ρy).

The boundary conditions require that F (x, y) = H(x)Q(y) are zero at the boundaries, meaning that

H(0) = H(L) = Q(0) = Q(L) = 0. This yields the solutions

Hm(x) = sin(
mπx

L
) Qn(y) = sin(

nπy

L
),

or

Fmn(x, y) = sin(
mπx

L
) sin(

nπy

L
).

With ρ2 = ν2 − κ2 and λ = cν we have an eigenspectrum λ = c
√

κ2 + ρ2 or λmn = cπ/L
√

m2 + n2.

The solution for G is

Gmn(t) = Bmn cos(λmnt) + Dmn sin(λmnt),

with the general solution of the form

u(x, y, t) =
∞
∑

mn=1

umn(x, y, t) =
∞
∑

mn=1

Fmn(x, y)Gmn(t).

The final step is to determine the coefficients Bmn and Dmn from the Fourier coefficients. The equa-

tions for these are determined by the initial conditions u(x, y, 0) = f(x, y) and ∂u/∂t|t=0 = g(x, y).
The final expressions are

Bmn =
2

L

∫ L

0

∫ L

0
dxdyf(x, y) sin(

mπx

L
) sin(

nπy

L
),

and

Dmn =
2

L

∫ L

0

∫ L

0
dxdyg(x, y) sin(

mπx

L
) sin(

nπy

L
).

Inserting the particular functional forms of f(x, y) and g(x, y) one obtains the final analytic expressions.

429

Partial differential equations

15.5 Exercises and projects

Project 15.1: two-dimensional wave equation

Consider the two-dimensional wave equation for a vibrating membrane given by the following initial and

boundary conditions















uxx + uyy = utt x, y ∈ (0, 1), t > 0
u(x, y, 0) = sin(x)cos(y) x, y ∈ (0, 1)
u(0, 0, t) = u(1, 1, t) = 0 t > 0

∂u/∂t|t=0 = 0 x, y ∈ (0, 1)

.

a) Find the analytic solution for this equation using the technique of separation of variables.

b) Write down the algorithm for solving this equation and set up a program to solve the discretized

wave equation. Compare your results with the analytic solution. Use a quadratic grid.

c) Consider thereafter a 2 + 1 dimensional wave equation with variable velocity, given by

∂2u

∂t2
= ∇(λ(x, y)∇u).

If λ is constant, we obtain the standard wave equation discussed in the two previous points. The

solution u(x, y, t) could represent a model for water waves. It represents then the surface elevation

from still water. The function λ simulates the water depth using for example measurements of still

water depths in say a fjord or the north sea. The boundary conditions are then determined by the

coast lines. You can discretize

∇(λ(x, y)∇u) =
∂

∂x

(

λ(x, y)
∂u

∂x

)

+
∂

∂y

(

λ(x, y)
∂u

∂y

)

,

as follows using again a quadratic domain for x and y:

∂

∂x

(

λ(x, y)
∂u

∂x

)

≈ 1

∆x

(

λi+1/2,j

[

ul
i+1,j − ul

i,j

∆x

]

− λi−1/2,j

[

ul
i,j − ul

i−1,j

∆x

])

,

and

∂

∂y

(

λ(x, y)
∂u

∂y

)

≈ 1

∆y

(

λi,j+1/2

[

ul
i,j+1 − ul

i,j

∆y

]

− λi,j−1/2

[

ul
i,j − ul

i,j−1

∆y

])

.

Convince yourself that this equation has the same truncation error as the expressions used in a) and

b) and that they result in the same equations when λ is a constant.

d) Develop an algorithm for solving the new wave equation and write a program which implements

it.

Project 15.2, one- and two-dimensional diffusion equations

We are looking at a one-dimensional problem

∂2u(x, t)

∂x2
=

∂u(x, t)

∂t
, t > 0, x ∈ [0, L] (15.92)

430

15.5 – Exercises and projects

or

uxx = ut, (15.93)

with initial conditions, i.e., the conditions at t = 0,

u(x, 0) = 0 0 < x < L (15.94)

with L = 1 the length of the x-region of interest. The boundary conditions are

u(0, t) = 0 t > 0, (15.95)

and

u(L, t) = 1 t > 0. (15.96)

The function u(x, t) can be the temperature gradient of a the rod or represent the fluid velocity in a

direction parallel to the plates, that is normal to the x-axis. In the latter case, for small t, only the part

of the fluid close to the moving plate is set in significant motion, resulting in a thin boundary layer at

x = L. As time increases, the velocity approaches a linear variation with x. In this case, which can

be derived from the incompressible Navier-Stokes, the above equations constitute a model for studying

friction between moving surfaces separated by a thin fluid film.

In this project we want to study the numerical stability of three methods for partial differential equa-

tions (PDEs). These methods are

1. The explicit forward Euler algorithm with discretized versions of time given by a forward formula

and a centered difference in space resulting in

ut ≈
u(x, t + ∆t)− u(x, t)

∆t
=

u(xi, tj + ∆t)− u(xi, tj)

∆t
(15.97)

and

uxx ≈
u(x + ∆x, t)− 2u(x, t) + u(x−∆x, t)

∆x2
, (15.98)

or

uxx ≈
u(xi + ∆x, tj)− 2u(xi, tj) + u(xi −∆x, tj)

∆x2
. (15.99)

2. The implicit Backward Euler with

ut ≈
u(x, t)− u(x, t−∆t)

∆t
=

u(xi, tj)− u(xi, tj −∆t)

∆t
(15.100)

and

uxx ≈
u(x + ∆x, t)− 2u(x, t) + u(x−∆x, t)

∆x2
, (15.101)

or

uxx ≈
u(xi + ∆x, tj)− 2u(xi, tj) + u(xi −∆x, tj)

∆x2
, (15.102)

3. Finally we use the implicit Crank-Nicolson scheme with a time-centered scheme at (x, t + ∆t/2)

ut ≈
u(x, t + ∆t)− u(x, t)

∆t
=

u(xi, tj + ∆t)− u(xi, tj)

∆t
. (15.103)

431

Partial differential equations

The corresponding spatial second-order derivative reads

uxx ≈
1

2

(

u(xi + ∆x, tj)− 2u(xi, tj) + u(xi −∆x, tj)

∆x2
+ (15.104)

u(xi + ∆x, tj + ∆t)− 2u(xi, tj + ∆t) + u(xi −∆x, tj + ∆t)

∆x2

)

.

Note well that we are using a time-centered scheme wih t + ∆t/2 as center.

a) Write down the algorithms for these three methods and the equations you need to implement. For

the implicit schemes show that the equations lead to a tridiagonal matrix system for the new values.

b) Find the truncation errors of these three schemes and investigate their stability properties. Find

also the analytic solution to the continuous problem. A useful hint here is to solve for v(x, t) =
u(x, t)− x instead. The boundary conditions for v(x, t) are simpler, v(0, t) = v(1, t) = 0 and the

initial conditions are v(x, 0) = −x.

c) Implement the three algorithms in the same code and perform tests of the solution for these three

approaches for ∆x = 1/10, ∆x = 1/100 using ∆t as dictated by the stability limit of the ex-

plicit scheme. Study the solutions at two time points t1 and t2 where u(x, t1) is smooth but still

significantly curved and u(x, t2) is almost linear, close to the stationary state.

d) Compare the solutions at t1 and t2 with the analytic result for the continuous problem. Which of

the schemes would you classify as the best?

e) Generalize this problem to two dimensions and write down the algorithm for the forward and back-

ward Euler approaches. Write a program which solves the diffusion equation in 2 + 1 dimensions.

The program should allow for general boundary and initial conditions.

Project 15.3, simple Tusnami model

In this project will first study the simple two-dimensional wave equation and compare our numeri-

cal solution with analytic results. Thereafter we introduce a simple model for a tsunami.

Consider first the two-dimensional wave equation for a vibrating square membrane given by the

following initial and boundary conditions



















λ
(

∂2u
∂x2 + ∂2u

∂y2

)

= ∂2u
∂t2 x, y ∈ [0, 1], t ≥ 0

u(x, y, 0) = sin(πx)sin(2πy) x, y ∈ (0, 1)
u = 0 boundary t ≥ 0
∂u/∂t|t=0 = 0 x, y ∈ (0, 1)

.

The boundary is defined by x = 0, x = 1, y = 0 and y = 1.

a) Find the analytic solution for this equation using the technique of separation of variables.

b) Write down the algorithm for the explicit method for solving this equation and set up a pro-

gram to solve the discretized wave equation. Describe in particular how you treat the bound-

ary conditions and initial conditions. Compare your results with the analytic solution. Use a

quadratic grid.

432

15.5 – Exercises and projects

Check your results as function of the number of mesh points and in particular against the

stability condition

∆t ≤ 1√
λ

(

1

∆x2
+

1

∆y2

)

−1/2

where ∆t, ∆x and ∆y are the chosen step lengths. In our case ∆x = ∆y. It can be useful to

make animations of the results (a simple recipe with gnuplot and python for this is available

under the project link for project 4 at the webpage).

We modify now the wave equation in order to consider a 2 + 1 dimensional wave equation with a

position dependent velocity, given by

∂2u

∂t2
= ∇ · (λ(x, y)∇u).

If λ is constant, we obtain the standard wave equation discussed in the two previous points. The

solution u(x, y, t) could represent a model for water waves. It represents then the surface elevation

from still water. We will model λ as

λ = gH(x, y),

with g being the acceleration of gravity and H(x, y) is the still water depth.

The function H(x, y) simulates the water depth using for example measurements of still water

depths in say a fjord or the north sea. The boundary conditions are then determined by the coast

lines as discussed in point d) below. We have assumed that the vertical motion is negligible and

that we deal with long wavelenghts λ̃ compared with the depth of the sea H , that is λ̃/H ≫ 1. We

will also neglect Coriolis effects.

You can discretize

∇ · (λ(x, y)∇u) =
∂

∂x

(

λ(x, y)
∂u

∂x

)

+
∂

∂y

(

λ(x, y)
∂u

∂y

)

,

as follows using again a quadratic domain for x and y:

∂

∂x

(

λ(x, y)
∂u

∂x

)

≈ 1

∆x

(

λi+1/2,j

[

ul
i+1,j − ul

i,j

∆x

]

− λi−1/2,j

[

ul
i,j − ul

i−1,j

∆x

])

,

and

∂

∂y

(

λ(x, y)
∂u

∂y

)

≈ 1

∆y

(

λi,j+1/2

[

ul
i,j+1 − ul

i,j

∆y

]

− λi,j−1/2

[

ul
i,j − ul

i,j−1

∆y

])

.

c) Show that this equation has the same truncation error as the expressions used in a) and b) and

that they result in the same equations when λ is a constant.

We assume that we can approximate the coastline with a quadratic grid. As boundary condition at

the coastline we will employ
∂u

∂n
= ∇u · n = 0,

where ∂u/∂n is the derivative in the direction normal to the boundary.

433

Partial differential equations

We are going to model the impact of an earthquake on sea water. This is normally modelled via

an elevation of the sea bottom. We will assume that the movement of the sea bottom is very rapid

compared with the period of the propagating waves. This means that we can approximate the

bottom elevation with an initial surface elevation. The initial conditions are then given by (with L
the length of the grid)

u(x, y, 0) = f(x, y) x, y ∈ (0, L),

and

∂u/∂t|t=0 = 0 x, y ∈ (0, L).

We will approximate the initial elevation with the function

f(x, y) = A0 exp

(

−
[

x− xc

σx

]2

−
[

y − yc

σy

]2
)

,

where A0 is the elevation of the surface and is typically 1−2 m. The variables σx and σy represent

the extensions of the surface elevation. In this project we will let σx = 80 km and σy = 200 km.

The 2004 tsunami had extensions of approximately 200 and 1000 km, respectively.

The variables xc and yc represent the epicentre of the earthquake.

We need also to model the sea bottom and the function λ(x, y) = gH(x, y). We assume that we

can model the sea bottom as depicted in the following figure, with a water depth of 5000 m and a

surface elevation of 2 m. We assume the sea bottom depends only on the variable x and has depth

Sea bottom

 H= 5000 m

Sea surface elevation

φ = 1

Coast

Figure 15.5: The sea bottom towards one of the coastlines has a shape with an inclication of 1 degree and

depth where the earthquake takes place of 5000 m. The surface elevation is exaggerated on the figure.

5000 m before it starts increasing towards the coastline. We fix the angle θ = 1 degree. From the

figure you will be asked below to model the x dependence of H(x).

Your tasks are as follows:

434

15.5 – Exercises and projects

d) Develop an algorithm for solving the new wave equation and write a program which imple-

ments it. Pay in particular attention to the implementation of the boundary conditions and the

initial conditions. Figure out how to deal with the fictitious values in time and space for the

discretized functions. You need also to find the functional form of H(x, y) = H(x).

Be careful to scale the equations properly. With the depth of 5000 m, extensions σx = 80 km

and σy = 200 km you need to figure out the proper dimensions of the grid L× L. Scale the

equations so that you can use dimensionless quantities.

With the above parameters, initial values and boundary conditions, study the temporal evo-

lution of the wave towards the coastline. Comment your results. It can be useful to make

animations of the results (a simple recipe with gnuplot and python for this is available under

the project link for project 4 at the webpage).

It also important that you keep in mind the stability condition

∆t ≤ 1
√

maxλ(x, y)

(

1

∆x2
+

1

∆y2

)

−1/2

e) We keep now the same shape of the sea bottom and the same parameters as in d), but we shift

the center of the earthquake to the right, as indicated in Fig. 2.

Sea bottom

 H= 5000 m

φ = 1

CoastSea surface elevation

Figure 15.6: The sea bottom towards one of the coastlines has a shape with an inclication of 1 degree.

The center of the earthquake is shifted to the right with respect to Fig. 1 as indicated by the exaggerated

surface elevation. In this part the surface elevation is moved 40 km to the right.

The surface elevation is moved 40 km to the right. Which one of the two earthquakes will

produce the largest impact (wave elevation) at the coastline? Comment your results.

f) We keep the same shape of the sea bottom as in d) but instead of using the supplied Gaussian

shape of the initial surface elevation we will now use realistic data for the surface elevation.

These data, with the respective parameters are listed in the file initial.dat on the webpage of

the course.

435

Partial differential equations

Write a program which reads in these data sets and use spline interpolation to find the desired

values of the surface elevation at t = 0. Your mesh points may not coincide with the tabulated

points and you may therefore need to interpolate between the data points.

To perform the interpolation you can use either the spline and splint functions included in

lib.cpp or, based on your results from project 1, write your own qubic spline interpolation

function.

Compare then the results you obtain in this case with those from d) and comment your results.

436

