Chapter 13

Differential equations

If God has made the world a perfect mechanism, he has at leastded so much to our
imperfect intellect that in order to predict little parts iofwe need not solve innumerable
differential equations, but can use dice with fair succé&sx Born, quoted in H. R. Pagels,
The Cosmic Code [76]

13.1 Introduction

We may trace the origin of differential equations back to kewn 168H and his treatise on the gravita-
tional force and what is known to us as Newton’s second lawyimachics.

Needless to say, differential equations pervade the seseand are to us the tools by which we
attempt to express in a concise mathematical languagewsedamotion of nature. We uncover these
laws via the dialectics between theories, simulations apeér@ments, and we use them on a daily basis
which spans from applications in engineering or financigirgering to basic research in for example
biology, chemistry, mechanics, physics, ecological m®deimedicine.

We have already met the differential equation for radieaatiecay in nuclear physics. Other famous
differential equations are Newton’s law of cooling in theagnamics. the wave equation, Maxwell's
equations in electromagnetism, the heat equation in theégynemic, Laplace’s equation and Poisson’s
equation, Einstein’s field equation in general relativiBghrdodinger equation in guantum mechanics,
the Navier-Stokes equations in fluid dynamics, the Lotkdeva equation in population dynamics, the
Cauchy-Riemann equations in complex analysis and the Bbatioles equation in finance, just to men-
tion a few. Excellent texts on differential equations andpatations are the texts of Eriksson, Estep,
Hansbo and Johnson [77], Butcher [78] and Hairer, NgrsetVdganner [79].

There are five main types of differential equations,

— ordinary differential equations (ODESs), discussed in thiapter for initial value problems only.
They contain functions of one independent variable, anivatdres in that variable. The next
chapter deals with ODEs and boundary value problems.

— Partial differential equations with functions of multipledependent variables and their partial
derivatives, covered in chapfer 15.

INewton had most of the relations for his laws ready 22 yeati®eavhen according to legend he was contemplating fgllin
apples. However, it took more than two decades before hashelol his theories, chiefly because he was lacking an eakenti
mathematical tool, differential calculus.
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Differential equations

— So-called delay differential equations that involve fumes of one dependent variable, derivatives
in that variable, and depend on previous states of the depéndriables.

— Stochastic differential equations (SDESs) are differdrgiguations in which one or more of the
terms is a stochastic process, thus resulting in a soluttiohws itself a stochastic process.

— Finally we have so-called differential algebraic equati¢DAES). These are differential equation
comprising differential and algebraic terms, given in imapform.

In this chapter we restrict the attention to ordinary défetial equations. We focus on initial value
problems and present some of the more commonly used methiosisl¥ing such problems numerically.
The physical systems which are discussed range from thsicépendulum with non-linear terms to
the physics of a neutron star or a white dwarf.

13.2 Ordinary differential equations

In this section we will mainly deal with ordinary differeatiequations and numerical methods suitable
for dealing with them. However, before we proceed, a briefamder on differential equations may be
appropriate.

— The order of the ODE refers to the order of the derivative enéfi-hand side in the equation
dy

=2 — f(t.y). 13.1
o = [ty (13.1)
This equation is of first order anlis an arbitrary function. A second-order equation goeslpyi
like
d*y dy
— = f(t, ==, ). 13.2
A well-known second-order equation is Newton’s second law
d’x

wherek is the force constant. ODE depend only on one variable, valsere
— partial differential equations like the time-dependentr®dinger equation
Q(xt) _ B (P(et) | Pulrt) | O*U(r.t)

ot 2m Ox? Oy 022

may depend on several variables. In certain cases, likebtheeaquation, the wave function can be
factorized in functions of the separate variables, so tteSchrédinger equation can be rewritten
in terms of sets of ordinary differential equations.

ih

) + V(x)9(x,1), (13.4)

— We distinguish also between linear and non-linear diffeagequation where e.g.,

W~ o), (13.5)

is an example of a linear equation, while

Y= PO~ g0 ) (136)
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13.3 — Finite difference methods

is a non-linear ODE. Another concept which dictates the migakemethod chosen for solving an
ODE, is that of initial and boundary conditions. To give amample, in our study of neutron stars
below, we will need to solve two coupled first-order diffei@hequations, one for the total mass
m and one for the pressure as functions op

dm

am _ 2 2
g = dmrtp(r)/ e,
and dP Gm(r)
at- mir 9
i p(r)/c.

wherep is the mass-energy density. The initial conditions areatiet by the mass being zero at the
center of the star, i.e., when= 0, yieldingm(r = 0) = 0. The other condition is that the pressure
vanishes at the surface of the star. This means that at thevgogre we havé® = 0 in the solution

of the integral equations, we have the total radiusf the star and the total mass(r = R). These

two conditions dictate the solution of the equations. Stheedifferential equations are solved by
stepping the radius from = 0 to r = R, so-called one-step methods (see the next section) or
Runge-Kutta methods may yield stable solutions.

In the solution of the Schrodinger equation for a particleaipotential, we may need to apply
boundary conditions as well, such as demanding continditiyeowave function and its derivative.

— In many cases it is possible to rewrite a second-order éifteal equation in terms of two first-
order differential equations. Consider again the case oftbigs second law in Eq[{13.3). If we
define the position:(t) = y()(¢) and the velocity(t) = 3? (t) as its derivative

dy™M(t) _ dx(t)

=3Pt 13.7
pn i AN OF (13.7)

we can rewrite Newton’s second law as two coupled first-odifégrential equations

dy (1)
7

= —ka(t) = —kyM (1), (13.8)

and
=3P (@). (13.9)

13.3 Finite difference methods

These methods fall under the general class of one-step dwethibe algoritm is rather simple. Suppose
we have an initial value for the functiay(t) given by

Yo = y(t = to). (13.10)

We are interested in solving a differential equation in aaedn space [a,b]. We define a stépby
splitting the interval inV sub intervals, so that we have
b—a

h = . 13.11
= (13.11)
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Differential equations

With this step and the derivative gfwe can construct the next value of the functipat
y1 = y(t1 =to + h), (13.12)

and so forth. If the function is rather well-behaved in thendin [a,b], we can use a fixed step size. If not,
adaptive steps may be needed. Here we concentrate on feqedasthods only. Let us try to generalize
the above procedure by writing the stgp in terms of the previous stap

Yir1 = y(t = ti + h) = y(t:) + hA (i, yi(t) + O(hPHY), (13.13)

whereO(hP+1) represents the truncation error. To determinave Taylor expand our function

hP~1
Vi1 =yt =ti+h)=yt;) +h (y'(ti) +- P () o > + O(hPTY), (13.14)
where we will associate the derivatives in the parentheils w
: he!
A(ti, yi(t) = (' (t:) + -+ +y P () ol )- (13.15)
We define
Y (ts) = f(ti,ys) (13.16)
and if we truncate\ at the first derivative, we have
Yir1 = y(ti) + hf (ti, y;) + O(h?), (13.17)

which when complemented witty,; = ¢; + h forms the algorithm for the well-known Euler method.
Note that at every step we make an approximation error of ttierafO(h?), however the total error is
the sum over all stepd’ = (b — a)/h, yielding thus a global error which goes likéO(h?) ~ O(h).
To make Euler's method more precise we can obviously deeredmcreaseN). However, if we are
computing the derivativg numerically by e.g., the two-steps formula

Fhla) = LEEN =IO o)

we can enter into roundoff error problems when we subtragitimost equal numbef§z+h) — f(z) ~
0. Euler's method is not recommended for precision calauatalthough it is handy to use in order to
get a first view how a solution may look like. As an example,sidar Newton’s equation rewritten in
Egs. [I3B) and(13.9). We defing = 3V (t = 0) anvy = 3@ (¢t = 0). The first steps in Newton’s
equations are then
s = yo + hvg + O(h?) (13.18)

and

s = vy — hyok/m + O(h2). (13.19)
The Euler method is asymmetric in time, since it uses infoionaabout the derivative at the beginning

of the time interval. This means that we evaluate the pms'mikygl) using the velocity afy(()z) = vgp. A

simple variation is to determin;@flﬂzl using the velocity ay,(fll, that is (in a slightly more generalized
form)

s =y + hylly + o) (13.20)
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13.3 — Finite difference methods

and
v =y 1 hay, + O(h2). (13.21)

n

The acceleration,, is a function ofan(y,(f),y,(f),t) and needs to be evaluated as well. This is the Euler-
Cromer method.
Let us then include the second derivative in our Taylor exfman We have then

hodf (ti, yi)

54l + O(h3). (13.22)

A(ti, yi(ti) = f(ti) +
The second derivative can be rewritten as

_df 9f ofoy of  of

"o / o _Z4 —J _ 4
Vel m T Tagar o oy (13.23)
and we can rewrite EC{I3114) as
W2 (of o
W =t =t h) =)+ hf ) + g (G0 + Gf ) HOWY, (1329

which has a local approximation erréx(h?) and a global errof)(h?). These approximations can be
generalized by using the derivatiyeto arbitrary order so that we have

-1
Yir1 =yt =ti + h) = y(t:) + h(f (i vi) + ... f(p_l)(tuyi)%) +O(hP). (13.25)

These methods, based on higher-order derivatives, aren@rglenot used in numerical computation,
since they rely on evaluating derivatives several timesle&one has analytical expressions for these,
the risk of roundoff errors is large.

13.3.1 Improvements of Euler’s algorithm, higher-ordeitimoels

The most obvious improvements to Euler’s and Euler-Crosredgorithms, avoiding in addition the need
for computing a second derivative, is the so-called midpwiathod. We have then

h
v = v+ 5 (w2 + o) + o) (13.26)
and
v, =y + ha, + O(h?), (13.27)
yielding
2
y) =y + hy? + %an +O(h?) (13.28)

implying that the local truncation error in the position ®nO(h?), whereas Euler’s or Euler-Cromer’s
methods have a local error 6f(h?). Thus, the midpoint method yields a global error with seeorder
accuracy for the position and first-order accuracy for tHear. However, although these methods yield
exact results for constant accelerations, the error iseean general with each time step.

One method that avoids this is the so-called half-step ndetHere we define

Uy = Uy han £ OR?), (13.29)
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Differential equations

and
ol = o0 + by, +0(h?). (13.30)

Note that this method needs the calculatiory@. This is done using e.g., Euler’s method

h
y% =P 4 30+ O(h?). (13.31)
As this method is numerically stable, it is often used indteBEuler's method. Another method which

one may encounter is the Euler-Richardson method with

v =yt hay e + O, (13.32)
and
=+ ), o). (13.33)

13.3.2 Predictor-Corrector methods

Consider again the first-order differential equation

dy
E - f(t,y),

which solved with Euler’s algorithm results in the followimlgorithm
Yit1 = y(ti) + hf(ti, vi)

with ¢,.1 = t; + h. This means geometrically that we compute the slopg ahd use it to predicy; 1
at a later timef; 1. We introducek; = f(¢;, y;) and rewrite our prediction foy;.1 as

Yir1 ~ y(t;) + hky.

We can then use the predictigf,; to compute a new slope &t ; by definingks = f(ti+1, yi+1). We
define the new value af;.; by taking the average of the two slopes, resulting in

Yiv1 = y(ti) + g(/ﬂ + k).
The algorithm is very simple,namely
1. Compute the slope &, that is define the quantityy = f(¢;, vs).
2. Make a predicition for the solution by computipg1 =~ y(t;) + hk; by Euler’s method.
3. Use the predicitiony; +; to compute a new slope 8t,; defining the quantitye = f(ti+1, Yi+1)-
4. Correctthe value af;,1 by taking the average of the two slopes yielding, ~ y(ti)+%(k1 +k3).

It can be shown [30] that this procedure results in a mathiealatuncation which goes lik&(h?),
to be contrasted with Euler’s method which runsCa$). One additional function evaluation yields a
better error estimate.
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13.4 — More on finite difference methods, Runge-Kutta metisod

This simple algorithm conveys the philosophy of a large<latsmethods called predictor-corrector
methods, see chapter 15 of Ref. [36] for additional algorith A simple extension is obviously to use
Simpson’s method to approximate the integral

tit1
Yi+1 = Yi + / f(ta y)dt7
t;

when we solve the differential equation by successive mt@ms. The next section deals with a partic-
ular class of efficient methods for solving ordinary diffietial equations, namely various Runge-Kutta
methods.

13.4 More on finite difference methods, Runge-Kutta methods

Runge-Kutta (RK) methods are based on Taylor expansionuiaen but yield in general better algo-
rithms for solutions of an ODE. The basic philosophy is thighirovides an intermediate step in the
computation ofy;4 1.

To see this, consider first the following definitions

Z—?Z = f(t,y), (13.34)
and
y(t) = / f(t,y)dt, (13.35)
and -
Yoo =i + /t Ft.y)dt. (13.36)

To demonstrate the philosophy behind RK methods, let usidenthe second-order RK method, RK2.
The first approximation consists in Taylor expandjf{@, y) around the center of the integration interval
t; to t;y1, i.e., att; + h/2, h being the step. Using the midpoint formula for an integradfirdng
y(ti + h/2) = yip1/0 andt; + h/2 = t;,, /5, we obtain

tit1
/ St 9t~ hf (tigs 2, i) + O(RY). (13.37)
t;
This means in turn that we have

Yis1 = Yi + hf (tigr /2, Yiv1/2) + O(h?). (13.38)

However, we do not know the value gf, ; ,. Here comes thus the next approximation, namely, we use
Euler's method to approximatg ;. We have then

hd h
Y(itr1/2) = Yi + §d_z =y(t;) + §f(tiayi)- (13.39)

This means that we can define the following algorithm for #seosd-order Runge-Kutta method, RK2.
ki = hf(ti, i), (13.40)
ko = hf(tiy1/2,9i +k1/2), (13.41)
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Differential equations

with the final value
Yis1 = yi + ko + O(h3). (13.42)

The difference between the previous one-step methodstisvihaow need an intermediate step in
our evaluation, namely; + h/2 = t;1/2) Where we evaluate the derivatiye This involves more
operations, but the gain is a better stability in the sotutidhe fourth-order Runge-Kutta, RK4, which
we will employ in the solution of various differential eqigais below, is easily derived. The steps are as
follows. We start again with the equation

tit1
Yi+1 = Yi + / f(ta y)dt7
t

but instead of approximating the integral with the midpaire, we use now Simpsons’ ruleiatt- h/2,
h being the step. Using Simpson’s formula for an integral,riediy (t; + h/2) = y;1.1/2 andt; +h/2 =
tiy1/2, We obtain

tit1 h
/ f(t,y)dt = 5 [f(ti i) + 4f (tirj2s Yir12) + f(tivr yis1)] + O(R%). (13.43)
t
This means in turn that we have

h
vir1=vyit g [f(tiyi) + 4f (tigrj2: Yir1y2) + [ (i1, yir1)] + O(R°). (13.44)

However, we do not know the values®f, ; ,, andy;.;. The fourth-order Runge-Kutta method splits the
midpoint evaluations in two steps, that is we have

h
Vit Ryt Lt yi) + 2f (tiga 20 Vi1 y2) + 28 (tigay2s Yigray2) + Ftivr, vir1)]

since we want to approximate the slopeyat; /, in two steps. The first two function evaluations are as
for the second order Runge-Kutta method. The algorithm felbsvs

1. We compute first
ki = hf(ti,yi), (13.45)

which is nothing but the slope &tlf we stop here we have Euler's method.

2. Then we compute the slope at the midpoint using Euler'tiateto predicy; -, as in the second-
order Runge-Kutta method. This leads to the computation of

ky = hf(ti + h/2,y; + k1/2). (13.46)
3. The improved slope at the midpoint is used to further im@rhe slope of; /> by computing
ks =hf(t;+h/2,y; + ka/2). (13.47)
4. With the latter slope we can in turn predict the valueg.gf, via the computation of
kg = hf(t; + h,y; + k3). (13.48)
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13.5 — Adaptive Runge-Kutta and multistep methods

5. The final algorithm becomes then

1
yier = vi+ g (b + 2k + 2hs + ko). (13.49)

Thus, the algorithm consists in first calculatihg with ¢;, y; and f as inputs. Thereafter, we increase
the step size by./2 and calculaté:,, thenks and finally k4. With this caveat, we can then obtain the
new value for the variablg. It results in four function evaluations, but the accurasynicreased by

two orders compared with the second-order Runge-Kuttaedethihe fourth order Runge-Kutta method

has a global truncation error which goes li¢h*). Fig.[I31 gives a geometrical interpretation of the
fourth-order Runge-Kutta method.

" Yigr1/2 andk;

Yi andk1

Y

t; ti+h/2 ti+h t

Figure 13.1: Geometrical interpretation of the fourtherdRunge-Kutta method. The derivative is
evaluated at four points, once at the intial point, twiceha trial midpoint and once at the trial end-
point. These four derivatives constitute one Runge-Kuiep sesulting in the final value fay; 11 =

yi + 1/6(k1 + 2ko + 2ks + ky).

13.5 Adaptive Runge-Kutta and multistep methods

In preparation.
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Figure 13.2: Block tied to a wall with a spring tension actomwjit.

13.6 Physics examples

13.6.1 Ideal harmonic oscillations

Our first example is the classical case of simple harmonidlatsens, namely a block sliding on a
horizontal frictionless surface. The block is tied to a waillh a spring, portrayed in e.g., Fig_IB.2. If
the spring is not compressed or stretched too far, the fardbeblock at a given positian is

F = —kxz. (13.50)

The negative sign means that the force acts to restore teetdbjan equilibrium position. Newton’s
equation of motion for this idealized system is then

2
m%gz—m, (13.51)
or we could rephrase it as
d*z k 2

with the angular frequenay? = k/m.

The above differential equation has the advantage thahibeasolved analytically with solutions on
the form

x(t) = Acos(wpt + 1),

where A is the amplitude and the phase constant. This provides in turn an important testhie
numerical solution and the development of a program for moneplicated cases which cannot be solved
analytically.

As mentioned earlier, in certain cases it is possible toitevarsecond-order differential equation as
two coupled first-order differential equations. With thespion x(¢) and the velocityy(t) = dx/dt we
can reformulate Newton’s equation in the following way

dx(t)
dt
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13.6 — Physics examples

and
W) _ 2. (13.54)
dt

We are now going to solve these equations using the RungexkKéthod to fourth order discussed
previously. Before proceeding however, it is important adenthat in addition to the exact solution, we
have at least two further tests which can be used to checlobutias.

Since functions like-os are periodic with a periodr, then the solution:(¢) has also to be periodic.
This means that

z(t+T)=z(t), (13.55)

with T the period defined as

poim_ (13.56)

wo +/k/m
Observe thaf” depends only o /m and not on the amplitude of the solution or the constant
In addition to the periodicity test, the total energy has afsbe conserved.
Suppose we choose the initial conditions

z(t=0)=1m v(t=0)=0m/s, (13.57)

meaning that block is at rest &t= 0 but with a potential energy

1 1
Ey = Sha(t = 0)% = k- (13.58)

The total energy at any timehas however to be conserved, meaning that our solution Hasfitdhe
condition

1 1
Ey = §kx(t)2 + §mv(t)2. (13.59)

An algorithm which implements these equations is includeldv.

1. Choose the initial position and speed, with the most comaicev (¢ = 0) = 0 and some fixed
value for the position. Since we are going to test our resgtanst the periodicity requirement, it
is convenient to set the final time equal = 27, where we choosg/m = 1. The initial time is
set equal td; = 0. You could alternatively read in the ratig'm.

2. Choose the method you wish to employ in solving the problenthe enclosed program we have
chosen the fourth-order Runge-Kutta method. Subdivideithe interval(t;, ¢ ;] into a grid with
step size

tr—t;
h=-+*—
N )
whereN is the number of mesh points.

3. Calculate now the total energy given by
1 1
Ey = ~kx(t = 0)2 = Zk.
0 2]{73}( 0) 2]{7

and use this when checking the numerically calculated grfeogn the Runge-Kutta iterations.

4. The Runge-Kutta method is used to obtajn; andwv;, starting from the previous valuas and
Vi
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5. When we have computedv);, we upgrade,; 1 = t; + h.
6. This iterative process continues till we reach the maxrmtimet ; = 2.

7. The results are checked against the exact solution. érantire, one has to check the stability of
the numerical solution against the chosen number of mestgyi.

Program to solve the differential equations for a sliding bbck
The program which implements the above algorithm is presehere, with a corresponding

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapterl3/cpp/programl.cpp

/% This program solves Newton's equation for a@lock
sliding on a horizontal frictionless surface. Thelock
is tied to a wall with a spring, and Newton’'s equation
takes theform
m d"2x/dt”r2 =kx
with k the spring tension and m the mass of thdock.
The angular frequency is omega”2 = k/m and we set it equal
1 in this exampleprogram.

Newton’'s equation is rewritten as two coupled differential
equations, one for theposition x and one for the velocity v
dx/dt = v and
dv/dt = —x when we set k/m=1

We use therefore a twedimensional arrayto represent x and v
as functions of t

y[0] == X
y[l] ==v
dy[0]/dt = v

dy[1l]/dt = —x

The derivatives are calculated by the user definéunction
derivatives.

The user hasto specify the initial velocity (usually v_0=0)
the number of steps and the initialposition. In the programme
below we fix the time interval [a,b]to [0,2xpi].

x/

#include <cmath>

#include <iostream>

#include <fstream >

#include <iomanip>

#include "lib.n"

using namespace std;

/1l output file as global variable
ofstream ofile;

/!l function declarations

void derivatives ouble, double x, double x);
void initialise ( double&, double&, int&);
void output( double, double *, double);
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void runge_kutta_4double x, double %, int, double, double,
double %, void (x)(double, double x, double x));

int main(int argc, chaf argv][])
{
/I declarations of variables
double xy, xdydt, xyout, t, h, tmax, EO;
double initial_x , initial_v;
int i, number_of_steps, n;
char xoutfilename;
/!l Read in output file , abort if there are too few commanrdine

arguments
if ( argec <= 1 ){
cout << "Bad Usage: " << argv[0] <<
" read also output file on same line" << endl;
exit(1);
}
elsef

outfilename=argv[1];

ofile .open(outfilename);

/Il this is the number of differential equations
n = 2;

/Il allocate spacein memory for the arrays containing the derivatives
dydt = new double[n];

y = new double[n];

yout = new double[n];

/l read in the initial position, velocity and number of steps
initialise (initial_x, initial_v , number_of_steps);

/Il setting initial values, stepsize and max time tmax

h = 4xacos(—1.)/( (double) number_of_steps); /Il the stepize
tmax = hknumber_of_steps; /!l the final time

y[0] = initial_x; [/l initial position

y[1l] = initial_v; /I initial velocity

t=0.; [/ initial time

EO = 0.5«y[0]xy[0]+0.5xy[1]xy[1]; /1 the initial total energy

/I now we start solving the differential equations using tiR&4 method
while (t <= tmax){

derivatives (t, y, dydt); /I initial derivatives
runge_kutta_4(y, dydt, n, t, h, yout, derivatives);
for (i = 0; i < n; i++) {
yli] = yout[i];
}
t += h;
output(t, y, EO); /1 write to file
}
delete [] y; delete [] dydt; delete [] yout;
ofile .close(); // close output file
return O;

} /!l End of main function

/1 Read in from screen thenumber of steps,
/1 initial position and initial speed
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void initialise (double& initial_x , double& initial_ v, int&
number_of_steps)
{

cout << "Initial position = ";
cin >> initial_x;

cout << "Initial speed = ";

cin >> initial_v;

cout << "Number of steps = ";
cin >> number_of_steps;

} /! end of function initialise

/1 this function sets up the derivatives for this speciaase
void derivatives @ouble t, double xy, double xdydt)
{
dydt[0]=y[1]; /I derivative of x
dydt[1l]=—y[O0]; // derivative of v
} // end of function derivatives

/1! function to write out the final results
void output(double t, double xy, double EO)
{
ofile << setiosflags(ios::showpoint | ios::uppercase);

ofile << setw(15) << setprecision (8) << t;
ofile << setw(15) << setprecision(8) << y[0];
ofile << setw(15) << setprecision(8) << y[1];
ofile << setw(15) << setprecision(8) << cos(t);
ofile << setw(15) << setprecision(8) <<
0.5xy[0]*y[0]+0.5xy[1]*y[1] —EO << endl;
} [/l end of function output

[ This function upgrades afunction y (input as apointer)
and returns theresult yout, also as apointer. Note that
these variables are declared as arrays. It also receives as
input the starting value for the derivativesn the pointer
dydx. It receives also the variable n which represents the
number of differential equations, the stepize h and
the initial value of x. It receives also theame of the
function xderivs where the given derivative is computed

*/

void runge_kutta_4double xy, double xdydx, int n, double x, double h,

double xyout, void (xderivs)(double, double %, double

*))

int i;

double xh,hh,h6;

double xdym, xdyt, xyt;

/1 allocate space for local vectors

dym = new double [n];
dyt = new double [n];
yt = new double [n];
hh = hx0.5;
hé = h/6.;
xh = x+hh;
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for (i = 0; i < n; i++) {
yt[i] = y[i]+hh xdydx[i];

(xderivs) (xh,yt,dyt); // computation of k2, eq. 3.60
for (i = 0; i < n; i++) {

yt[i] = y[i]+hhsdyt[i];
}
(xderivs)(xh,yt,dym); // computation of k3, eq. 3.61
for (i=0; i < n; i++) {

yt[i] = y[i]+hxdym[i];
dym[i] += dyt[i];

}
(xderivs) (x+h,yt,dyt); // computation of k4, eq. 3.62
/1 now we upgrade yin the array yout
for (i = 0; i < n; i++){
yout[i] = y[i]+h6x(dydx[i]+dyt[i]+2.0xdym[i]);
}

delete []dym;
delete [] dyt;
delete [] vyt;
} /I end of function Runge-kutta 4

In Fig.[I33 we exhibit the development of the differencenssn the calculated energy and the exact
energy att = 0 after two periods and witllv = 1000 and N = 10000 mesh points. This figure
demonstrates clearly the need of developing tests for amgdke algorithm used. We see that even for
N = 1000 there is an increasing difference between the computedgned the exact energy after only
two periods.

13.6.2 Damping of harmonic oscillations and external ferce

Most oscillatory motion in nature does decrease until tlpldcement becomes zero. We call such a
motion for damped and the system is said to be dissipatifeerdihan conservative. Considering again
the simple block sliding on a plane, we could try to implem&nth a dissipative behavior through a drag
force which is proportional to the first derivative ©fi.e., the velocity. We can then expand Hq. (1B.52)

to
A’z dx
wherev is the damping coefficient, being a measure of the magnitéitteealrag term.

We could however counteract the dissipative mechanism plyimg e.g., a periodic external force

F(t) = Bceos(wt), (13.61)
and we rewrite Eq[{13.60) as
d*x 9 dx

Although we have specialized to a block sliding on a surféloe above equations are rather general
for quite many physical systems.

If we replacer by the chargé), v with the resistanc®, the velocity with the current, the inductance
L with the massn, the spring constant with the inverse capacitaficend the force” with the voltage
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Figure 13.3: Plot oAE(t) = Ey — Ecomputed fOr N = 1000 and N = 10000 time steps up to two
periods. The initial position:; = 1 m and initial velocityvy = 0 m/s. The mass and spring tension are
settok =m = 1.
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Figure 13.4: Simple RLC circuit with a voltage sourice

dropV, we rewrite Eq.[[13.82) as

?’Q  Q dQ
Ly + G+ R =V(1). (13.63)

The circuit is shown in Fid_T13 4.

How did we get there? We have defined an electric circuit whimhsists of a resistanck with
voltage dropl R, a capacitor with voltage dro /C' and an inductod. with voltage dropLdI/dt. The
circuit is powered by an alternating voltage source andgukinchhoff’s law, which is a consequence of
energy conservation, we have

V(t)=IR+ LdI/dt + Q/C, (13.64)
and using
dQ
1= e (13.65)
we arrive at Eq.[{13.83).

This section was meant to give you a feeling of the wide rafig@plicability of the methods we have
discussed. However, before leaving this topic entirely]lwlevelve into the problems of the pendulum,
from almost harmonic oscillations to chaotic motion!

13.6.3 The pendulum, a nonlinear differential equation

Consider a pendulum with massat the end of a rigid rod of lengthattached to say a fixed frictionless
pivot which allows the pendulum to move freely under gravitythe vertical plane as illustrated in
Fig.[135.

The angular equation of motion of the pendulum is again giwehNewton’s equation, but now as a
nonlinear differential equation

d*0 ,
ml@ + mgsin(0) =0, (13.66)
with an angular velocity and acceleration given by
de
=]— 13.67
v=1—, (13.67)
and 2
d
a = ZW' (13.68)
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pivot

length |

mass

mg

Figure 13.5: A simple pendulum.

For small angles, we can use the approximation
sin(f) ~ 6.
and rewrite the above differential equation as

d*0 g
— =—=0 13.69
2 70, ( )
which is exactly of the same form as EQ.{13.52). We can theslcbur solutions for small values 6f
against an analytical solution. The period is now

2

T="T_ (13.70)
l/g
We do however expect that the motion will gradually come teiash due a viscous drag torque acting

on the pendulum. In the presence of the drag, the above equstcomes

d*0 de
p7e) + o + mgsin(0) = 0, (213.71)
wherer is now a positive constant parameterizing the viscosityhef medium in question. In order

to maintain the motion against viscosity, it is necessargdd some external driving force. We choose
here, in analogy with the discussion about the electriadira periodic driving force. The last equation

becomes then

ml

2
mlili—tg + 1/2—? + mgsin(0) = Acos(wt), (13.72)
with A andw two constants representing the amplitude and the angelquéncy respectively. The latter

is called the driving frequency.
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If we now define the natural frequency
wo =Vg/l, (13.73)

the so-called natural frequency and the new dimensionkesstigies

t = wot, (13.74)
with the dimensionless driving frequency
o= (13.75)
wo

and introducing the quantit§, called thequality factor,

mg

= (13.76)
wolV
and the dimensionless amplitude
A=A (13.77)
mg
we can rewrite Eq[{I3.72) as
20 1 . .
Z? + éfl_z + sin(f) = Acos(wt). (13.78)

This equation can in turn be recast in terms of two coupletdirder differential equations as follows

db
- = A, 13.79
ikl ( )
and
% = —% — sin(0) + Acos(@t). (13.80)

These are the equations to be solved. The faGtaepresents the number of oscillations of the
undriven system that must occur before its energy is sigmiflg reduced due to the viscous drag. The
amplitude A is measured in units of the maximum possible gravitatiooajue whilew is the angular
frequency of the external torque measured in units of thelgem’s natural frequency.

13.6.4 Spinning magnet

Another simple example is that of e.g., a compass needléstfrate to rotate in a periodically reversing
magnetic field perpendicular to the axis of the needle. Theton is then

d%6 " .
el —YBocos(wt)sm(G), (13.81)

whereé is the angle of the needle with respect to a fixed axis alondield 1. is the magnetic moment
of the needle] its moment of inertia and®; andw the amplitude and angular frequency of the magnetic
field respectively.
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13.7 Physics Project: the pendulum

13.7.1 Analytic results for the pendulum

Although the solution to the equations for the pendulum a@y be obtained through numerical efforts,
it is always useful to check our numerical code against dicadplutions. For small angles we have
sinf ~ @ and our equations become

de

@, 13.82
= =0 (13.82)

and
do 0

= —% — 0+ Acos(&i). (13.83)
These equations are linear in the angjkend are similar to those of the sliding block or the RLC citcui
With given initial conditionsy, andé, they can be solved analytically to yield

I B
0(1) - [90 = %] e /%cos( 1 — 15y (13.84)

. A(1—302 _r . / A(1=0?)cos(@T)+2 sin(&T)
+ |:UO + 20_& - %] (& /2QS'LTL( 1 - 462%7—) + (1_02)2+®2/QQ2 5

io2 .
@(t) = |:’[10 - %} € /2QCOS(1 / 1-— ﬁT) (1385)
P Al(1—02)—o2 /02 _r . GA[-(1—02)sin(@T)+2 cos(@7)]
- [90 +a36— %] e T/ sin(\ /1 = 12 7) + =P )

with @ > 1/2. The first two terms depend on the initial conditions and gepgonentially in time. If
we wait long enough for these terms to vanish, the soluti@eeine independent of the initial conditions
and the motion of the pendulum settles down to the followingpge orbit in phase space

A1 — &) cos(wT) + %sz’n(dn’)
(1—-a2)2+a2/Q? ’

0(t) = (13.86)

and ) R
WA[—(1 — &?)sin(@7) + Ecos(wT)]
i(t) = <
(1 _@2)2 +@2/Q2 ?
tracing the closed phase-space curve

0 2 ) 2
<Z> N <w[1> 1 (13.88)

A~

A
VI -2+ 222
This curve forms an ellipse whose principal axestendv. This curve is closed, as we will see from
the examples below, implying that the motion is periodicinng, the solution repeats itself exactly after
each period’ = 27 /. Before we discuss results for various frequencies, quiadtors and amplitudes,

it is instructive to compare different numerical methods.Fig.[T3:6 we show the angleas function
of time 7 for the case with) = 2, © = 2/3 and A = 0.5. The length is set equal tbom and mass of

(13.87)

with
A=

(13.89)
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the pendulum is set equal 1okg. The inital velocity isvg = 0 andfy = 0.01. Four different methods
have been used to solve the equations, Euler's method franflfBdT), Euler-Richardson’s method in
Egs. (I133R)I3:33) and finally the fourth-order Rungdt&scheme RK4. We note that after few time
steps, we obtain the classical harmonic motion. We would lndotained a similar picture if we were
to switch off the external forced = 0 and set the frictional damping to zero, i.€),= 0. Then, the
qualitative picture is that of an idealized harmonic oatitin without damping. However, we see that
Euler's method performs poorly and after a few steps itsrétyoic simplicity leads to results which
deviate considerably from the other methods. In the disondsereafter we will thus limit ourselves to

3 T
RK4 ——
: - Euler ......
2 o o Halfstep. —— |

i EUler-Ri_Chal_'"dson'-_- e

-3 | | | | | |
0 5 10 15 20 25 30 35

t/2m

Figure 13.6: Plot of) as function of timer with Q = 2, ® = 2/3 andA = 0.5. The mass and length
of the pendulum are set equaltoThe initial velocity isoy = 0 andfy = 0.01. Four different methods
have been used to solve the equations, Euler’s method franIBdLT), the half-step method, Euler-
Richardson’s method in Eq§.(1313£)-(13.33) and finallyftlueth-order Runge-Kutta scheme RK4. Only
N = 100 integration points have been used for a time intetval]0, 107].

present results obtained with the fourth-order Runge&uiéthod.

The corresponding phase space plot is shown iHEIgl 13.thémame parameters as in Fig.13.6. We
observe here that the plot moves towards an ellipse witlogiermotion. This stable phase-space curve is
called a periodic attractor. Itis called attractor becairsespective of the initial conditions, the trajectory
in phase-space tends asymptotically to such a curve inttie4i — oo. It is called periodic, since it
exhibits periodic motion in time, as seen from Hig._13.6. didiion, we should note that this periodic
motion shows what we call resonant behavior since the thindrfrequency of the force approaches the
natural frequency of oscillation of the pendulum. This isesdially due to the fact that we are studying
a linear system, yielding the well-known periodic motiorheThon-linear system exhibits a much richer
set of solutions and these can only be studied numerically.

In order to go beyond the well-known linear approximation e@nge the initial conditions to say
6o = 0.3 but keep the other parameters equal to the previous caseufeford is shown in Fig[I318.
The corresponding phase-space curve is shown ifLE1d. 18i9.clirve demonstrates that with the above
given sets of parameters, after a certain number of pertbdghase-space curve stabilizes to the same
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0.5

Figure 13.7: Phase-space curve of a linear damped penduitmiw= 2, © = 2/3 andA = 0.5. The
inital velocity isty = 0 andfy = 0.01.

-0.5F .

>

Figure 13.8: Plot of) as function of timer with Q@ = 2, © = 2/3 and A = 0.5. The mass of the
pendulum is set equal tbkg and its length to 1 m. The inital velocity ig = 0 andé, = 0.3.
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0.5+

-1 -0.5 0 0.5 1

Figure 13.9: Phase-space curve with= 2, & = 2/3 andA = 0.5. The mass of the pendulum is set
equal tol kg and its lengthh = 1 m.. The inital velocity isiy = 0 andfy = 0.3.

curve as in the previous case, irrespective of initial cbhoials. However, it takes more time for the
pendulum to establish a periodic motion and when a stableiorphase-space is reached the pendulum
moves in accordance with the driving frequency of the foildee qualitative picture is much the same as
previously. The phase-space curve displays again a finaldieattractor.

If we now change the strength of the amplitudedo= 1.35 we see in FigiI3.10 th#tas function
of time exhibits a rather different behavior from Hig.1328en though the initial conditions and all other
parameters except are the same. The phase-space curve is shown ifFIg] 13.11.

We will explore these topics in more detail in Section 13 8Here we extend our discussion to the
phenomena of period doubling and its link to chaotic motion.

13.7.2 The pendulum code

The program used to obtain the results discussed abovessntesl here. The enclosed code solves the
pendulum equations for any andlenith an external forcedcos(wt). It employes several methods for
solving the two coupled differential equations, from Eiglanethod to adaptive size methods coupled
with fourth-order Runge-Kutta. It is straightforward topdypthis program to other systems which exhibit
harmonic oscillations or change the functional form of tkiemal force.

We have also introduced the class concept, where we defifmugamnethods for solving ordinary
and coupled first order differential equations via thelass pendulum This methods access variables
which belong only to this particular class via thevate declaration. As such, the methods we list here
can easily be reused by other types of ordinary differeetiiations. In the code below, we list only the
fourth order Runge Kutta method, which was used to genehatalbove figures. For the full code see
programs/chapter13/program2.cpp.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter13/cpp/program?.cpp

#include <stdio.h>
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0 20 40 60 80 100

Figure 13.10: Plot of) as function of timer with Q@ = 2, @ = 2/3 andA = 1.35. The mass of the
pendulum is set equal tiokg and its length to 1 m. The inital velocityig = 0 andfy = 0.3. Every time
6 passes the valugm we reset its value to swing betweere [, pi]. This gives the vertical jumps in
amplitude.

15

Figure 13.11: Phase-space curve after 10 periods@ith 2, © = 2/3 and A = 1.35. The mass of the
pendulum is set equal tbkg and its lengthi = 1 m. The inital velocity isip = 0 andfy = 0.3.
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#include <iostream.h>

#include <math.h>

#include <fstream.h>

/%

Different methods for solving ODEs are presented
We are solving the following egation:

m«| «(phi)’’ + viscosity«(phi)’ + mxg«sin(phi) = Axcos(omegat)

If you want to solve similar equations with other values you have

rewrite the methods ’'derivatives’ and ’'initialise ' and chge the
variables in the private

part of the class Pendulum

At first we rewrite the equation using the following definidns:
omega_0 = sqrt(gl)

t roof = omega_@t

omega_roof = omega/omega_0

Q = (mkg)/(omega_@reib)

A_roof = A/(mxQg)

and we get a dimensionless equation

(phi)’" + 1/Qx(phi)’ + sin(phi) = A_roofrcos(omega_roodft_roof)

This equation can be written as two equations of first order:

(phi)" =v
(v)’ = —v/Q — sin(phi) +A_roofrcos(omega_roodft_roof)

All numerical methods are appliedo the last two equations.
The algorithms are taken from the bookin introduction to computer
simulation methods"

x/
class pendelum
{ .
private :
double Q, A_roof, omega 0, omega_roof,g; //
double y[2]; // for the initial—-values of phi and v

int n; /!l how many steps
double delta_t,delta_t _roof;
I/l Definition of methodsto solve ODEs
public:
void derivatives double,doublex,doublex);
void initialise ();
void euler();
void euler_cromer();
void midpoint();
void euler_richardson ();
void half_step ();
void rk2(); //runge-kutta—second-order
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void

rk4 _step@ouble,doublex,doublex,double);

function

void

rkd () ;

I/l we need itin
rk4 () and asc ()

/I runge-kutta—fourth—order

void asc(); //rungekutta—fourth—order with adaptive stepsize contro

h

/!l This function defines the particular coupled first order ODEs
void pendelum::derivativesdouble t, doublex in, doublex out)

{ /'« Here we are calculating the derivatives at (dimensionledshe t

"in’ are the values of phi and v, which are used for the calculat
The results are givento 'out’ x/
out[0]=in[1]; [/ out[0] = (phi)" =V
it (Q)
out[l]==in[1]/((double)Q)—sin (in[0])+A_roofxcos(omega_roodt); //out
(1] = (phi)™
else

out[l]=—sin(in[0])+A_roofxcos(omega_roodft); [//out[l] = (phi)"”’

}

I/l Here we define all
void pendelum::
{

double m,|,omega,A, viscosity ,phi_0,v_0,t end;

cout<<'Solving the differential eqation of the pendulum!\n",

cout<<'We have a pendulum with mass m, length 1. Then we have a
periodic force with amplitude A and omega\n",;

Cout<<'Furthermore there is a viscous drag coefficient.\n";

cout<<'The initial conditions at t=0 are phi_O and v_O0\n";

cout<<'Mass m: ";

cin>>m;

cout<<'length 1: ";

cin>>1;

cout<<'omega of the force: ",

cin>>omega;

cout<<'amplitude of the force: ";

cin>>A;

cout<<'The value of the viscous drag constant (viscosity): ";

cin>>viscosity;

cout<<'phi_0: ";

cin>>y[0];

cout<<'v_0: ",

cin>>y[1];

cout<<'Number of time steps or integration steps:";

cin>>n;

COUut<<"Final time steps as multiplum of pi:";

cin>>t_end;

t_end x= acos(-1.);

g=9.81;

/I We need the following values:

omega_0O=sqrt(g/(double)l)); I/l omega of the pendulum

if (viscosity) Q= mg/((double)omega_@viscosity);

else Q=0; //calculating Q

A_roof=A/((double)m«g) ;

input parameters.
initialise ()
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omega_roof=omega/(double)omega_0);
delta_t roof=omega «&_end/((double)n); /ldelta_t without dimension
delta_t=t_end/(@ouble)n);
}
[/l fourth order Run
void pendelum::rk4 _stepdouble t,double xyin,double xyout,double delta_t)

{
/%
The function calculates one step of fourthorder-runge-kutta—method
We will need it for the normal fourthorder—Runge-Kutta—method and
for RK—method with adaptive stepsize control
The function calculates the value of y(t + delta_t) using fourth
order—RK—method
Input: time t and the stepsize delta_t, yin (values of phi awndat
time t)
Output: yout (values of phi and v at time t+delta_t)
x/

double k1[2],k2[2],k3[2],k4[2],y_k[2];

/Il Calculation of k1

derivatives (t,yin,yout);

kl[l]=yout[l]xdelta_t;

k1[O]=yout[O]xdelta_t;

y_k[0]=yin[0]+k1[0]*0.5;

y_k[1]=yin[1]+k1[1]*0.5;

[/« Calculation of k2 x/

derivatives (t+delta_£0.5,y k,yout);

k2[1]=yout[1l]xdelta_t;

k2[0]=yout[O]xdelta_t;

y_k[0]=yin[0]+k2[0]*0.5;

y_k[1]=yin[1]+k2[1]*0.5;

[/« Calculation of k3 x/

derivatives (t+delta_£0.5,y k,yout);

k3[1]=yout[1l]xdelta_t;

k3[0]=yout[O]xdelta_t;

y_k[0]=yin[0]+k3[0];

y_k[1]=yin[1]+k3[1];

[/« Calculation of k4 x/

derivatives (t+delta_t ,y k,yout);

k4[1l]=yout[l]xdelta_t;

k4[0]=yout[O]xdelta_t;

[/« Calculation of new values of phi and w«/

yout[0]=yin[0]+1.0/6.0«(k1[0]+2xk2[0]+2+xk3[0]+k4[0]);

yout[1l]=yin[1]+1.0/6.0«(k1[1]+2xk2[1]+2«xk3[1]+k4[1]);
}

void pendelum::rk4 ()
{
/«*We are using the fourthorder—Runge-Kutta—algorithm
We haveto calculate the parameters k1, k2, k3, k4 for v and phi,
so we use to arrays kl1l[2] and k2[2] for this
k1[0], k2[0] are the parameters for phi,
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k1[1], k2[1] are the parameters for v
*/

int i;
double t_h;
double yout[2],y_h[2]; //k1l[2],k2[2],k3[2],k4[2],y_k[2];

t _h=0;
y_h[0]=y[0]; //phi
y_h[1l]=y[1]; [lv
ofstream fout(rk4.out");
fout.setf(ios:: scientific);
fout.precision(20);
for(i=1; i<=n; i++){
rk4_step(t_h,y h,yout,delta_t_roof);
fout<<ixdelta_t<<\t\t"<<yout[0]<<"\t\t"<<yout[l]<<"\n";
t h+=delta_t_roof;
y_h[0]=yout[0];
y_h[1l]=yout[1];
}

fout.close;

}

int main ()

{
pendelum testcase;
testcase.initialise ();
testcase .rk4();
return O;

} // end of main function

13.8 Exercises and projects

Project 13.1: studies of neutron stars

In the pendulum example we rewrote the equations as tworgiffel equations in terms of so-called
dimensionless variables. One should always do that. Thieratdeast two good reasons for doing this.

— By rewriting the equations as dimensionless ones, the anogrill most likely be easier to read,
with hopefully a better possibility of spotting eventuatags. In addtion, the various constants
which are pulled out of the equations in the process of réngehe equations dimensionless, are
reintroduced at the end of the calculation. If one of thesestamts is not correctly defined, it is
easier to spot an eventual error.

— In many physics applications, variables which enter a difidal equation, may differ by orders of
magnitude. If we were to insist on not using dimensionlesmtjties, such differences can cause
serious problems with respect to loss of numerical pregisio

An example which demonstrates these features is the setuatiegs for gravitational equilibrium
of a neutron star. We will not solve these equations numigribare, rather, we will limit ourselves to
merely rewriting these equations in a dimensionless form.
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The equations for a neutron star

The discovery of the neutron by Chadwick in 1932 prompteddaarto predict the existence of neutron
stars. The birth of such stars in supernovae explosions wggested by Baade and Zwicky 1934. First
theoretical neutron star calculations were performed dyndo, Oppenheimer and Volkoff in 1939 and
Wheeler around 1960. Bell and Hewish were the first to discavesutron star in 1967 agadio pulsar.
The discovery of the rapidly rotating Crab pulsar ( rapidiyating neutron star) in the remnant of the
Crab supernova observed by the chinese in 1054 A.D. confitheetink to supernovae. Radio pulsars
are rapidly rotating with periods in the rang#33 s < P < 4.0 s. They are believed to be powered by
rotational energy loss and are rapidly spinning down witliquederivatives of ordeP ~ 1012 —1016,
Their high magnetic field leads to dipole magnetic braking radiation proportionahtomagnetic field
squared. One estimates magnetic fields of the ordét ef 10! — 10'® G. The total number of pulsars
discovered so far has just exceeded 1000 before the turre shilflenium and the number is increasing
rapidly.

The physics of compact objects like neutron stars offersnamguing interplay between nuclear
processes and astrophysical observables, see Refs. [§0+82ther information and references on the
physics of neutron stars. Neutron stars exhibit conditfan$rom those encountered on earth; typically,
expected densitigsof a neutron star interior are of the ordernéf or more times the densify; ~ 4-10'*
glen? at 'neutron drip’, the density at which nuclei begin to dissoand merge together. Thus, the
determination of an equation of state (EoS) for dense migttessential to calculations of neutron star
properties. The EoS determines properties such as the arags, the mass-radius relationship, the crust
thickness and the cooling rate. The same EOS is also crutiedltulating the energy released in a
supernova explosion.

Clearly, the relevant degrees of freedom will not be the samthe crust region of a neutron star,
where the density is much smaller than the saturation deatiuclear matter, and in the center of the
star, where density is so high that models based solely ersicting nucleons are questionable. Neutron
star models including various so-called realistic equmstiof state result in the following general picture
of the interior of a neutron star. The surface region, wiiidgl densities < 10° g/cn?, is a region in
which temperatures and magnetic fields may affect the emjuafistate. The outer crust fan® g/cm?
< p < 4-10"g/en? is a solid region where a Coulomb lattice of heavy nuclei &igr 3-equilibrium
with a relativistic degenerate electron gas. The innertdars4 - 10 g/cm® < p < 2 - 10*g/em?
consists of a lattice of neutron-rich nuclei together wigugerfluid neutron gas and an electron gas. The
neutron liquid for2 - 104 g/cn?® < p < -10'g/cm? contains mainly superfluid neutrons with a smaller
concentration of superconducting protons and normalrelest At higher densities, typicall/— 3 times
nuclear matter saturation density, interesting phaseitians from a phase with just nucleonic degrees
of freedom to quark matter may take place. Furthermore, oag mave a mixed phase of quark and
nuclear matter, kaon or pion condensates, hyperonic mstteng magnetic fields in young stars etc.

Equilibrium equations

If the star is in thermal equilibrium, the gravitational deron every element of volume will be balanced
by a force due to the spacial variation of the presdar& he pressure is defined by the equation of state
(E0S), recall e.g., the ideal g&s= NkpT. The gravitational force which acts on an element of volume
at a distance is given by

Gm
Feraw = —T—zp/cz, (13.90)
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whereG is the gravitational constang(r) is the mass density and(r) is the total mass inside a radius
r. The latter is given by

4 T
m(r) = —7; / p(r)r"?dr’! (13.91)
¢ Jo
which gives rise to a differential equation for mass and ifgns
dm 9 9
— =Admrep(r)/c. (13.92)
dr
When the star is in equilibrium we have
dpP Gm(r) 9
o= 2 P/ (13.93)

The last equations give us two coupled first-order difféedieguations which determine the structure
of a neutron star when the EoS is known.

The initial conditions are dictated by the mass being zetbeatenter of the star, i.e., when= 0,
we havemn(r = 0) = 0. The other condition is that the pressure vanishes at tliacguof the star. This
means that at the point where we have= 0 in the solution of the differential equations, we get thaltot
radius R of the star and the total mass(r = R). The mass-energy density when= 0 is called the
central density,. Since both the final masi and total radiug? will depend onp;, a variation of this
quantity will allow us to study stars with different massesl aadii.

Dimensionless equations

When we now attempt the numerical solution, we need howevegdcale the equations so that we deal
with dimensionless quantities only. To understand whysiter the value of the gravitational constant
G and the possible final mass(r = R) = Mp. The latter is normally of the order of some solar masses
Mo, with M, = 1.989 x 103° Kg. If we wish to translate the latter into units of MeV/ave will have
that My ~ 105 MeV/c2. The gravitational constant is in units 6f= 6.67 x 10=% x he (MeV/c?)~2.
It is then easy to see that including the relevant valuestesd quantities in our equations will most
likely yield large numerical roundoff errors when we add @@mumberﬁl—f to a smaller numbeP in
order to obtain the new pressure. We list here the units ofdhieus quantities and in case of physical
constants, also their values. A bracketed symbol [Restands for the unit of the quantity inside the
brackets.

We introduce therefore dimensionless quantities for theus® = /Ry, mass-energy densify =
p/ps, pressure? = P/p, and massn = m/M.

The constantd/, and R, can be determined from the requirements that the equatiof fand -
should be dimensionless. This gives

dMorn .
—4 v 13.94
T = AnEi (13.94)
yielding
CZ? = AnR3i2p,p/ Mo (13.95)
T

If these equations should be dimensionless we must demand th
AT R3ps /My = 1. (13.96)
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Quantity  Units

[P] MeVfm—3

[p] MeVfm—3

[n] fm=3

[m] MeVc—2

Mg 1.989 x 103 Kg=1.1157467 x 10%° MeVc—2
1Kg =10%0/1.78266270D0 MeVc 2

[r] m

G hic6.67259 x 10~4° MeV—2¢~4

hc 197.327 MeVfim

Correspondingly, we have for the pressure equation

dps P mpsp
= —-GM, 13.97
dRgr ~ Mo R272 (13.97)
and since this equation should also be dimensionless, Wwéavi
GMy/Ry = 1. (13.98)

This means that the constaritg and M which will render the equations dimensionless are given by

1
Ry = ——= 13.99
0 /7PSG47T’ ( )

and

My = —2TPs (13.100)

(Vp G
However, since we would like to have the radius expressedits of 10 km, we should multiplyz, by
10719, since 1 fm =10~'> m. Similarly, M, will come in units of MeV/c?, and it is convenient therefore
to divide it by the mass of the sun and express the total massrirs of solar masse¥.
The differential equations read then

dP wmp  din .
—_— = . 13.101
a2 a0 P ( )

In the solution of our problem, we will assume that the massgy density is given by a simple
parametrization from Bethe and Johnson [83]. This paranagimn givesp as a function of the number
densityn = N/V, with N the total number of baryons in a voluriie It reads

n)= X NTTT 4 nmy, .
p(n) = 236 x n?> (13.102)

wherem,, = 938.926MeV/c?, the mass of the neutron (averaged). This means that Biheefm—3, we
have that the dimension gfis [p] =MeV/c>fm~3. Through the thermodynamic relation

OF
P=—a (13.103)
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whereF is the energy in units of MeVfcwe have

P(n) = nag? — p(n) = 363.44 x n>%, (13.104)
We see that the dimension of pressure is the same as thatroéseenergy density, i.¢F] =MeV/c2fm 3.
Here comes an important point you should observe when gpthia two coupled first-order differ-
ential equations. When you obtain the new pressure given by
P
Paew = L 5 Py, (13.105)
dr
this comes as a function ef However, having obtained the new pressure, you will needsto Eq.
([@3103) in order to find the number density This will in turn allow you to find the new value of the
mass-energy densip(n) at the relevant value of.
In solving the differential equations for neutron star éigtium, you should proceed as follows

1. Make first a dimensional analysis in order to be sure thatlations are really dimensionless.

2. Define the constant®, and M in units of 10 km and solar madd,. Find their values. Explain
why it is convenient to insert these constants in the finalltesnd not at each intermediate step.

3. Set up the algorithm for solving these equations and veiteain program where the various
variables are defined.

4. Write thereafter a small function which uses the exposssfor pressure and mass-energy density

from Eqgs. [(I3.104) and{13.7102).
5. Write then a function which sets up the derivatives

iip
e

2p. (13.106)

7
6. Employ now the fourth order Runge-Kutta algorithm to abteew values for the pressure and the

mass. Play around with different values for the step sizecamdpare the results for mass and
radius.

7. Replace the fourth order Runge-Kutta method with the kniuler method and compare the
results.

8. Replace the non-relativistic expression for the derieadf the pressure with that from General
Relativity (GR), the so-called Tolman-Oppenheimer-Vellayuation
dP (P +p)(FP +m)

dr - 72 _ omp (13107)

and solve again the two differential equations.

9. Compare the non-relatistic and the GR results by plottirags and radius as functions of the
central density.
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Project 13.2: studies of white dwarf stars

This project contains a long description of the physics @fipact objects such as white dwarfs. It serves
as a background for understanding the final differentiabéiqns you need to solve. This project is taken
from the text of Koonin and Meredith [4].

White dwarfs are cold objects which consist mainly of heauglei such asFe, with 26 protons,
30 neutrons and their respective electrons, see for exaRgdle[80]. Charge equilibrium results in an
equal quantity of electrons and protons. You can read mavatakhite dwarfs, neutron stars and black
holes at the website of the Joint Institute for Nuclear Agtrgsics www.jinaweb.org or NASA's website
www.nasa.org. These stars are the endpoints of stars witlsesaof the size or smaller than our sun.
They are the outcome of standard nuclear processes andeantiviks as cold objects like white dwarfs
when they have used up all their nuclear fuel.

Where a star ends up at the end of its life depends on the maasjaunt of matter, it was born
with. Stars that have a lot of mass may end their lives as Hiatds or neutron stars. Low and medium
mass stars will become something called a white dwarf. Actlpivhite dwarf is half as massive as the
Sun, yet only slightly bigger than the Earth. This makes gtiwvarfs one of the densest forms of matter,
surpassed only by neutron stars.

Medium mass stars, like our Sun, live by burning the hydragahdwells within their cores, turning
it into helium. This is what our Sun is doing now. The heat tlhw §enerates by its nuclear fusion of
hydrogen into helium creates an outward pressure. In anbth#lion years, the Sun will have used up
all the hydrogen in its core.

This situation in a star is similar to a pressure cooker. idgatomething in a sealed container causes
a build up in pressure. The same thing happens in the SunouUgththe Sun may not strictly be a sealed
container, gravity causes it to act like one, pulling the stevard, while the pressure created by the hot
gas in the core pushes to get out. The balance between messligravity is very delicate.

Because a white dwarf is no longer able to create internaspre, gravity unopposedly crushes it
down until even the very electrons that make up a white dwatfbms are mashed together. In normal
circumstances, identical electrons (those with the sapia™)sare not allowed to occupy the same energy
level. Since there are only two ways an electron can spily, two electrons can occupy a single energy
level. This is what's know in physics as the Pauli Exclusiomé&ple. And in a normal gas, this isn’t
a problem; there aren’t enough electrons floating arounanepdetely fill up all the energy levels. But
in a white dwarf, all of its electrons are forced close togettsoon all the energy levels in its atoms
are filled up with electrons. If all the energy levels are fil]land it is impossible to put more than two
electrons in each level, then our white dwarf has becomerdegte. For gravity to compress the white
dwarf anymore, it must force electrons where they cannot@uce a star is degenerate, gravity cannot
compress it any more because quantum mechanics tells @sisheo more available space to be taken
up. So our white dwarf survives, not by internal combustimut, by quantum mechanical principles that
prevent its complete collapse.

With a surface gravity of 100,000 times that of the earth,dtreosphere of a white dwarf is very
strange. The heavier atoms in its atmosphere sink and thtetignes remain at the surface. Some white
dwarfs have almost pure hydrogen or helium atmosphere$igtitest of elements. Also, the very strong
gravity pulls the atmosphere close around it in a very thiedathat, if were it on earth, would be lower
than the tops of our skyscrapers!
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13.8.1 Equilibrium equations

We assume that the star is in thermal equilibrium. It exhibiso charge equilibrium, meaning the number
of electrons has to balance the number of protons. The gtirial pull on every element of volume is
balanced by the pressure set up by a degenerate gas of eeatrf = 0, since the temperature of
the star is well below the so-called Fermi temperature ofdleetrons. The electrons are assumed to
be relativistic and since the protons and neutrons have nowedr kinetic energy, we assume that the
pressure which balances the gravitational force is maigfyp by the relativistic electrons. The kinetic
energy of the electrons is also much larger than the elegtiextron repulsion or the attraction from the
nuclei. This means that we can treat the system as a gas aidgamerate electrons’Bt= 0 moving in
between a lattice of nuclei like iron. This is our ansatz. d&ghsn this we can derive the pressure which
counterbalances the gravitational force given by (for gveement of volume in a distaneefrom the

center of the star)
Gm(r
FGrav = _#p(’r)»
with G being the gravitational constant(r) the mass density (mass per volume) of a volume element a
distancer from the center of the star, amd(r) is the integrated mass within a radiusThe latter reads

m(r) = 477/ p(r ) dr’!
0

which yields a differential equation between the total meas$the mass density

dm

o = 4mr2p(r).
In equilibrium, the pressur® balances the gravitational force
dP  Gm(r)
E - 72 p(’l"),

and usinglP/dp = (dp/dr)(dP/dp) we obtain

dp__(4P\ Gm
dr dp r2 P

Together Withcil—T = 4712 p(r) we have now two coupled first-order ordinary differentialiatipns which
determine the structure of the white dwarf given an equatiostate P(p). The total radius is given by
the conditionp(R) = 0. Similarly, the mass for = 0 is m = 0. The density at = 0 is given by the
central density,, a parameter you will have to play with as input parameter.

By integrating the last equation, we find the density proffithe star. The radiug is determined
by the point where the density distributiongs= 0. The mass is then given by = m(R). Since both
the total mass and the radidswill depend on the central densipy, a variation of this parameter will
allow us to study stars with different masses. However, leefe can proceed, we need the pressure for
a relativistic gas of electrons.

Equation of state for a white dwarf

We will treat the electrons as a relativistic gas of fermiati& = 0. From statistical physics we can then
obtain the particle density as

L k2dk ki
" / 7'('2/0 3m2’
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where kr is the Fermi momentum, here represented by the wave nukherThe wave number is
connected to the momentum Vig = pr/A. The energy density is given by

1 [kr
e=FE/V = —2/ k2dk+/ (ick)? + m2ct.
™ Jo

This expression is of the fornfiy?/y? + a2. Performing the integration we obtain
E/V = ngmec?aie(x),
where we have defined

e(x) = 3 <x(1 +222)V/1 4 22 — In(z + /1 + x2)> ,

8z3

with the variabler defined as
hkp

MeC
We can rewriter in terms of the particle density as well
]{73
=NV =_L&,
" / 32

so that

hkp  (nh3r2\'?
mec  \ m3c3 ’

where we defing,y = 3("“3)63 with m,, the electron mass. Using the constagtresults finally in

3n2(h)°
hkp ( n )1/ 3
T = =(— .
mecC nQ

Since the mass of the protons and neutrons are larger byax f@cétthan the mass of the electrons,,
we can approximate the total mass of the star by the masgylehgtie nucleons (protons and neutrons).
This mass density is given by

p= Mpnpa

with M,, being the mass of the proton anglthe particle density of the nucleons. The mass of the proton
and the neutron are almost equal and we have set them eqaallter particle density,, can be related
to the electron density, which is the quantity we can calculate. The relation is $mp

ny, =n/Ye,

whereY, is the number of electrons per nucleon. PtfFe we gety, = % = 0.464, since we need to
have as many electrons as protons in order to obtain a t@aelof zero. Inserting numerical values for
the electron mass we get

no = 5.89 x 10*%cm 3.

The mass density is now
p=Mmn/Ye,
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and with

< n >1/3 < p >1/3

xr = _ = o s
no Po

and inserting the numerical value for the proton mass wdrbta
. Mpno

e

Using the parametéer, we can then study stars with different compositions. Thg orput parameters
to your code are thep. andY..

Now we want the equation for the pressure, based on the edergpjty. Using the thermodynamical
relation

=9.79 x 10°Y, g cm 3.

Po

p_ 0B _ 0EOx
oV Oz OV’

we can find the pressure as a function of the mass densithereafter we can fin%‘;, which allows us

to determine the mass and the radius of the star.

The term
ox

v’
can be found using the fact thatx n'/3 « V=3, This results in

ox T

v 3V
Taking the derivative with respect towe obtain
9 4 de

P = gnomec x e

I : . . 1/3 ,
We want the derivative aP in terms of the mass density Usingx = (,%) , we obtain

dP  dPdx
dp  dxdp’
With
dP 1 dw4g—;
%:§n0m8< dz )’
and
dr 1/)3/3 1
dp  3pop?3  3poa?’
we find up )
MeC
d_p =Y. M, v(z),

where we defined

= e

This is the equation for the derivative of the pressure todsaluo find

do_ (4PY"Gm
dr dp 2 P

Note thatr and~(z) are dimensionless quantities.
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Dimensionless form of the differential equations

In the numerical treatment of the two differential equasiove need to rescale our equations in terms of
dimensionless guantities, since several of the involvetstzmts are either extremely large or very small.
Furthermore, the total mass is of the order of the mass ofuttheapproximatel\2 x 103°kg while the
mass of the electron &x 1073! kg.

We introduce therefore a dimensionless radius /Ry, a dimensionless densigy= p/po (recall
thatz® = p/po) and a dimensionless mass= m/M.

We determine below the constarnit) and Ry by requiring that the equations fdcgl and% have to

be dimensionless. We get then
dMym

TR~ AmRaT pop.
resulting in
dm 9 _
= 4m R pop /M.

If we want this equation to be dimensionless, we must require
47TR8/)0/M0 =1.

Correspondingly, we have

dpop B GMyM, m _
dRyT Yemec? ) R Pop

with Ry

Yomec? 1/2
= 76 € = . 2 1 8Ye .
Ry ( 1mp0G Mp> 7.72 x 10°Y.cm

in order to yield a dimensionless equation. This results in
My = 47 R3py = 5.67 x 1033Y%g.

The radius of the sun iR = 6.95 x 10'° cm and the mass of the sunig, = 1.99 x 1033 g.
Our final differential equationg and7m read

These are the equations you need to code.

a) Verify the steps in the above derivations. Write a progwdrith solves the two coupled differential

equations
dp ~ m7p
ar 72
and
dm o
—_— =7
d? p?

using the fourth order Runge-Kutta method by integratingvard from7 = 0. ChooseY, = 1
and calculate the mass and radius of the star by varying thteateensityp,. ranging from10~!
to 10%. Check the stability of your solutions by varying the raditdph. Discuss your results.
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b) Compute also the density profiles for the above input patara and calculate the total kinetic
energy and rest energy of the electrons given by

R
U= /0 47 <§> r2dr,

E/V = ngmec?z3e(z),

where we have defined

with
e(z) = 8—33 (m(l + 222 V1 + 22 —In(z + V1 + w2)> :
T

and the variable: defined as
hkp
Xr = .
MeC

Compute also the gravitational energy

_[feme), .
W = /0 4dmradr.

r

You need to make these equations dimensionless.

Try to discuss your results and trends through simple phi/sgasoning.

c) Scale the mass-radius relation you found in a) to the cam@esponding t8°Fe and'?C. Three
white dwarf stars, Sirius B, 40 Eri B and Stein 2051, have emsnd radii in units of solar
values determined from observations to €053 + 0.028M,0.0074 £+ 0.0006RRs), (0.48 +
0.02M,0.0124 £ 0.0005R ), and(0.72 £+ 0.08 M, 0.0115 + 0.0012R), respectively. Verify
that these values are consistent with the model you havdapemae Can you say something about
the compositions of these stars?

Project 13.3: Period doubling and chaos

The angular equation of motion of the pendulum is given by téeig equation and with no external
force it reads

ml@ + mgsin(f) =0 (13.108)
dtz g - bl .
with an angular velocity and acceleration given by
de
=[— 13.109
v=1—, (13.109)
and ,
d-0

We do however expect that the motion will gradually come temh due a viscous drag torque acting
on the pendulum. In the presence of the drag, the above equstcomes

d*0 de .
¥} + o + mgsin(0) = 0, (13.111)

ml
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wherev is now a positive constant parameterizing the viscosityhefrhedium in question. In order to
maintain the motion against viscosity, it is necessary tbsaine external driving force. We choose here
a periodic driving force. The last equation becomes then

d?0 do , .
el + v + mgsin(0) = Asin(wt), (13.112)

with A andw two constants representing the amplitude and the angelguéncy respectively. The latter
is called the driving frequency.

ml

a) Rewrite Eqs[[I3.111) and (13.112) as dimensionlessiegsa

b) Write then a code which solves EQ.{I31111) using the fearder Runge Kutta method. Perform
calculations for at least ten periods with = 100, N = 1000 and N = 10000 mesh points and
values ofy = 1, v = 5andv = 10. Setl = 1.0 m, g = 1 m/s andm = 1 kg. Choose as initial
conditionsf(0) = 0.2 (radians) and(0) = 0 (radians/s). Make plots df (in radians) as function
of time and phase space plots bfsersus the velocity. Check the stability of your results as
functions of time and number of mesh points. Which case spomeds to damped, underdamped
and overdamped oscillatory motion? Comment your results.

c) Now we switch to Eq.[{I3.112) for the rest of the project.dAeh external driving force and set
l=g=1,m=1,v=1/2andw = 2/3. Choose as initial condition®0) = 0.2 andv(0) = 0
andA = 0.5 andA = 1.2. Make plots ofd (in radians) as function of time for at least 300 periods
and phase space plots @¥ersus the velocity. Choose an appropriate time step. Comment and
explain the results for the different values.4f

d) Keep now the constants from the previous exercise fixedd&uhowA = 1.35, A = 1.44 and
A = 1.465. Plot# (in radians) as function of time for at least 300 periods liese values afl and
comment your results.

e) We want to analyse further these results by making phassegpots off versus the velocity
using only the points where we haveé = 2n7 wheren is an integer. These are normally called
the drive periods. This is an example of what is called a Romesection and is a very useful way
to plot and analyze the behavior of a dynamical system. Camygaair results.

389






