
Chapter 13

Differential equations

If God has made the world a perfect mechanism, he has at least conceded so much to our
imperfect intellect that in order to predict little parts ofit, we need not solve innumerable
differential equations, but can use dice with fair success.Max Born, quoted in H. R. Pagels,
The Cosmic Code [76]

13.1 Introduction

We may trace the origin of differential equations back to Newton in 16871 and his treatise on the gravita-
tional force and what is known to us as Newton’s second law in dynamics.

Needless to say, differential equations pervade the sciences and are to us the tools by which we
attempt to express in a concise mathematical language the laws of motion of nature. We uncover these
laws via the dialectics between theories, simulations and experiments, and we use them on a daily basis
which spans from applications in engineering or financial engineering to basic research in for example
biology, chemistry, mechanics, physics, ecological models or medicine.

We have already met the differential equation for radioactive decay in nuclear physics. Other famous
differential equations are Newton’s law of cooling in thermodynamics. the wave equation, Maxwell’s
equations in electromagnetism, the heat equation in thermodynamic, Laplace’s equation and Poisson’s
equation, Einstein’s field equation in general relativity,Schrödinger equation in quantum mechanics,
the Navier-Stokes equations in fluid dynamics, the Lotka-Volterra equation in population dynamics, the
Cauchy-Riemann equations in complex analysis and the Black-Scholes equation in finance, just to men-
tion a few. Excellent texts on differential equations and computations are the texts of Eriksson, Estep,
Hansbo and Johnson [77], Butcher [78] and Hairer, Nørsett and Wanner [79].

There are five main types of differential equations,

– ordinary differential equations (ODEs), discussed in thischapter for initial value problems only.
They contain functions of one independent variable, and derivatives in that variable. The next
chapter deals with ODEs and boundary value problems.

– Partial differential equations with functions of multipleindependent variables and their partial
derivatives, covered in chapter 15.

1Newton had most of the relations for his laws ready 22 years earlier, when according to legend he was contemplating falling
apples. However, it took more than two decades before he published his theories, chiefly because he was lacking an essential
mathematical tool, differential calculus.
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Differential equations

– So-called delay differential equations that involve functions of one dependent variable, derivatives
in that variable, and depend on previous states of the dependent variables.

– Stochastic differential equations (SDEs) are differential equations in which one or more of the
terms is a stochastic process, thus resulting in a solution which is itself a stochastic process.

– Finally we have so-called differential algebraic equations (DAEs). These are differential equation
comprising differential and algebraic terms, given in implicit form.

In this chapter we restrict the attention to ordinary differential equations. We focus on initial value
problems and present some of the more commonly used methods for solving such problems numerically.
The physical systems which are discussed range from the classical pendulum with non-linear terms to
the physics of a neutron star or a white dwarf.

13.2 Ordinary differential equations

In this section we will mainly deal with ordinary differential equations and numerical methods suitable
for dealing with them. However, before we proceed, a brief remainder on differential equations may be
appropriate.

– The order of the ODE refers to the order of the derivative on the left-hand side in the equation

dy

dt
= f(t, y). (13.1)

This equation is of first order andf is an arbitrary function. A second-order equation goes typically
like

d2y

dt2
= f(t,

dy

dt
, y). (13.2)

A well-known second-order equation is Newton’s second law

m
d2x

dt2
= −kx, (13.3)

wherek is the force constant. ODE depend only on one variable, whereas

– partial differential equations like the time-dependent Schrödinger equation

i~
∂ψ(x, t)

∂t
=

~
2

2m

(
∂2ψ(r, t)

∂x2
+
∂2ψ(r, t)

∂y2
+
∂2ψ(r, t)

∂z2

)
+ V (x)ψ(x, t), (13.4)

may depend on several variables. In certain cases, like the above equation, the wave function can be
factorized in functions of the separate variables, so that the Schrödinger equation can be rewritten
in terms of sets of ordinary differential equations.

– We distinguish also between linear and non-linear differential equation where e.g.,

dy

dt
= g3(t)y(t), (13.5)

is an example of a linear equation, while

dy

dt
= g3(t)y(t)− g(t)y2(t), (13.6)
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13.3 – Finite difference methods

is a non-linear ODE. Another concept which dictates the numerical method chosen for solving an
ODE, is that of initial and boundary conditions. To give an example, in our study of neutron stars
below, we will need to solve two coupled first-order differential equations, one for the total mass
m and one for the pressureP as functions ofρ

dm

dr
= 4πr2ρ(r)/c2,

and
dP

dr
= −Gm(r)

r2
ρ(r)/c2.

whereρ is the mass-energy density. The initial conditions are dictated by the mass being zero at the
center of the star, i.e., whenr = 0, yieldingm(r = 0) = 0. The other condition is that the pressure
vanishes at the surface of the star. This means that at the point where we haveP = 0 in the solution
of the integral equations, we have the total radiusR of the star and the total massm(r = R). These
two conditions dictate the solution of the equations. Sincethe differential equations are solved by
stepping the radius fromr = 0 to r = R, so-called one-step methods (see the next section) or
Runge-Kutta methods may yield stable solutions.

In the solution of the Schrödinger equation for a particle ina potential, we may need to apply
boundary conditions as well, such as demanding continuity of the wave function and its derivative.

– In many cases it is possible to rewrite a second-order differential equation in terms of two first-
order differential equations. Consider again the case of Newton’s second law in Eq. (13.3). If we
define the positionx(t) = y(1)(t) and the velocityv(t) = y(2)(t) as its derivative

dy(1)(t)

dt
=
dx(t)

dt
= y(2)(t), (13.7)

we can rewrite Newton’s second law as two coupled first-orderdifferential equations

m
dy(2)(t)

dt
= −kx(t) = −ky(1)(t), (13.8)

and
dy(1)(t)

dt
= y(2)(t). (13.9)

13.3 Finite difference methods

These methods fall under the general class of one-step methods. The algoritm is rather simple. Suppose
we have an initial value for the functiony(t) given by

y0 = y(t = t0). (13.10)

We are interested in solving a differential equation in a region in space [a,b]. We define a steph by
splitting the interval inN sub intervals, so that we have

h =
b− a
N

. (13.11)
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Differential equations

With this step and the derivative ofy we can construct the next value of the functiony at

y1 = y(t1 = t0 + h), (13.12)

and so forth. If the function is rather well-behaved in the domain [a,b], we can use a fixed step size. If not,
adaptive steps may be needed. Here we concentrate on fixed-step methods only. Let us try to generalize
the above procedure by writing the stepyi+1 in terms of the previous stepyi

yi+1 = y(t = ti + h) = y(ti) + h∆(ti, yi(ti)) +O(hp+1), (13.13)

whereO(hp+1) represents the truncation error. To determine∆, we Taylor expand our functiony

yi+1 = y(t = ti + h) = y(ti) + h

(
y′(ti) + · · ·+ y(p)(ti)

hp−1

p!

)
+O(hp+1), (13.14)

where we will associate the derivatives in the parenthesis with

∆(ti, yi(ti)) = (y′(ti) + · · ·+ y(p)(ti)
hp−1

p!
). (13.15)

We define
y′(ti) = f(ti, yi) (13.16)

and if we truncate∆ at the first derivative, we have

yi+1 = y(ti) + hf(ti, yi) +O(h2), (13.17)

which when complemented withti+1 = ti + h forms the algorithm for the well-known Euler method.
Note that at every step we make an approximation error of the order ofO(h2), however the total error is
the sum over all stepsN = (b − a)/h, yielding thus a global error which goes likeNO(h2) ≈ O(h).
To make Euler’s method more precise we can obviously decrease h (increaseN ). However, if we are
computing the derivativef numerically by e.g., the two-steps formula

f ′2c(x) =
f(x+ h)− f(x)

h
+O(h),

we can enter into roundoff error problems when we subtract two almost equal numbersf(x+h)−f(x) ≈
0. Euler’s method is not recommended for precision calculation, although it is handy to use in order to
get a first view how a solution may look like. As an example, consider Newton’s equation rewritten in
Eqs. (13.8) and (13.9). We definey0 = y(1)(t = 0) anv0 = y(2)(t = 0). The first steps in Newton’s
equations are then

y
(1)
1 = y0 + hv0 +O(h2) (13.18)

and
y

(2)
1 = v0 − hy0k/m+O(h2). (13.19)

The Euler method is asymmetric in time, since it uses information about the derivative at the beginning
of the time interval. This means that we evaluate the position aty(1)

1 using the velocity aty(2)
0 = v0. A

simple variation is to determiney(1)
n+1 using the velocity aty(2)

n+1, that is (in a slightly more generalized
form)

y
(1)
n+1 = y(1)

n + hy
(2)
n+1 +O(h2) (13.20)
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13.3 – Finite difference methods

and
y

(2)
n+1 = y(2)

n + han +O(h2). (13.21)

The accelerationan is a function ofan(y
(1)
n , y

(2)
n , t) and needs to be evaluated as well. This is the Euler-

Cromer method.
Let us then include the second derivative in our Taylor expansion. We have then

∆(ti, yi(ti)) = f(ti) +
h

2

df(ti, yi)

dt
+O(h3). (13.22)

The second derivative can be rewritten as

y′′ = f ′ =
df

dt
=
∂f

∂t
+
∂f

∂y

∂y

∂t
=
∂f

∂t
+
∂f

∂y
f (13.23)

and we can rewrite Eq. (13.14) as

yi+1 = y(t = ti + h) = y(ti) + hf(ti) +
h2

2

(
∂f

∂t
+
∂f

∂y
f

)
+O(h3), (13.24)

which has a local approximation errorO(h3) and a global errorO(h2). These approximations can be
generalized by using the derivativef to arbitrary order so that we have

yi+1 = y(t = ti + h) = y(ti) + h(f(ti, yi) + . . . f (p−1)(ti, yi)
hp−1

p!
) +O(hp+1). (13.25)

These methods, based on higher-order derivatives, are in general not used in numerical computation,
since they rely on evaluating derivatives several times. Unless one has analytical expressions for these,
the risk of roundoff errors is large.

13.3.1 Improvements of Euler’s algorithm, higher-order methods

The most obvious improvements to Euler’s and Euler-Cromer’s algorithms, avoiding in addition the need
for computing a second derivative, is the so-called midpoint method. We have then

y
(1)
n+1 = y(1)

n +
h

2

(
y

(2)
n+1 + y(2)

n

)
+O(h2) (13.26)

and
y

(2)
n+1 = y(2)

n + han +O(h2), (13.27)

yielding

y
(1)
n+1 = y(1)

n + hy(2)
n +

h2

2
an +O(h3) (13.28)

implying that the local truncation error in the position is nowO(h3), whereas Euler’s or Euler-Cromer’s
methods have a local error ofO(h2). Thus, the midpoint method yields a global error with second-order
accuracy for the position and first-order accuracy for the velocity. However, although these methods yield
exact results for constant accelerations, the error increases in general with each time step.

One method that avoids this is the so-called half-step method. Here we define

y
(2)
n+1/2 = y

(2)
n−1/2 + han +O(h2), (13.29)
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and
y

(1)
n+1 = y(1)

n + hy
(2)
n+1/2 +O(h2). (13.30)

Note that this method needs the calculation ofy
(2)
1/2. This is done using e.g., Euler’s method

y
(2)
1/2

= y
(2)
0 +

h

2
a0 +O(h2). (13.31)

As this method is numerically stable, it is often used instead of Euler’s method. Another method which
one may encounter is the Euler-Richardson method with

y
(2)
n+1 = y(2)

n + han+1/2 +O(h2), (13.32)

and
y

(1)
n+1 = y(1)

n + hy
(2)
n+1/2 +O(h2). (13.33)

13.3.2 Predictor-Corrector methods

Consider again the first-order differential equation

dy

dt
= f(t, y),

which solved with Euler’s algorithm results in the following algorithm

yi+1 ≈ y(ti) + hf(ti, yi)

with ti+1 = ti + h. This means geometrically that we compute the slope atyi and use it to predictyi+1

at a later timeti+1. We introducek1 = f(ti, yi) and rewrite our prediction foryi+1 as

yi+1 ≈ y(ti) + hk1.

We can then use the predictionyi+1 to compute a new slope atti+1 by definingk2 = f(ti+1, yi+1). We
define the new value ofyi+1 by taking the average of the two slopes, resulting in

yi+1 ≈ y(ti) +
h

2
(k1 + k2).

The algorithm is very simple,namely

1. Compute the slope atti, that is define the quantityk1 = f(ti, yi).

2. Make a predicition for the solution by computingyi+1 ≈ y(ti) + hk1 by Euler’s method.

3. Use the predicitionyi+1 to compute a new slope atti+1 defining the quantityk2 = f(ti+1, yi+1).

4. Correct the value ofyi+1 by taking the average of the two slopes yieldingyi+1 ≈ y(ti)+ h
2 (k1+k2).

It can be shown [30] that this procedure results in a mathematical truncation which goes likeO(h2),
to be contrasted with Euler’s method which runs asO(h). One additional function evaluation yields a
better error estimate.
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13.4 – More on finite difference methods, Runge-Kutta methods

This simple algorithm conveys the philosophy of a large class of methods called predictor-corrector
methods, see chapter 15 of Ref. [36] for additional algorithms. A simple extension is obviously to use
Simpson’s method to approximate the integral

yi+1 = yi +

∫ ti+1

ti

f(t, y)dt,

when we solve the differential equation by successive integrations. The next section deals with a partic-
ular class of efficient methods for solving ordinary differential equations, namely various Runge-Kutta
methods.

13.4 More on finite difference methods, Runge-Kutta methods

Runge-Kutta (RK) methods are based on Taylor expansion formulae, but yield in general better algo-
rithms for solutions of an ODE. The basic philosophy is that it provides an intermediate step in the
computation ofyi+1.

To see this, consider first the following definitions

dy

dt
= f(t, y), (13.34)

and

y(t) =

∫
f(t, y)dt, (13.35)

and

yi+1 = yi +

∫ ti+1

ti

f(t, y)dt. (13.36)

To demonstrate the philosophy behind RK methods, let us consider the second-order RK method, RK2.
The first approximation consists in Taylor expandingf(t, y) around the center of the integration interval
ti to ti+1, i.e., at ti + h/2, h being the step. Using the midpoint formula for an integral, defining
y(ti + h/2) = yi+1/2 andti + h/2 = ti+1/2, we obtain

∫ ti+1

ti

f(t, y)dt ≈ hf(ti+1/2, yi+1/2) +O(h3). (13.37)

This means in turn that we have

yi+1 = yi + hf(ti+1/2, yi+1/2) +O(h3). (13.38)

However, we do not know the value ofyi+1/2. Here comes thus the next approximation, namely, we use
Euler’s method to approximateyi+1/2. We have then

y(i+1/2) = yi +
h

2

dy

dt
= y(ti) +

h

2
f(ti, yi). (13.39)

This means that we can define the following algorithm for the second-order Runge-Kutta method, RK2.

k1 = hf(ti, yi), (13.40)

k2 = hf(ti+1/2, yi + k1/2), (13.41)
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Differential equations

with the final value
yi+1 ≈ yi + k2 +O(h3). (13.42)

The difference between the previous one-step methods is that we now need an intermediate step in
our evaluation, namelyti + h/2 = t(i+1/2) where we evaluate the derivativef . This involves more
operations, but the gain is a better stability in the solution. The fourth-order Runge-Kutta, RK4, which
we will employ in the solution of various differential equations below, is easily derived. The steps are as
follows. We start again with the equation

yi+1 = yi +

∫ ti+1

ti

f(t, y)dt,

but instead of approximating the integral with the midpointrule, we use now Simpsons’ rule atti + h/2,
h being the step. Using Simpson’s formula for an integral, definingy(ti +h/2) = yi+1/2 andti +h/2 =
ti+1/2, we obtain

∫ ti+1

ti

f(t, y)dt ≈ h

6

[
f(ti, yi) + 4f(ti+1/2, yi+1/2) + f(ti+1, yi+1)

]
+O(h5). (13.43)

This means in turn that we have

yi+1 = yi +
h

6

[
f(ti, yi) + 4f(ti+1/2, yi+1/2) + f(ti+1, yi+1)

]
+O(h5). (13.44)

However, we do not know the values ofyi+1/2 andyi+1. The fourth-order Runge-Kutta method splits the
midpoint evaluations in two steps, that is we have

yi+1 ≈ yi +
h

6

[
f(ti, yi) + 2f(ti+1/2, yi+1/2) + 2f(ti+1/2, yi+1/2) + f(ti+1, yi+1)

]
,

since we want to approximate the slope atyi+1/2 in two steps. The first two function evaluations are as
for the second order Runge-Kutta method. The algorithm is asfollows

1. We compute first
k1 = hf(ti, yi), (13.45)

which is nothing but the slope atti.If we stop here we have Euler’s method.

2. Then we compute the slope at the midpoint using Euler’s method to predictyi+1/2, as in the second-
order Runge-Kutta method. This leads to the computation of

k2 = hf(ti + h/2, yi + k1/2). (13.46)

3. The improved slope at the midpoint is used to further improve the slope ofyi+1/2 by computing

k3 = hf(ti + h/2, yi + k2/2). (13.47)

4. With the latter slope we can in turn predict the value ofyi+1 via the computation of

k4 = hf(ti + h, yi + k3). (13.48)
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13.5 – Adaptive Runge-Kutta and multistep methods

5. The final algorithm becomes then

yi+1 = yi +
1

6
(k1 + 2k2 + 2k3 + k4) . (13.49)

Thus, the algorithm consists in first calculatingk1 with ti, y1 andf as inputs. Thereafter, we increase
the step size byh/2 and calculatek2, thenk3 and finallyk4. With this caveat, we can then obtain the
new value for the variabley. It results in four function evaluations, but the accuracy is increased by
two orders compared with the second-order Runge-Kutta method. The fourth order Runge-Kutta method
has a global truncation error which goes likeO(h4). Fig. 13.1 gives a geometrical interpretation of the
fourth-order Runge-Kutta method.

-

y

t

6

ti

yi andk1

yi+1 andk4

yi+1/2 andk2

yi+1/2 andk3

ti + h/2 ti + h

Figure 13.1: Geometrical interpretation of the fourth-order Runge-Kutta method. The derivative is
evaluated at four points, once at the intial point, twice at the trial midpoint and once at the trial end-
point. These four derivatives constitute one Runge-Kutta step resulting in the final value foryi+1 =
yi + 1/6(k1 + 2k2 + 2k3 + k4).

13.5 Adaptive Runge-Kutta and multistep methods

In preparation.
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x

k
m v

Figure 13.2: Block tied to a wall with a spring tension actingon it.

13.6 Physics examples

13.6.1 Ideal harmonic oscillations

Our first example is the classical case of simple harmonic oscillations, namely a block sliding on a
horizontal frictionless surface. The block is tied to a wallwith a spring, portrayed in e.g., Fig. 13.2. If
the spring is not compressed or stretched too far, the force on the block at a given positionx is

F = −kx. (13.50)

The negative sign means that the force acts to restore the object to an equilibrium position. Newton’s
equation of motion for this idealized system is then

m
d2x

dt2
= −kx, (13.51)

or we could rephrase it as
d2x

dt2
= − k

m
x = −ω2

0x, (13.52)

with the angular frequencyω2
0 = k/m.

The above differential equation has the advantage that it can be solved analytically with solutions on
the form

x(t) = Acos(ω0t+ ν),

whereA is the amplitude andν the phase constant. This provides in turn an important test for the
numerical solution and the development of a program for morecomplicated cases which cannot be solved
analytically.

As mentioned earlier, in certain cases it is possible to rewrite a second-order differential equation as
two coupled first-order differential equations. With the position x(t) and the velocityv(t) = dx/dt we
can reformulate Newton’s equation in the following way

dx(t)

dt
= v(t), (13.53)
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13.6 – Physics examples

and
dv(t)

dt
= −ω2

0x(t). (13.54)

We are now going to solve these equations using the Runge-Kutta method to fourth order discussed
previously. Before proceeding however, it is important to note that in addition to the exact solution, we
have at least two further tests which can be used to check our solution.

Since functions likecos are periodic with a period2π, then the solutionx(t) has also to be periodic.
This means that

x(t+ T ) = x(t), (13.55)

with T the period defined as

T =
2π

ω0
=

2π√
k/m

. (13.56)

Observe thatT depends only onk/m and not on the amplitude of the solution or the constantν.
In addition to the periodicity test, the total energy has also to be conserved.
Suppose we choose the initial conditions

x(t = 0) = 1 m v(t = 0) = 0 m/s, (13.57)

meaning that block is at rest att = 0 but with a potential energy

E0 =
1

2
kx(t = 0)2 =

1

2
k. (13.58)

The total energy at any timet has however to be conserved, meaning that our solution has tofulfil the
condition

E0 =
1

2
kx(t)2 +

1

2
mv(t)2. (13.59)

An algorithm which implements these equations is included below.

1. Choose the initial position and speed, with the most common choicev(t = 0) = 0 and some fixed
value for the position. Since we are going to test our resultsagainst the periodicity requirement, it
is convenient to set the final time equaltf = 2π, where we choosek/m = 1. The initial time is
set equal toti = 0. You could alternatively read in the ratiok/m.

2. Choose the method you wish to employ in solving the problem. In the enclosed program we have
chosen the fourth-order Runge-Kutta method. Subdivide thetime interval[ti, tf ] into a grid with
step size

h =
tf − ti
N

,

whereN is the number of mesh points.

3. Calculate now the total energy given by

E0 =
1

2
kx(t = 0)2 =

1

2
k.

and use this when checking the numerically calculated energy from the Runge-Kutta iterations.

4. The Runge-Kutta method is used to obtainxi+1 andvi+1 starting from the previous valuesxi and
vi..

361



Differential equations

5. When we have computedx(v)i+1 we upgradeti+1 = ti + h.

6. This iterative process continues till we reach the maximum timetf = 2π.

7. The results are checked against the exact solution. Furthermore, one has to check the stability of
the numerical solution against the chosen number of mesh pointsN .

Program to solve the differential equations for a sliding block

The program which implements the above algorithm is presented here, with a correspondinghttp://www.fys.uio.no/ompphys/p/programs/FYS3150/hapter13/pp/program1.pp
/∗ Th is program s o l v e s Newton ’ s e q u a t i o n f o r ablock

s l i d i n g on a h o r i z o n t a l f r i c t i o n l e s s s u r f a c e . Theblock
i s t i e d to a wa l l w i th a sp r ing , and Newton ’ s e q u a t i o n
t a k e s t h e form

m d^2x / d t ^2 =−kx
wi th k t h e s p r i n g t e n s i o n and m t h e mass o f t h eblock .
The a n g u l a r f r e q u e n c y i s omega^2 = k /m and we s e t i t e q u a l
1 i n t h i s example program .

Newton ’ s e q u a t i o n i s r e w r i t t e n as two coup led d i f f e r e n t i a l
e q u a t i o n s , one f o r t h ep o s i t i o n x and one f o r t h e v e l o c i t y v

dx / d t = v and
dv / d t = −x when we s e t k /m=1

We use t h e r e f o r e a two−d i m e n s i o n a l a r r a y to r e p r e s e n t x and v
as f u n c t i o n s o f t
y [ 0 ] == x
y [ 1 ] == v
dy [ 0 ] / d t = v
dy [ 1 ] / d t = −x

The d e r i v a t i v e s a r e c a l c u l a t e d by t h e u s e r d e f i n e df unc t i on
d e r i v a t i v e s .

The u s e r has to s p e c i f y t h e i n i t i a l v e l o c i t y ( u s u a l l y v_0 =0)
t h e number o f s t e p s and t h e i n i t i a l p o s i t i o n . In t h e programme
below we f i x t h e t ime i n t e r v a l [ a , b ] to [ 0 ,2∗ p i ] .

∗ /
# i nc lude <cmath >
# i nc lude < ios t ream >
# i nc lude < fs t r eam >
# i nc lude <iomanip >
# i nc lude "lib.h"
u s i n g namespace s t d ;
/ / o u t p u t f i l e as g l o b a l v a r i a b l e
o f s t r e a m o f i l e ;
/ / f unc t i on d e c l a r a t i o n s
vo id d e r i v a t i v e s (double , double ∗ , double ∗ ) ;
vo id i n i t i a l i s e ( double&, double&, i n t &) ;
vo id o u t p u t ( double , double ∗ , double ) ;
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vo id r u n g e _ k u t t a _ 4 (double ∗ , double ∗ , i n t , double , double ,
double ∗ , vo id (∗ ) ( double , double ∗ , double ∗ ) ) ;

i n t main ( i n t argc , cha r∗ argv [ ] )
{
/ / d e c l a r a t i o n s o f v a r i a b l e s

double ∗y , ∗dydt , ∗ yout , t , h , tmax , E0 ;
double i n i t i a l _ x , i n i t i a l _ v ;
i n t i , number_o f_s teps , n ;
cha r ∗ o u t f i l e n a m e ;
/ / Read in o u t p u t f i l e , a b o r t i f t h e r e a r e too few command− l i n e

arguments
i f ( a rgc <= 1 ) {

cou t << "Bad Usage: " << argv [ 0 ] <<" read also output file on same line" << end l ;
e x i t ( 1 ) ;

}
e l s e{

o u t f i l e n a m e= argv [ 1 ] ;
}
o f i l e . open( o u t f i l e n a m e ) ;
/ / t h i s i s t h e number o f d i f f e r e n t i a l e q u a t i o n s
n = 2 ;
/ / a l l o c a t e space i n memory f o r t h e a r r a y s c o n t a i n i n g t h e d e r i v a t i v e s
dyd t = new double [ n ] ;
y = new double [ n ] ;
you t = new double [ n ] ;
/ / read in t h e i n i t i a l p o s i t i o n , v e l o c i t y and number o f s t e p s
i n i t i a l i s e ( i n i t i a l _ x , i n i t i a l _ v , number_o f_s teps ) ;
/ / s e t t i n g i n i t i a l va lues , s t e ps i z e and max t ime tmax
h = 4 .∗ acos (−1 . ) / ( (double ) number_o f_s teps ) ; / / t h e s t e ps i z e
tmax = h∗ number_o f_s teps ; / / t h e f i n a l t ime
y [ 0 ] = i n i t i a l _ x ; / / i n i t i a l p o s i t i o n
y [ 1 ] = i n i t i a l _ v ; / / i n i t i a l v e l o c i t y
t = 0 . ; / / i n i t i a l t ime
E0 = 0 .5∗ y [ 0 ] ∗ y [ 0 ] + 0 . 5∗ y [ 1 ] ∗ y [ 1 ] ; / / t h e i n i t i a l t o t a l energy
/ / now we s t a r t s o l v i n g t h e d i f f e r e n t i a l e q u a t i o n s u s i n g t h eRK4 method
whi le ( t <= tmax ) {

d e r i v a t i v e s ( t , y , dyd t ) ; / / i n i t i a l d e r i v a t i v e s
r u n g e _ k u t t a _ 4 ( y , dydt , n , t , h , yout , d e r i v a t i v e s ) ;
f o r ( i = 0 ; i < n ; i ++) {

y [ i ] = you t [ i ] ;
}
t += h ;
o u t p u t ( t , y , E0 ) ; / / wr i t e to f i l e

}
d e l e t e [ ] y ; d e l e t e [ ] dyd t ; d e l e t e [ ] you t ;
o f i l e . c l o s e( ) ; / / c l o s e o u t p u t f i l e
re turn 0 ;

} / / End o f main f unc t i on

/ / Read in f rom s c r e e n t h enumber o f s t e p s ,
/ / i n i t i a l p o s i t i o n and i n i t i a l speed
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vo id i n i t i a l i s e (double& i n i t i a l _ x , double& i n i t i a l _ v , i n t&
number_o f_s teps )

{
cou t << "Initial position = " ;
c i n >> i n i t i a l _ x ;
cou t << "Initial speed = " ;
c i n >> i n i t i a l _ v ;
cou t << "Number of steps = " ;
c i n >> number_o f_s teps ;

} / / end o f f unc t i on i n i t i a l i s e

/ / t h i s f unc t i on s e t s up t h e d e r i v a t i v e s f o r t h i s s p e c i a lcase
vo id d e r i v a t i v e s (double t , double ∗y , double ∗ dyd t )
{

dyd t [ 0 ]= y [ 1 ] ; / / d e r i v a t i v e o f x
dyd t [1]=−y [ 0 ] ; / / d e r i v a t i v e o f v

} / / end o f f unc t i on d e r i v a t i v e s

/ / f unc t i on to wr i t e out t h e f i n a l r e s u l t s
vo id o u t p u t (double t , double ∗y , double E0 )
{

o f i l e << s e t i o s f l a g s ( i o s : : showpo in t | i o s : : u p p e r c a s e ) ;
o f i l e << setw ( 1 5 ) << s e t p r e c i s i o n ( 8 ) << t ;
o f i l e << setw ( 1 5 ) << s e t p r e c i s i o n ( 8 ) << y [ 0 ] ;
o f i l e << setw ( 1 5 ) << s e t p r e c i s i o n ( 8 ) << y [ 1 ] ;
o f i l e << setw ( 1 5 ) << s e t p r e c i s i o n ( 8 ) << cos ( t ) ;
o f i l e << setw ( 1 5 ) << s e t p r e c i s i o n ( 8 ) <<

0 .5∗ y [ 0 ] ∗ y [ 0 ] + 0 . 5∗ y [ 1 ] ∗ y [1]−E0 << end l ;
} / / end o f f unc t i on o u t p u t

/∗ Th is f unc t i on upg rades a f unc t i on y ( i n p u t as a po in te r )
and r e t u r n s t h e r e s u l t yout , a l s o as apo in te r . Note t h a t
t h e s e v a r i a b l e s a r e d e c l a r e d as a r r a y s . I t a l s o r e c e i v e s as
i n p u t t h e s t a r t i n g v a l u e f o r t h e d e r i v a t i v e si n t h e po in te r
dydx . I t r e c e i v e s a l s o t h e v a r i a b l e n which r e p r e s e n t s t h e
number o f d i f f e r e n t i a l e q u a t i o n s , t h e s t e ps i z e h and
t h e i n i t i a l v a l u e o f x . I t r e c e i v e s a l s o t h ename o f t h e
f unc t i on ∗ d e r i v s where t h e g i ven d e r i v a t i v e i s computed

∗ /
vo id r u n g e _ k u t t a _ 4 (double ∗y , double ∗dydx , i n t n , double x , double h ,

double ∗ yout , vo id (∗ d e r i v s ) (double , double ∗ , double
∗ ) )

{
i n t i ;
double xh , hh , h6 ;
double ∗dym , ∗dyt , ∗ y t ;
/ / a l l o c a t e space f o r l o c a l v e c t o r s
dym = new double [ n ] ;
dy t = new double [ n ] ;
y t = new double [ n ] ;
hh = h∗0 . 5 ;
h6 = h / 6 . ;
xh = x+hh ;
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f o r ( i = 0 ; i < n ; i ++) {
y t [ i ] = y [ i ]+ hh ∗dydx [ i ] ;

}
(∗ d e r i v s ) ( xh , y t , dy t ) ; / / compu ta t i on o f k2 , eq . 3 .60
f o r ( i = 0 ; i < n ; i ++) {

y t [ i ] = y [ i ]+ hh ∗ dy t [ i ] ;
}
(∗ d e r i v s ) ( xh , y t , dym ) ; / / compu ta t i on o f k3 , eq . 3 .61
f o r ( i =0 ; i < n ; i ++) {

y t [ i ] = y [ i ]+ h ∗dym[ i ] ;
dym[ i ] += dy t [ i ] ;

}
(∗ d e r i v s ) ( x+h , y t , dy t ) ; / / compu ta t i on o f k4 , eq . 3 .62
/ / now we upgrade y i n t h e a r r a y you t
f o r ( i = 0 ; i < n ; i ++) {

you t [ i ] = y [ i ]+ h6 ∗ ( dydx [ i ]+ dy t [ i ] +2 .0∗dym[ i ] ) ;
}
d e l e t e [ ] dym ;
d e l e t e [ ] dy t ;
d e l e t e [ ] y t ;

} / / end o f f unc t i on Runge−k u t t a 4

In Fig. 13.3 we exhibit the development of the difference between the calculated energy and the exact
energy att = 0 after two periods and withN = 1000 andN = 10000 mesh points. This figure
demonstrates clearly the need of developing tests for checking the algorithm used. We see that even for
N = 1000 there is an increasing difference between the computed energy and the exact energy after only
two periods.

13.6.2 Damping of harmonic oscillations and external forces

Most oscillatory motion in nature does decrease until the displacement becomes zero. We call such a
motion for damped and the system is said to be dissipative rather than conservative. Considering again
the simple block sliding on a plane, we could try to implementsuch a dissipative behavior through a drag
force which is proportional to the first derivative ofx, i.e., the velocity. We can then expand Eq. (13.52)
to

d2x

dt2
= −ω2

0x− ν
dx

dt
, (13.60)

whereν is the damping coefficient, being a measure of the magnitude of the drag term.
We could however counteract the dissipative mechanism by applying e.g., a periodic external force

F (t) = Bcos(ωt), (13.61)

and we rewrite Eq. (13.60) as
d2x

dt2
= −ω2

0x− ν
dx

dt
+ F (t). (13.62)

Although we have specialized to a block sliding on a surface,the above equations are rather general
for quite many physical systems.

If we replacex by the chargeQ, ν with the resistanceR, the velocity with the currentI, the inductance
L with the massm, the spring constant with the inverse capacitanceC and the forceF with the voltage
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Figure 13.3: Plot of∆E(t) = E0 − Ecomputed for N = 1000 andN = 10000 time steps up to two
periods. The initial positionx0 = 1 m and initial velocityv0 = 0 m/s. The mass and spring tension are
set tok = m = 1.
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V

L

C

R

Figure 13.4: Simple RLC circuit with a voltage sourceV .

dropV , we rewrite Eq. (13.62) as

L
d2Q

dt2
+
Q

C
+R

dQ

dt
= V (t). (13.63)

The circuit is shown in Fig. 13.4.
How did we get there? We have defined an electric circuit whichconsists of a resistanceR with

voltage dropIR, a capacitor with voltage dropQ/C and an inductorL with voltage dropLdI/dt. The
circuit is powered by an alternating voltage source and using Kirchhoff’s law, which is a consequence of
energy conservation, we have

V (t) = IR+ LdI/dt+Q/C, (13.64)

and using

I =
dQ

dt
, (13.65)

we arrive at Eq. (13.63).
This section was meant to give you a feeling of the wide range of applicability of the methods we have

discussed. However, before leaving this topic entirely, we’ll dwelve into the problems of the pendulum,
from almost harmonic oscillations to chaotic motion!

13.6.3 The pendulum, a nonlinear differential equation

Consider a pendulum with massm at the end of a rigid rod of lengthl attached to say a fixed frictionless
pivot which allows the pendulum to move freely under gravityin the vertical plane as illustrated in
Fig. 13.5.

The angular equation of motion of the pendulum is again givenby Newton’s equation, but now as a
nonlinear differential equation

ml
d2θ

dt2
+mgsin(θ) = 0, (13.66)

with an angular velocity and acceleration given by

v = l
dθ

dt
, (13.67)

and

a = l
d2θ

dt2
. (13.68)
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mg
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θ

Figure 13.5: A simple pendulum.

For small angles, we can use the approximation

sin(θ) ≈ θ.

and rewrite the above differential equation as

d2θ

dt2
= −g

l
θ, (13.69)

which is exactly of the same form as Eq. (13.52). We can thus check our solutions for small values ofθ
against an analytical solution. The period is now

T =
2π√
l/g

. (13.70)

We do however expect that the motion will gradually come to anend due a viscous drag torque acting
on the pendulum. In the presence of the drag, the above equation becomes

ml
d2θ

dt2
+ ν

dθ

dt
+mgsin(θ) = 0, (13.71)

whereν is now a positive constant parameterizing the viscosity of the medium in question. In order
to maintain the motion against viscosity, it is necessary toadd some external driving force. We choose
here, in analogy with the discussion about the electric circuit, a periodic driving force. The last equation
becomes then

ml
d2θ

dt2
+ ν

dθ

dt
+mgsin(θ) = Acos(ωt), (13.72)

with A andω two constants representing the amplitude and the angular frequency respectively. The latter
is called the driving frequency.
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If we now define the natural frequency

ω0 =
√
g/l, (13.73)

the so-called natural frequency and the new dimensionless quantities

t̂ = ω0t, (13.74)

with the dimensionless driving frequency

ω̂ =
ω

ω0
, (13.75)

and introducing the quantityQ, called thequality factor,

Q =
mg

ω0ν
, (13.76)

and the dimensionless amplitude

Â =
A

mg
(13.77)

we can rewrite Eq. (13.72) as

d2θ

dt̂2
+

1

Q

dθ

dt̂
+ sin(θ) = Âcos(ω̂t̂). (13.78)

This equation can in turn be recast in terms of two coupled first-order differential equations as follows

dθ

dt̂
= v̂, (13.79)

and
dv̂

dt̂
= − v̂

Q
− sin(θ) + Âcos(ω̂t̂). (13.80)

These are the equations to be solved. The factorQ represents the number of oscillations of the
undriven system that must occur before its energy is significantly reduced due to the viscous drag. The
amplitudeÂ is measured in units of the maximum possible gravitational torque whileω̂ is the angular
frequency of the external torque measured in units of the pendulum’s natural frequency.

13.6.4 Spinning magnet

Another simple example is that of e.g., a compass needle thatis free to rotate in a periodically reversing
magnetic field perpendicular to the axis of the needle. The equation is then

d2θ

dt2
= −µ

I
B0cos(ωt)sin(θ), (13.81)

whereθ is the angle of the needle with respect to a fixed axis along thefield, µ is the magnetic moment
of the needle,I its moment of inertia andB0 andω the amplitude and angular frequency of the magnetic
field respectively.
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13.7 Physics Project: the pendulum

13.7.1 Analytic results for the pendulum

Although the solution to the equations for the pendulum can only be obtained through numerical efforts,
it is always useful to check our numerical code against analytic solutions. For small anglesθ, we have
sinθ ≈ θ and our equations become

dθ

dt̂
= v̂, (13.82)

and
dv̂

dt̂
= − v̂

Q
− θ + Âcos(ω̂t̂). (13.83)

These equations are linear in the angleθ and are similar to those of the sliding block or the RLC circuit.
With given initial conditionŝv0 andθ0 they can be solved analytically to yield

θ(t) =
[
θ0 − Â(1−ω̂2)

(1−ω̂2)2+ω̂2/Q2

]
e−τ/2Qcos(

√
1− 1

4Q2 τ) (13.84)

+
[
v̂0 + θ0

2Q −
Â(1−3ω̂2)/2Q

(1−ω̂2)2+ω̂2/Q2

]
e−τ/2Qsin(

√
1− 1

4Q2 τ) +
Â(1−ω̂2)cos(ω̂τ)+ ω̂

Q
sin(ω̂τ)

(1−ω̂2)2+ω̂2/Q2 ,

and

v̂(t) =
[
v̂0 − Âω̂2/Q

(1−ω̂2)2+ω̂2/Q2

]
e−τ/2Qcos(

√
1− 1

4Q2 τ) (13.85)

−
[
θ0 + v̂0

2Q −
Â[(1−ω̂2)−ω̂2/Q2]
(1−ω̂2)2+ω̂2/Q2

]
e−τ/2Qsin(

√
1− 1

4Q2 τ) +
ω̂Â[−(1−ω̂2)sin(ω̂τ)+ ω̂

Q
cos(ω̂τ)]

(1−ω̂2)2+ω̂2/Q2 ,

with Q > 1/2. The first two terms depend on the initial conditions and decay exponentially in time. If
we wait long enough for these terms to vanish, the solutions become independent of the initial conditions
and the motion of the pendulum settles down to the following simple orbit in phase space

θ(t) =
Â(1− ω̂2)cos(ω̂τ) + ω̂

Qsin(ω̂τ)

(1− ω̂2)2 + ω̂2/Q2
, (13.86)

and

v̂(t) =
ω̂Â[−(1− ω̂2)sin(ω̂τ) + ω̂

Qcos(ω̂τ)]

(1− ω̂2)2 + ω̂2/Q2
, (13.87)

tracing the closed phase-space curve

(
θ

Ã

)2

+

(
v̂

ω̂Ã

)2

= 1 (13.88)

with

Ã =
Â√

(1− ω̂2)2 + ω̂2/Q2
. (13.89)

This curve forms an ellipse whose principal axes areθ and v̂. This curve is closed, as we will see from
the examples below, implying that the motion is periodic in time, the solution repeats itself exactly after
each periodT = 2π/ω̂. Before we discuss results for various frequencies, quality factors and amplitudes,
it is instructive to compare different numerical methods. In Fig. 13.6 we show the angleθ as function
of time τ for the case withQ = 2, ω̂ = 2/3 andÂ = 0.5. The length is set equal to1 m and mass of
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the pendulum is set equal to1 kg. The inital velocity iŝv0 = 0 andθ0 = 0.01. Four different methods
have been used to solve the equations, Euler’s method from Eq. (13.17), Euler-Richardson’s method in
Eqs. (13.32)-(13.33) and finally the fourth-order Runge-Kutta scheme RK4. We note that after few time
steps, we obtain the classical harmonic motion. We would have obtained a similar picture if we were
to switch off the external force,̂A = 0 and set the frictional damping to zero, i.e.,Q = 0. Then, the
qualitative picture is that of an idealized harmonic oscillation without damping. However, we see that
Euler’s method performs poorly and after a few steps its algorithmic simplicity leads to results which
deviate considerably from the other methods. In the discussion hereafter we will thus limit ourselves to
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0 5 10 15 20 25 30 35
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t/2π

RK4
Euler

Halfstep
Euler-Richardson

Figure 13.6: Plot ofθ as function of timeτ with Q = 2, ω̂ = 2/3 andÂ = 0.5. The mass and length
of the pendulum are set equal to1. The initial velocity isv̂0 = 0 andθ0 = 0.01. Four different methods
have been used to solve the equations, Euler’s method from Eq. (13.17), the half-step method, Euler-
Richardson’s method in Eqs. (13.32)-(13.33) and finally thefourth-order Runge-Kutta scheme RK4. Only
N = 100 integration points have been used for a time intervalt ∈ [0, 10π].

present results obtained with the fourth-order Runge-Kutta method.
The corresponding phase space plot is shown in Fig. 13.7, forthe same parameters as in Fig. 13.6. We

observe here that the plot moves towards an ellipse with periodic motion. This stable phase-space curve is
called a periodic attractor. It is called attractor because, irrespective of the initial conditions, the trajectory
in phase-space tends asymptotically to such a curve in the limit τ → ∞. It is called periodic, since it
exhibits periodic motion in time, as seen from Fig. 13.6. In addition, we should note that this periodic
motion shows what we call resonant behavior since the the driving frequency of the force approaches the
natural frequency of oscillation of the pendulum. This is essentially due to the fact that we are studying
a linear system, yielding the well-known periodic motion. The non-linear system exhibits a much richer
set of solutions and these can only be studied numerically.

In order to go beyond the well-known linear approximation wechange the initial conditions to say
θ0 = 0.3 but keep the other parameters equal to the previous case. Thecurve forθ is shown in Fig. 13.8.
The corresponding phase-space curve is shown in Fig. 13.9. This curve demonstrates that with the above
given sets of parameters, after a certain number of periods,the phase-space curve stabilizes to the same
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Figure 13.7: Phase-space curve of a linear damped pendulum with Q = 2, ω̂ = 2/3 andÂ = 0.5. The
inital velocity is v̂0 = 0 andθ0 = 0.01.
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Figure 13.8: Plot ofθ as function of timeτ with Q = 2, ω̂ = 2/3 and Â = 0.5. The mass of the
pendulum is set equal to1 kg and its length to 1 m. The inital velocity iŝv0 = 0 andθ0 = 0.3.
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Figure 13.9: Phase-space curve withQ = 2, ω̂ = 2/3 andÂ = 0.5. The mass of the pendulum is set
equal to1 kg and its lengthl = 1 m.. The inital velocity iŝv0 = 0 andθ0 = 0.3.

curve as in the previous case, irrespective of initial conditions. However, it takes more time for the
pendulum to establish a periodic motion and when a stable orbit in phase-space is reached the pendulum
moves in accordance with the driving frequency of the force.The qualitative picture is much the same as
previously. The phase-space curve displays again a final periodic attractor.

If we now change the strength of the amplitude toÂ = 1.35 we see in Fig. 13.10 thatθ as function
of time exhibits a rather different behavior from Fig. 13.8,even though the initial conditions and all other
parameters except̂A are the same. The phase-space curve is shown in Fig. 13.11.

We will explore these topics in more detail in Section 13.8.1where we extend our discussion to the
phenomena of period doubling and its link to chaotic motion.

13.7.2 The pendulum code

The program used to obtain the results discussed above is presented here. The enclosed code solves the
pendulum equations for any angleθ with an external forceAcos(ωt). It employes several methods for
solving the two coupled differential equations, from Euler’s method to adaptive size methods coupled
with fourth-order Runge-Kutta. It is straightforward to apply this program to other systems which exhibit
harmonic oscillations or change the functional form of the external force.

We have also introduced the class concept, where we define various methods for solving ordinary
and coupled first order differential equations via the .class pendulum. This methods access variables
which belong only to this particular class via theprivate declaration. As such, the methods we list here
can easily be reused by other types of ordinary differentialequations. In the code below, we list only the
fourth order Runge Kutta method, which was used to generate the above figures. For the full code see
programs/chapter13/program2.cpp.http://www.fys.uio.no/ompphys/p/programs/FYS3150/hapter13/pp/program2.pp

# i nc lude < s t d i o . h>
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Figure 13.10: Plot ofθ as function of timeτ with Q = 2, ω̂ = 2/3 andÂ = 1.35. The mass of the
pendulum is set equal to1 kg and its length to 1 m. The inital velocity iŝv0 = 0 andθ0 = 0.3. Every time
θ passes the value±π we reset its value to swing betweenθ ∈ [−π, pi]. This gives the vertical jumps in
amplitude.
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Figure 13.11: Phase-space curve after 10 periods withQ = 2, ω̂ = 2/3 andÂ = 1.35. The mass of the
pendulum is set equal to1 kg and its lengthl = 1 m. The inital velocity iŝv0 = 0 andθ0 = 0.3.
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# i nc lude < i o s t r e a m . h>
# i nc lude <math . h>
# i nc lude < f s t r e a m . h>
/∗
D i f f e r e n t methods f o r s o l v i n g ODEs a r e p r e s e n t e d
We a r e s o l v i n g t h e f o l l o w i n g e q a t i o n :

m∗ l ∗ ( ph i ) ’ ’ + v i s c o s i t y ∗ ( ph i ) ’ + m∗g∗ s i n ( ph i ) = A∗ cos ( omega∗ t )

I f you want to s o l v e s i m i l a r e q u a t i o n s wi th o t h e r v a l u e s you haveto
r e w r i t e t h e methods ’ d e r i v a t i v e s ’ and ’ i n i t i a l i s e ’ and change t h e

v a r i a b l e s i n t h e p r i v a t e
p a r t o f t h e c l a s s Pendulum

At f i r s t we r e w r i t e t h e e q u a t i o n u s i n g t h e f o l l o w i n g d e f i n i ti o n s :

omega_0 = s q r t ( g∗ l )
t _ r o o f = omega_0∗ t
omega_roof = omega / omega_0
Q = (m∗g ) / ( omega_0∗ r e i b )
A_roof = A / (m∗g )

and we g e t a d i m e n s i o n l e s s e q u a t i o n

( ph i ) ’ ’ + 1 /Q∗ ( ph i ) ’ + s i n ( ph i ) = A_roof∗ cos ( omega_roof∗ t _ r o o f )

Th is e q u a t i o n can be w r i t t e n as two e q u a t i o n s o f f i r s t o r d e r :

( ph i ) ’ = v
( v ) ’ = −v /Q − s i n ( ph i ) +A_roof∗ cos ( omega_roof∗ t _ r o o f )

A l l n u m e r i c a l methods a r e a p p l i e dto t h e l a s t two e q u a t i o n s .
The a l g o r i t h m s a r e t a k e n from t h e book"An introdution to omputersimulation methods"
∗ /

c l a s s pendelum
{
p r i v a t e :

double Q, A_roof , omega_0 , omega_roof , g ; / /
double y [ 2 ] ; / / f o r t h e i n i t i a l −v a l u e s o f ph i and v
i n t n ; / / how many s t e p s
double d e l t a _ t , d e l t a _ t _ r o o f ;

/ / D e f i n i t i o n o f methods to s o l v e ODEs
pub l i c :

vo id d e r i v a t i v e s (double , double∗ , double∗ ) ;
vo id i n i t i a l i s e ( ) ;
vo id e u l e r ( ) ;
vo id e u l e r _ c r o m e r ( ) ;
vo id m idpo in t ( ) ;
vo id e u l e r _ r i c h a r d s o n ( ) ;
vo id h a l f _ s t e p ( ) ;
vo id rk2 ( ) ; / / runge−k u t t a−second−o r d e r
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vo id r k 4 _ s t e p (double , double∗ , double∗ , double ) ; / / we need i t i n
f unc t i on rk4 ( ) and asc ( )

vo id rk4 ( ) ; / / runge−k u t t a−f o u r t h−o r d e r
vo id asc ( ) ; / / runge−k u t t a−f o u r t h−o r d e r w i th a d a p t i v e s t e p s i z e c o n t r o l

} ;

/ / Th is f unc t i on d e f i n e s t h e p a r t i c u l a r coup led f i r s t o r d e r ODEs
vo id pendelum : : d e r i v a t i v e s (double t , double∗ in , double∗ out )
{ / ∗ Here we a r e c a l c u l a t i n g t h e d e r i v a t i v e s a t ( d i m e n s i o n l e s s )t ime t

’ in ’ a r e t h e v a l u e s o f ph i and v , which a r e used f o r t h e c a l c u l a t i on
The r e s u l t s a r e g i vento ’ out ’ ∗ /

out [ 0 ]= i n [ 1 ] ; / / out [ 0 ] = ( ph i ) ’ = v
i f (Q)

out [1]=− i n [ 1 ] / ( ( double )Q)−s i n ( i n [ 0 ] ) +A_roof∗ cos ( omega_roof∗ t ) ; / / out
[ 1 ] = ( ph i ) ’ ’

e l s e
out [1]=− s i n ( i n [ 0 ] ) +A_roof∗ cos ( omega_roof∗ t ) ; / / out [ 1 ] = ( ph i ) ’ ’

}
/ / Here we d e f i n e a l l i n p u t p a r a m e t e r s .

vo id pendelum : : i n i t i a l i s e ( )
{

double m, l , omega ,A, v i s c o s i t y , ph i_0 , v_0 , t_end ;
cout <<"Solving the differential eqation of the pendulum!\n" ;
cout <<"We have a pendulum with mass m, length l. Then we have aperiodi fore with amplitude A and omega\n" ;
cout <<"Furthermore there is a visous drag oeffiient.\n" ;
cout <<"The initial onditions at t=0 are phi_0 and v_0\n" ;
cout <<"Mass m: " ;
c in >>m;
cout <<"length l: " ;
c in >> l ;
cout <<"omega of the fore: " ;
c in >>omega ;
cout <<"amplitude of the fore: " ;
c in >>A;
cout <<"The value of the visous drag onstant (visosity): " ;
c in >> v i s c o s i t y ;
cout <<"phi_0: " ;
c in >>y [ 0 ] ;
cout <<"v_0: " ;
c in >>y [ 1 ] ;
cout <<"Number of time steps or integration steps:" ;
c in >>n ;
cout <<"Final time steps as multiplum of pi:" ;
c in >> t_end ;
t_end ∗= acos (−1 . ) ;
g = 9 . 8 1 ;
/ / We need t h e f o l l o w i n g v a l u e s :
omega_0= s q r t ( g / ( (double ) l ) ) ; / / omega o f t h e pendulum
i f ( v i s c o s i t y ) Q= m∗g / ( ( double ) omega_0∗ v i s c o s i t y ) ;
e l s e Q=0; / / c a l c u l a t i n g Q
A_roof=A / ( ( double )m∗g ) ;
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omega_roof=omega / ( (double ) omega_0 ) ;
d e l t a _ t _ r o o f =omega_0∗ t _end / ( (double ) n ) ; / / d e l t a _ t w i t h o u t dimension
d e l t a _ t = t_end / ( (double ) n ) ;

}
/ / f o u r t h o r d e r Run

vo id pendelum : : r k 4 _ s t e p (double t , double ∗ y in , double ∗ yout , double d e l t a _ t )
{

/∗
The f unc t i on c a l c u l a t e s one s t e p o f f o u r t h−o rde r−runge−k u t t a−method
We w i l l need i t f o r t h e normal f o u r t h−o rde r−Runge−Kutta−method and
f o r RK−method wi th a d a p t i v e s t e p s i z e c o n t r o l

The f unc t i on c a l c u l a t e s t h e v a l u e o f y ( t + d e l t a _ t ) u s i n g f o u r t h−
o rde r−RK−method

I n p u t : t ime t and t h e s t e p s i z e d e l t a _ t , y i n ( v a l u e s o f ph i andv a t
t ime t )

Outpu t : you t ( v a l u e s o f ph i and v a t t ime t + d e l t a _ t )

∗ /
double k1 [ 2 ] , k2 [ 2 ] , k3 [ 2 ] , k4 [ 2 ] , y_k [ 2 ] ;
/ / C a l c u l a t i o n o f k1
d e r i v a t i v e s ( t , y in , you t ) ;
k1 [1 ]= you t [ 1 ]∗ d e l t a _ t ;
k1 [0 ]= you t [ 0 ]∗ d e l t a _ t ;
y_k [0 ]= y in [0 ]+ k1 [ 0 ] ∗ 0 . 5 ;
y_k [1 ]= y in [1 ]+ k1 [ 1 ] ∗ 0 . 5 ;
/∗ C a l c u l a t i o n o f k2 ∗ /
d e r i v a t i v e s ( t + d e l t a _ t∗0 . 5 , y_k , you t ) ;
k2 [1 ]= you t [ 1 ]∗ d e l t a _ t ;
k2 [0 ]= you t [ 0 ]∗ d e l t a _ t ;
y_k [0 ]= y in [0 ]+ k2 [ 0 ] ∗ 0 . 5 ;
y_k [1 ]= y in [1 ]+ k2 [ 1 ] ∗ 0 . 5 ;
/∗ C a l c u l a t i o n o f k3 ∗ /
d e r i v a t i v e s ( t + d e l t a _ t∗0 . 5 , y_k , you t ) ;
k3 [1 ]= you t [ 1 ]∗ d e l t a _ t ;
k3 [0 ]= you t [ 0 ]∗ d e l t a _ t ;
y_k [0 ]= y in [0 ]+ k3 [ 0 ] ;
y_k [1 ]= y in [1 ]+ k3 [ 1 ] ;
/∗ C a l c u l a t i o n o f k4 ∗ /
d e r i v a t i v e s ( t + d e l t a _ t , y_k , you t ) ;
k4 [1 ]= you t [ 1 ]∗ d e l t a _ t ;
k4 [0 ]= you t [ 0 ]∗ d e l t a _ t ;
/∗ C a l c u l a t i o n o f new v a l u e s o f ph i and v∗ /
you t [ 0 ]= y in [ 0 ] + 1 . 0 / 6 . 0∗ ( k1 [0 ]+2∗ k2 [0 ]+2∗ k3 [0 ]+ k4 [ 0 ] ) ;
you t [ 1 ]= y in [ 1 ] + 1 . 0 / 6 . 0∗ ( k1 [1 ]+2∗ k2 [1 ]+2∗ k3 [1 ]+ k4 [ 1 ] ) ;

}

vo id pendelum : : rk4 ( )
{

/∗We a r e u s i n g t h e f o u r t h−o rde r−Runge−Kutta−a l g o r i t h m
We have to c a l c u l a t e t h e p a r a m e t e r s k1 , k2 , k3 , k4 f o r v and phi ,
so we use to a r r a y s k1 [ 2 ] and k2 [ 2 ] f o r t h i s
k1 [ 0 ] , k2 [ 0 ] a r e t h e p a r a m e t e r s f o r ph i ,

377



Differential equations

k1 [ 1 ] , k2 [ 1 ] a r e t h e p a r a m e t e r s f o r v
∗ /

i n t i ;
double t _h ;
double you t [ 2 ] , y_h [ 2 ] ; / / k1 [ 2 ] , k2 [ 2 ] , k3 [ 2 ] , k4 [ 2 ] , y_k [ 2 ] ;

t _h =0 ;
y_h [0 ]= y [ 0 ] ; / / ph i
y_h [1 ]= y [ 1 ] ; / / v
o f s t r e a m f o u t ("rk4.out" ) ;
f o u t . s e t f ( i o s : : s c i e n t i f i c ) ;
f o u t . p r e c i s i o n ( 2 0 ) ;
f o r ( i =1 ; i <=n ; i ++) {

r k 4 _ s t e p ( t_h , y_h , yout , d e l t a _ t _ r o o f ) ;
f ou t << i ∗ d e l t a _ t <<"\t\t"<<you t [0] < <"\t\t"<<you t [1] < <"\n" ;
t _h+= d e l t a _ t _ r o o f ;
y_h [0 ]= you t [ 0 ] ;
y_h [1 ]= you t [ 1 ] ;

}
f o u t . c l o s e;

}

i n t main ( )
{

pendelum t e s t c a s e ;
t e s t c a s e . i n i t i a l i s e ( ) ;
t e s t c a s e . rk4 ( ) ;
re turn 0 ;

} / / end o f main f unc t i on

13.8 Exercises and projects

Project 13.1: studies of neutron stars

In the pendulum example we rewrote the equations as two differential equations in terms of so-called
dimensionless variables. One should always do that. There are at least two good reasons for doing this.

– By rewriting the equations as dimensionless ones, the program will most likely be easier to read,
with hopefully a better possibility of spotting eventual errors. In addtion, the various constants
which are pulled out of the equations in the process of rendering the equations dimensionless, are
reintroduced at the end of the calculation. If one of these constants is not correctly defined, it is
easier to spot an eventual error.

– In many physics applications, variables which enter a differential equation, may differ by orders of
magnitude. If we were to insist on not using dimensionless quantities, such differences can cause
serious problems with respect to loss of numerical precision.

An example which demonstrates these features is the set of equations for gravitational equilibrium
of a neutron star. We will not solve these equations numerically here, rather, we will limit ourselves to
merely rewriting these equations in a dimensionless form.
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The equations for a neutron star

The discovery of the neutron by Chadwick in 1932 prompted Landau to predict the existence of neutron
stars. The birth of such stars in supernovae explosions was suggested by Baade and Zwicky 1934. First
theoretical neutron star calculations were performed by Tolman, Oppenheimer and Volkoff in 1939 and
Wheeler around 1960. Bell and Hewish were the first to discover a neutron star in 1967 as aradio pulsar.
The discovery of the rapidly rotating Crab pulsar ( rapidly rotating neutron star) in the remnant of the
Crab supernova observed by the chinese in 1054 A.D. confirmedthe link to supernovae. Radio pulsars
are rapidly rotating with periods in the range0.033 s≤ P ≤ 4.0 s. They are believed to be powered by
rotational energy loss and are rapidly spinning down with period derivatives of ordeṙP ∼ 10−12−10−16.
Their high magnetic fieldB leads to dipole magnetic braking radiation proportional tothe magnetic field
squared. One estimates magnetic fields of the order ofB ∼ 1011 − 1013 G. The total number of pulsars
discovered so far has just exceeded 1000 before the turn of the millenium and the number is increasing
rapidly.

The physics of compact objects like neutron stars offers an intriguing interplay between nuclear
processes and astrophysical observables, see Refs. [80–82] for further information and references on the
physics of neutron stars. Neutron stars exhibit conditionsfar from those encountered on earth; typically,
expected densitiesρ of a neutron star interior are of the order of103 or more times the densityρd ≈ 4·1011

g/cm3 at ’neutron drip’, the density at which nuclei begin to dissolve and merge together. Thus, the
determination of an equation of state (EoS) for dense matteris essential to calculations of neutron star
properties. The EoS determines properties such as the mass range, the mass-radius relationship, the crust
thickness and the cooling rate. The same EoS is also crucial in calculating the energy released in a
supernova explosion.

Clearly, the relevant degrees of freedom will not be the samein the crust region of a neutron star,
where the density is much smaller than the saturation density of nuclear matter, and in the center of the
star, where density is so high that models based solely on interacting nucleons are questionable. Neutron
star models including various so-called realistic equations of state result in the following general picture
of the interior of a neutron star. The surface region, with typical densitiesρ < 106 g/cm3, is a region in
which temperatures and magnetic fields may affect the equation of state. The outer crust for106 g/cm3

< ρ < 4 · 1011g/cm3 is a solid region where a Coulomb lattice of heavy nuclei coexist in β-equilibrium
with a relativistic degenerate electron gas. The inner crust for 4 · 1011 g/cm3 < ρ < 2 · 1014g/cm3

consists of a lattice of neutron-rich nuclei together with asuperfluid neutron gas and an electron gas. The
neutron liquid for2 · 1014 g/cm3 < ρ < ·1015g/cm3 contains mainly superfluid neutrons with a smaller
concentration of superconducting protons and normal electrons. At higher densities, typically2−3 times
nuclear matter saturation density, interesting phase transitions from a phase with just nucleonic degrees
of freedom to quark matter may take place. Furthermore, one may have a mixed phase of quark and
nuclear matter, kaon or pion condensates, hyperonic matter, strong magnetic fields in young stars etc.

Equilibrium equations

If the star is in thermal equilibrium, the gravitational force on every element of volume will be balanced
by a force due to the spacial variation of the pressureP . The pressure is defined by the equation of state
(EoS), recall e.g., the ideal gasP = NkBT . The gravitational force which acts on an element of volume
at a distancer is given by

FGrav = −Gm
r2

ρ/c2, (13.90)
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whereG is the gravitational constant,ρ(r) is the mass density andm(r) is the total mass inside a radius
r. The latter is given by

m(r) =
4π

c2

∫ r

0
ρ(r′)r′2dr′ (13.91)

which gives rise to a differential equation for mass and density

dm

dr
= 4πr2ρ(r)/c2. (13.92)

When the star is in equilibrium we have

dP

dr
= −Gm(r)

r2
ρ(r)/c2. (13.93)

The last equations give us two coupled first-order differential equations which determine the structure
of a neutron star when the EoS is known.

The initial conditions are dictated by the mass being zero atthe center of the star, i.e., whenr = 0,
we havem(r = 0) = 0. The other condition is that the pressure vanishes at the surface of the star. This
means that at the point where we haveP = 0 in the solution of the differential equations, we get the total
radiusR of the star and the total massm(r = R). The mass-energy density whenr = 0 is called the
central densityρs. Since both the final massM and total radiusR will depend onρs, a variation of this
quantity will allow us to study stars with different masses and radii.

Dimensionless equations

When we now attempt the numerical solution, we need however to rescale the equations so that we deal
with dimensionless quantities only. To understand why, consider the value of the gravitational constant
G and the possible final massm(r = R) = MR. The latter is normally of the order of some solar masses
M⊙, with M⊙ = 1.989 × 1030 Kg. If we wish to translate the latter into units of MeV/c2, we will have
thatMR ∼ 1060 MeV/c2. The gravitational constant is in units ofG = 6.67× 10−45× ~c (MeV/c2)−2.
It is then easy to see that including the relevant values for these quantities in our equations will most
likely yield large numerical roundoff errors when we add a huge numberdP

dr to a smaller numberP in
order to obtain the new pressure. We list here the units of thevarious quantities and in case of physical
constants, also their values. A bracketed symbol like[P ] stands for the unit of the quantity inside the
brackets.

We introduce therefore dimensionless quantities for the radius r̂ = r/R0, mass-energy densitŷρ =
ρ/ρs, pressurêP = P/ρs and masŝm = m/M0.

The constantsM0 andR0 can be determined from the requirements that the equations for dm
dr and dP

dr
should be dimensionless. This gives

dM0m̂

dR0r̂
= 4πR2

0r̂
2ρsρ̂, (13.94)

yielding
dm̂

dr̂
= 4πR3

0r̂
2ρsρ̂/M0. (13.95)

If these equations should be dimensionless we must demand that

4πR3
0ρs/M0 = 1. (13.96)
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Quantity Units

[P ] MeVfm−3

[ρ] MeVfm−3

[n] fm−3

[m] MeVc−2

M⊙ 1.989 × 1030 Kg= 1.1157467 × 1060 MeVc−2

1 Kg = 1030/1.78266270D0 MeVc−2

[r] m
G ~c6.67259 × 10−45 MeV−2c−4

~c 197.327 MeVfm

Correspondingly, we have for the pressure equation

dρsP̂

dR0r̂
= −GM0

m̂ρsρ̂

R2
0r̂

2
(13.97)

and since this equation should also be dimensionless, we will have

GM0/R0 = 1. (13.98)

This means that the constantsR0 andM0 which will render the equations dimensionless are given by

R0 =
1√

ρsG4π
, (13.99)

and

M0 =
4πρs

(
√
ρsG4π)3

. (13.100)

However, since we would like to have the radius expressed in units of 10 km, we should multiplyR0 by
10−19, since 1 fm =10−15 m. Similarly,M0 will come in units of MeV/c2, and it is convenient therefore
to divide it by the mass of the sun and express the total mass interms of solar massesM⊙.

The differential equations read then

dP̂

dr̂
= −m̂ρ̂

r̂2
,

dm̂

dr̂
= r̂2ρ̂. (13.101)

In the solution of our problem, we will assume that the mass-energy density is given by a simple
parametrization from Bethe and Johnson [83]. This parametrization givesρ as a function of the number
densityn = N/V , withN the total number of baryons in a volumeV . It reads

ρ(n) = 236× n2.54 + nmn, (13.102)

wheremn = 938.926MeV/c2 , the mass of the neutron (averaged). This means that since[n] =fm−3, we
have that the dimension ofρ is [ρ] =MeV/c2fm−3. Through the thermodynamic relation

P = −∂E
∂V

, (13.103)
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whereE is the energy in units of MeV/c2 we have

P (n) = n
∂ρ(n)

∂n
− ρ(n) = 363.44 × n2.54. (13.104)

We see that the dimension of pressure is the same as that of themass-energy density, i.e.,[P ] =MeV/c2fm−3.
Here comes an important point you should observe when solving the two coupled first-order differ-

ential equations. When you obtain the new pressure given by

Pnew =
dP

dr
+ Pold, (13.105)

this comes as a function ofr. However, having obtained the new pressure, you will need touse Eq.
(13.104) in order to find the number densityn. This will in turn allow you to find the new value of the
mass-energy densityρ(n) at the relevant value ofr.

In solving the differential equations for neutron star equilibrium, you should proceed as follows

1. Make first a dimensional analysis in order to be sure that all equations are really dimensionless.

2. Define the constantsR0 andM0 in units of 10 km and solar massM⊙. Find their values. Explain
why it is convenient to insert these constants in the final results and not at each intermediate step.

3. Set up the algorithm for solving these equations and writea main program where the various
variables are defined.

4. Write thereafter a small function which uses the expressions for pressure and mass-energy density
from Eqs. (13.104) and (13.102).

5. Write then a function which sets up the derivatives

− m̂ρ̂

r̂2
, r̂2ρ̂. (13.106)

6. Employ now the fourth order Runge-Kutta algorithm to obtain new values for the pressure and the
mass. Play around with different values for the step size andcompare the results for mass and
radius.

7. Replace the fourth order Runge-Kutta method with the simple Euler method and compare the
results.

8. Replace the non-relativistic expression for the derivative of the pressure with that from General
Relativity (GR), the so-called Tolman-Oppenheimer-Volkov equation

dP̂

dr̂
= −(P̂ + ρ̂)(r̂3P̂ + m̂)

r̂2 − 2m̂r̂
, (13.107)

and solve again the two differential equations.

9. Compare the non-relatistic and the GR results by plottingmass and radius as functions of the
central density.
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Project 13.2: studies of white dwarf stars

This project contains a long description of the physics of compact objects such as white dwarfs. It serves
as a background for understanding the final differential equations you need to solve. This project is taken
from the text of Koonin and Meredith [4].

White dwarfs are cold objects which consist mainly of heavy nuclei such as56Fe, with 26 protons,
30 neutrons and their respective electrons, see for exampleRef. [80]. Charge equilibrium results in an
equal quantity of electrons and protons. You can read more about white dwarfs, neutron stars and black
holes at the website of the Joint Institute for Nuclear Astrophysics www.jinaweb.org or NASA’s website
www.nasa.org. These stars are the endpoints of stars with masses of the size or smaller than our sun.
They are the outcome of standard nuclear processes and end their lives as cold objects like white dwarfs
when they have used up all their nuclear fuel.

Where a star ends up at the end of its life depends on the mass, or amount of matter, it was born
with. Stars that have a lot of mass may end their lives as blackholes or neutron stars. Low and medium
mass stars will become something called a white dwarf. A typical white dwarf is half as massive as the
Sun, yet only slightly bigger than the Earth. This makes white dwarfs one of the densest forms of matter,
surpassed only by neutron stars.

Medium mass stars, like our Sun, live by burning the hydrogenthat dwells within their cores, turning
it into helium. This is what our Sun is doing now. The heat the Sun generates by its nuclear fusion of
hydrogen into helium creates an outward pressure. In another 5 billion years, the Sun will have used up
all the hydrogen in its core.

This situation in a star is similar to a pressure cooker. Heating something in a sealed container causes
a build up in pressure. The same thing happens in the Sun. Although the Sun may not strictly be a sealed
container, gravity causes it to act like one, pulling the star inward, while the pressure created by the hot
gas in the core pushes to get out. The balance between pressure and gravity is very delicate.

Because a white dwarf is no longer able to create internal pressure, gravity unopposedly crushes it
down until even the very electrons that make up a white dwarf’s atoms are mashed together. In normal
circumstances, identical electrons (those with the same "spin") are not allowed to occupy the same energy
level. Since there are only two ways an electron can spin, only two electrons can occupy a single energy
level. This is what’s know in physics as the Pauli Exclusion Principle. And in a normal gas, this isn’t
a problem; there aren’t enough electrons floating around to completely fill up all the energy levels. But
in a white dwarf, all of its electrons are forced close together; soon all the energy levels in its atoms
are filled up with electrons. If all the energy levels are filled, and it is impossible to put more than two
electrons in each level, then our white dwarf has become degenerate. For gravity to compress the white
dwarf anymore, it must force electrons where they cannot go.Once a star is degenerate, gravity cannot
compress it any more because quantum mechanics tells us there is no more available space to be taken
up. So our white dwarf survives, not by internal combustion,but by quantum mechanical principles that
prevent its complete collapse.

With a surface gravity of 100,000 times that of the earth, theatmosphere of a white dwarf is very
strange. The heavier atoms in its atmosphere sink and the lighter ones remain at the surface. Some white
dwarfs have almost pure hydrogen or helium atmospheres, thelightest of elements. Also, the very strong
gravity pulls the atmosphere close around it in a very thin layer, that, if were it on earth, would be lower
than the tops of our skyscrapers!
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13.8.1 Equilibrium equations

We assume that the star is in thermal equilibrium. It exhibits also charge equilibrium, meaning the number
of electrons has to balance the number of protons. The gravitational pull on every element of volume is
balanced by the pressure set up by a degenerate gas of electrons atT = 0, since the temperature of
the star is well below the so-called Fermi temperature of theelectrons. The electrons are assumed to
be relativistic and since the protons and neutrons have muchlower kinetic energy, we assume that the
pressure which balances the gravitational force is mainly set up by the relativistic electrons. The kinetic
energy of the electrons is also much larger than the electron-electron repulsion or the attraction from the
nuclei. This means that we can treat the system as a gas of freedegenerate electrons atT = 0 moving in
between a lattice of nuclei like iron. This is our ansatz. Based on this we can derive the pressure which
counterbalances the gravitational force given by (for every element of volume in a distancer from the
center of the star)

FGrav = −Gm(r)

r2
ρ(r),

with G being the gravitational constant,ρ(r) the mass density (mass per volume) of a volume element a
distancer from the center of the star, andm(r) is the integrated mass within a radiusr. The latter reads

m(r) = 4π

∫ r

0
ρ(r′)r′2dr′

which yields a differential equation between the total massand the mass density

dm

dr
= 4πr2ρ(r).

In equilibrium, the pressureP balances the gravitational force

dP

dr
= −Gm(r)

r2
ρ(r),

and usingdP/dρ = (dρ/dr)(dP/dρ) we obtain

dρ

dr
= −

(
dP

dρ

)−1 Gm

r2
ρ.

Together withdm
dr = 4πr2ρ(r) we have now two coupled first-order ordinary differential equations which

determine the structure of the white dwarf given an equationof stateP (ρ). The total radius is given by
the conditionρ(R) = 0. Similarly, the mass forr = 0 is m = 0. The density atr = 0 is given by the
central densityρc, a parameter you will have to play with as input parameter.

By integrating the last equation, we find the density profile of the star. The radiusR is determined
by the point where the density distribution isρ = 0. The mass is then given byM = m(R). Since both
the total mass and the radiusR will depend on the central densityρc, a variation of this parameter will
allow us to study stars with different masses. However, before we can proceed, we need the pressure for
a relativistic gas of electrons.

Equation of state for a white dwarf

We will treat the electrons as a relativistic gas of fermionsatT = 0. From statistical physics we can then
obtain the particle density as

n = N/V =
1

π2

∫ kF

0
k2dk =

k3
F

3π2
,
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wherekF is the Fermi momentum, here represented by the wave numberkF . The wave number is
connected to the momentum viakF = pF /~. The energy density is given by

ε = E/V =
1

π2

∫ kF

0
k2dk

√
(~ck)2 +m2

ec
4.

This expression is of the form
∫
y2
√
y2 + a2. Performing the integration we obtain

E/V = n0mec
2x3ǫ(x),

where we have defined

ǫ(x) =
3

8x3

(
x(1 + 2x2)

√
1 + x2 − ln(x+

√
1 + x2)

)
,

with the variablex defined as

x =
~kF

mec
.

We can rewritex in terms of the particle density as well

n = N/V =
k3

F

3π2
,

so that
~kF

mec
=

(
n~3π2

m3
ec

3

)1/3

,

where we definen0 = (mc)3e
3π2(~)3

with me the electron mass. Using the constantn0 results finally in

x =
~kF

mec
=

(
n

n0

)1/3

.

Since the mass of the protons and neutrons are larger by a factor 103 than the mass of the electronsme,
we can approximate the total mass of the star by the mass density of the nucleons (protons and neutrons).
This mass density is given by

ρ = Mpnp,

with Mp being the mass of the proton andnp the particle density of the nucleons. The mass of the proton
and the neutron are almost equal and we have set them equal here. The particle densitynp can be related
to the electron densityn, which is the quantity we can calculate. The relation is simple,

np = n/Ye,

whereYe is the number of electrons per nucleon. For56Fe we getYe = 26
56 = 0.464, since we need to

have as many electrons as protons in order to obtain a total charge of zero. Inserting numerical values for
the electron mass we get

n0 = 5.89 × 1029cm−3.

The mass density is now
ρ = Mpn/Ye,
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and with

x =

(
n

n0

)1/3

=

(
ρ

ρ0

)1/3

,

and inserting the numerical value for the proton mass we obtain

ρ0 =
Mpn0

Ye
= 9.79× 105Y −1

e g cm−3.

Using the parameterYe we can then study stars with different compositions. The only input parameters
to your code are thenρc andYe.

Now we want the equation for the pressure, based on the energydensity. Using the thermodynamical
relation

P = −∂E
∂V

= −∂E
∂x

∂x

∂V
,

we can find the pressure as a function of the mass densityρ. Thereafter we can finddP
dρ , which allows us

to determine the mass and the radius of the star.
The term

∂x

∂V
,

can be found using the fact thatx ∝ n1/3 ∝ V −3. This results in

∂x

∂V
= − x

3V
.

Taking the derivative with respect tox we obtain

P =
1

3
n0mec

2x4 dǫ

dx
.

We want the derivative ofP in terms of the mass densityρ. Usingx =
(

ρ
ρ0

)1/3
, we obtain

dP

dρ
=
dP

dx

dx

dρ
.

With
dP

dx
=

1

3
n0me

(
dx4 dǫ

dx

dx

)
,

and
dx

dρ
=

1ρ
2/3
0

3ρ0ρ2/3
=

1

3ρ0x2
,

we find
dP

dρ
= Ye

mec
2

Mp
γ(x),

where we defined

γ(x) =
x2

3
√

1 + x2
.

This is the equation for the derivative of the pressure to be used to find

dρ

dr
= −

(
dP

dρ

)−1 Gm

r2
ρ.

Note thatx andγ(x) are dimensionless quantities.
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Dimensionless form of the differential equations

In the numerical treatment of the two differential equations we need to rescale our equations in terms of
dimensionless quantities, since several of the involved constants are either extremely large or very small.
Furthermore, the total mass is of the order of the mass of the sun, approximately2 × 1030kg while the
mass of the electron is9× 10−31 kg.

We introduce therefore a dimensionless radiusr = r/R0, a dimensionless densityρ = ρ/ρ0 (recall
thatx3 = ρ/ρ0) and a dimensionless massm = m/M0.

We determine below the constantsM0 andR0 by requiring that the equations fordm
dr and dρ

dr have to
be dimensionless. We get then

dM0m

dR0r
= 4πR2

0r
2ρ0ρ,

resulting in
dm

dr
= 4πR3

0r
2ρ0ρ/M0.

If we want this equation to be dimensionless, we must require

4πR3
0ρ0/M0 = 1.

Correspondingly, we have
dρ0ρ

dR0r
= −

(
GM0Mp

Yemec2

)
m

γR2
0r

2ρ0ρ,

with R0

R0 =

(
Yemec

2

4πρ0GMp

)1/2

= 7.72 × 108Yecm.

in order to yield a dimensionless equation. This results in

M0 = 4πR3
0ρ0 = 5.67 × 1033Y 2

e g.

The radius of the sun isR⊙ = 6.95 × 1010 cm and the mass of the sun isM⊙ = 1.99 × 1033 g.
Our final differential equationsρ andm read

dρ

dr
= −m

γ

ρ

r2
,

dm

dr
= r2ρ.

These are the equations you need to code.

a) Verify the steps in the above derivations. Write a programwhich solves the two coupled differential
equations

dρ

dr
= −m

γ

ρ

r2
,

and
dm

dr
= r2ρ,

using the fourth order Runge-Kutta method by integrating outward fromr = 0. ChooseYe = 1
and calculate the mass and radius of the star by varying the central densityρc ranging from10−1

to 106. Check the stability of your solutions by varying the radialsteph. Discuss your results.
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b) Compute also the density profiles for the above input parameters and calculate the total kinetic
energy and rest energy of the electrons given by

U =

∫ R

0
4π

(
E

V

)
r2dr,

where we have defined
E/V = n0mec

2x3ǫ(x),

with

ǫ(x) =
3

8x3

(
x(1 + 2x2)

√
1 + x2 − ln(x+

√
1 + x2)

)
,

and the variablex defined as

x =
~kF

mec
.

Compute also the gravitational energy

W = −
∫ R

0

Gm(r)ρ(r)

r
4πr2dr.

You need to make these equations dimensionless.

Try to discuss your results and trends through simple physical reasoning.

c) Scale the mass-radius relation you found in a) to the casescorresponding to56Fe and12C. Three
white dwarf stars, Sirius B, 40 Eri B and Stein 2051, have masses and radii in units of solar
values determined from observations to be(1.053 ± 0.028M⊙, 0.0074 ± 0.0006R⊙), (0.48 ±
0.02M⊙, 0.0124 ± 0.0005R⊙), and(0.72 ± 0.08M⊙, 0.0115 ± 0.0012R⊙), respectively. Verify
that these values are consistent with the model you have developed. Can you say something about
the compositions of these stars?

Project 13.3: Period doubling and chaos

The angular equation of motion of the pendulum is given by Newton’s equation and with no external
force it reads

ml
d2θ

dt2
+mgsin(θ) = 0, (13.108)

with an angular velocity and acceleration given by

v = l
dθ

dt
, (13.109)

and

a = l
d2θ

dt2
. (13.110)

We do however expect that the motion will gradually come to anend due a viscous drag torque acting
on the pendulum. In the presence of the drag, the above equation becomes

ml
d2θ

dt2
+ ν

dθ

dt
+mgsin(θ) = 0, (13.111)
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whereν is now a positive constant parameterizing the viscosity of the medium in question. In order to
maintain the motion against viscosity, it is necessary to add some external driving force. We choose here
a periodic driving force. The last equation becomes then

ml
d2θ

dt2
+ ν

dθ

dt
+mgsin(θ) = Asin(ωt), (13.112)

with A andω two constants representing the amplitude and the angular frequency respectively. The latter
is called the driving frequency.

a) Rewrite Eqs. (13.111) and (13.112) as dimensionless equations.

b) Write then a code which solves Eq. (13.111) using the fourth-order Runge Kutta method. Perform
calculations for at least ten periods withN = 100, N = 1000 andN = 10000 mesh points and
values ofν = 1, ν = 5 andν = 10. Setl = 1.0 m, g = 1 m/s2 andm = 1 kg. Choose as initial
conditionsθ(0) = 0.2 (radians) andv(0) = 0 (radians/s). Make plots ofθ (in radians) as function
of time and phase space plots ofθ versus the velocityv. Check the stability of your results as
functions of time and number of mesh points. Which case corresponds to damped, underdamped
and overdamped oscillatory motion? Comment your results.

c) Now we switch to Eq. (13.112) for the rest of the project. Add an external driving force and set
l = g = 1, m = 1, ν = 1/2 andω = 2/3. Choose as initial conditionsθ(0) = 0.2 andv(0) = 0
andA = 0.5 andA = 1.2. Make plots ofθ (in radians) as function of time for at least 300 periods
and phase space plots ofθ versus the velocityv. Choose an appropriate time step. Comment and
explain the results for the different values ofA.

d) Keep now the constants from the previous exercise fixed butset nowA = 1.35, A = 1.44 and
A = 1.465. Plotθ (in radians) as function of time for at least 300 periods for these values ofA and
comment your results.

e) We want to analyse further these results by making phase space plots ofθ versus the velocityv
using only the points where we haveωt = 2nπ wheren is an integer. These are normally called
the drive periods. This is an example of what is called a Poincare section and is a very useful way
to plot and analyze the behavior of a dynamical system. Comment your results.
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