Chapter 11

Quantum Monte Carlo methods

If, in some cataclysm, all scientific knowledge were to bemged, and only one sen-
tence passed on to the next generation of creatures, wiatnstiat would contain the most
information in the fewest words? | believe it is the atomigpbthesis (or atomic fact, or
whatever you wish to call it) that all things are made of atpiitde particles that move
around in perpetual motion, attracting each other whendhe little distance apart, but re-
pelling upon being squeezed into one another. In that ortersemyou will see an enormous
amount of information about the world, if just a little imagtion and thinking are applied.
Richard Feynman, The Laws of Thermodynamics.

11.1 Introduction

The aim of this chapter is to present examples of applicatidonte Carlo methods in studies of simple
quantum mechanical systems. We study systems such as theraroscillator, the hydrogen atom,
the hydrogen molecule, the helium atom and more complicatedths. Systems with man interacting
fermions and bosons such as ligdlde and Bose Einstein condensation of atoms ae discussedjtech
M8. Most quantum mechanical problems of interest in for gdarmatomic, molecular, nuclear and solid
state physics consist of a large number of interacting restand ions or nucleons. The total number
of particlesN is usually sufficiently large that an exact solution canrefdund. In quantum mechanics
we can express the expectation value for a g'@eoperator for a system d¥ particles as
_ JdRidR;...dRNU*(R1,Ra, ..., Ry)0(R1,Rs, ..., Ry)V(R1, Ry, ..., Ry)

0) = 11.1
(0) [dRidR;...dRNyU*(Ry, Ry, ..., Ry)¥ (R, Ry, ..., Ry) » (11.0)

where¥(R1,Ro,...,Ry) is the wave function describing a many-body system. Altioug have
omitted the time dependence in this equation, it is an in gm&ractable problem. As an example from
the nuclear many-body problem, we can write Schrédingeyiston as a differential equation with the
energy operatoﬁ (the so-called energy Hamiltonian) acting on the wave fioncas

~

HY(rq,..,ra,01,..,a4) = EV(ry,..,r4,01,..,04)

where

are the coordinates and
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Quantum Monte Carlo methods

are sets of relevant quantum numbers such as spin and iospirsystem ofd nucleons 4 = N + Z,
N being the number of neutrons a@dthe number of protons). There are

zAx<;‘>

coupled second-order differential equations3itt dimensions. For a nucleus lik€Be this number is
215040. This is a truely challenging many-body problem.

Eqg. (IT11) is a multidimensional integral. As such, Montel@€anethods are ideal for obtaining
expectation values of quantum mechanical operators. Qubigm is that we do not know the exact
wavefunction¥ (rq, ..,r 4, a1, ..,y ). We can circumvent this problem by introducing a functiorickih
depends on selected variational parameters. This funstionld capture essential features of the sys-
tem under consideration. With such a trial wave function ae then attempt to perform a variational
calculation of various observables, using Monte Carlo wastor solving Eq.[(TT]1).

The present chapter aims therefore at giving you an overefaiae variational Monte Carlo approach
to quantum mechanics. We limit the attention to the simplérmlis algorithm, without the inclusion of
importance sampling. Importance sampling and diffusiomiddcarlo methods are discussed in chapters
I8 andTIb.

However, before we proceed we need to recapitulate somes gidstulates of quantum mechanics.
This is done in the next section. The remaining sections déthl mathematical and computational
aspects of the variational Monte Carlo methods, with appbois from atomic and molecular physis.

11.2 Postulates of Quantum Mechanics

11.2.1 Mathematical Properties of the Wave Functions
Schrédinger’s equation for a one-dimensional onebodylprolbeads

h2

C2m

0V¥(x,t)
ot 7’
whereV (z, t) is a potential acting on the particle. The first term is theekinenergy. The solution to this
partial differential equation is the wave functidn(z, ¢t). The wave function itself is not an observable
(or physical quantity) but it serves to define the quantumhaeical probability, which in turn can be

used to compute expectation values of selected operatmis,as the kinetic energy or the total energy
itself. The quantum mechanical probabili®(x, t)dz is defined 4%

V20 (z,t) + V(z,t)¥(z,t) =k (11.2)

P(x,t)dr = V(x,t)"¥(x,t)dz, (11.3)

representing the probability of finding the system in a redietweenr andz + dx. It is, as opposed
to the wave function, always real, which can be seen fromdhewing definition of the wave function,
which has real and imaginary parts,

U(z,t) = R(z,t) +o(x,t), (11.4)

yielding
U(x, t)*U(x,t) = (R —oI)(R+I) = R* + I°. (11.5)

This is Max Born’s postulate on how to interpret the wave fiorcresulting from the solution of Schrédinger’s equation
Itis also the commonly accepted and operational interfioeta
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11.2 — Postulates of Quantum Mechanics

The variational Monte Carlo approach uses actually thisdiefin of the probability, allowing us thereby
to deal with real quantities only. As a small digression, & perform a rotation of time into the complex
plane, using- = it/h, the time-dependent Schrddinger equation becomes

ov(xz,7) h_282\1'(w,7')
or  2m 02

With V' = 0 we have a diffusion equation in complex time with diffusiamstant

—Vi(x,7)¥(x,T1). (11.6)

h2
" om’

This is the starting point for the Diffusion Monte Carlo methdiscussed in chaptEr]18. In that case
it is the wave function itself, given by the distribution @ndom walkers, that defines the probability.
The latter leads to conceptual problems when we have amtivatric wave functions, as is the case for
particles with the spin being a multiplum ©f2. Examples of such particles are various leptons such as
electrons, muons and various neutrinos, baryons like psodmd neutrons and quarks such as the up and
down quarks.

The Born interpretation constrains the wave function tobeglto the class of functions ih?>. Some
of the selected conditions which has to satisfy are

1. Normalization

/ P(z,t)dx :/ U(z,t)*"V(z,t)de =1 (11.7)
meaning that
/ U(z,t)" U (z,t)dr < oo (11.8)

2. ¥(z,t) ando¥(z,t)/0x must be finite
3. ¥(z,t) ando¥(zx,t)/0x must be continuous.

4. ¥(z,t) ando¥(x,t)/0x must be single valued

11.2.2 Important Postulates

We list here some of the postulates that we will use in ourudision.

Postulate |

Any physical quantityA(r, p) which depends on positianand momentunp has a corresponding quan-
tum mechanical operator by replacipg-ifis/, yielding the guantum mechanical operator

A = A(r, —ihy).

Quantity Classical definition QM operator

Position r r=r

Momentum p p=—ihy

Orbital momentum L =7 x p L=rx(—ihy)

Kinetic energy T = (p)?/2m T = —(h2/2m)(7)?

Total energy H=p*/2m)+ V(r) | H=—(12/2m)(7)? + V(r)
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Quantum Monte Carlo methods

Postulate I

The only possible outcome of an ideal measurement of theigadyguantity A are the eigenvalues of the
corresponding quantum mechanical operafor

:&7/)1/ = ayy,

resulting in the eigenvalues;, as, as, - - - as the only outcomes of a measurement. The corresponding
eigenstates), ¢, 13 - - - contain all relevant information about the system.

Postulate Il

Assume® is a linear combination of the eigenfunctions for A,

O =1y +catp =Y iy
1%
The eigenfunctions are orthogonal and we get

cy = /(<I>)*1/)l,d7'.
From this we can formulate the third postulate:

When the eigenfunction i®, the probability of obtaining the valug, as the outcome of a mea-
surement of the physical quantity is given by|c,|?> and+, is an eigenfunction oA with eigenvalue
ay.

As a consequence one can show that:
when a quantal system is in the stétethe mean value or expectation value of a physical quadtity, p)
is given by

(A) = /(@)*A(r, —ihy ) dr.
We have assumed th@thas been normalized, viz[(®)*®dr = 1. Else

[(®)*Addr

(4) = [(@)®dr

Postulate IV

The time development of a quantal system is given by

h— — HU
ot ’

with H the guantal Hamiltonian operator for the system.
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11.3 — First Encounter with the Variational Monte Carlo Metbd

11.3 First Encounter with the Variational Monte Carlo Methd

The required Monte Carlo techniques for variational Mon&l&€are conceptually simple, but the prac-
tical application may turn out to be rather tedious and cemplelying on a good starting point for the
variational wave functions. These wave functions shoutdutie as much as possible of the inherent
physics to the problem, since they form the starting pointafowvariational calculation of the expecta-
tion value of the hamiltoniadf. Given a hamiltoniand and a trial wave function, the variational
principle states that the expectation valu€ g%, defined through Postulate 11|

J dRY7(R)H(R)¥r(R)
H) = , 11.9
= TR (R (®) (11.9)
is an upper bound to the ground state endigyof the hamiltonian, that is
Ey < (H). (11.10)

To show this, we note first that the trial wave function can kpaeded in the eigenstates of the
hamiltonian since they form a complete set, see again Rostiil,

Ur(R) = a;¥(R), (11.11)

and assuming the set of eigenfunctions to be normalizedytioa of the latter equation in E.{11.9)
results in

5 @t [ AR (R)H(R) U, (R) _ 5, aiuan | ARV}, (R)E, (R) ¥, (R)

H) — = 11.12
=5 o [ AR, (R) T, (R) >0 - (1112)
which can be rewritten as )
E,
% > E. (11.13)

In general, the integrals involved in the calculation ofi®as expectation values are multi-dimensional
ones. Traditional integration methods such as the Gaugsrdze will not be adequate for say the com-
putation of the energy of a many-body system. The fact thateesl to sample over a multi-dimensional
density and that the probability density is to be normalibgdthe division of the norm of the wave
function, suggests that e.g., the Metropolis algorithm imaappropriate.

We could briefly summarize the above variational proceduitbe following three steps.

1. Construct first a trial wave functionr (R; «), for say a many-body system consisting/éfpar-
ticles located at positionR = (R4, ...,Rn). The trial wave function depends envariational
parametersy = (aq,...,aN).

2. Then we evaluate the expectation value of the hamiltofian

apy — L IRYE(R; ) H(R)Wr (R; )
[ dRIE(R; ) (R;r)

3. Thereafter we varg according to some minimization algorithm and return to th& tep.

287



Quantum Monte Carlo methods

The above loop stops when we reach the minimum of the eneyr@diog to some specified criterion.
In most cases, a wave function has only small values in laagts pf configuration space, and a straight-
forward procedure which uses homogenously distributedaanpoints in configuration space will most
likely lead to poor results. This may suggest that some kirichportance sampling combined with e.g.,
the Metropolis algorithm may be a more efficient way of olitagrthe ground state energy. The hope is
then that those regions of configurations space where the fuaetion assumes appreciable values are
sampled more efficiently.

The tedious part in a variational Monte Carlo calculatiothis search for the variational minimum.
A good knowledge of the system is required in order to caryreasonable variational Monte Carlo
calculations. This is not always the case, and often vanatiMonte Carlo calculations serve rather as
the starting point for so-called diffusion Monte Carlo ad#tions. Diffusion Monte Carlo is a way of
solving exactly the many-body Schrodinger equation by media stochastic procedure. A good guess
on the binding energy and its wave function is however necgssA carefully performed variational
Monte Carlo calculation can aid in this context. DiffusioroMe Carlo is discussed in depth in chapter

8.

11.4 Variational Monte Carlo for quantum mechanical system

The variational quantum Monte Carlo has been widely apptiestudies of quantal systems. Here we
expose its philosophy and present applications and drdisaussions.

The recipe, as discussed in chapler 8 as well, consists osgiwa trial wave functioyr(R) which
we assume to be as realistic as possible. The varBbdtands for the spatial coordinates, in ta3al
if we have N particles present. The trial wave function serves thetgviahg closely the discussion on
importance sampling in sectiénB.4, as a mean to define thetauzobability distribution

. 2
P(R;a) = [or(R; 0‘2)| . (11.14)
J lbr(R; )| dR; o
This is our new probability distribution function (PDF).
The expectation value of the energy Hamiltonian is given by
. dRV*(R)H(R)¥(R
(H) = J (R)H(R)¥(R) (11.15)

[dRU*(R)¥(R)
whereV is the exact eigenfunction. Using our trial wave functiondeéne a new operator, the so-called
local energy,

EL(R:0) = mﬁwﬂft; o), (11.16)

which, together with our trial PDF allows us to compute thpastation value of the local energy
(Ep(a)) = / P(R;a)E,(R;a)dR. (11.17)
This equation expresses the variational Monte Carlo approdVe compute this integral for a set of
values ofa and possible trial wave functions and search for the mininoéithe functionZ',(«). If the
trial wave function is close to the exact wave function, th&n(«)) should approackH). Eq. (I11V) is

solved using techniques from Monte Carlo integration, beeadtscussion below. For most hamiltonians,
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11.4 — Variational Monte Carlo for quantum mechanical systes

H is a sum of kinetic energy, involving a second derivatived armomentum independent and spatial
dependent potential. The contribution from the potengaitis hence just the numerical value of the
potential. A typical Hamiltonian reads thus

N X N N
= 5= 2 Vi+ D Voneboay () + Y V(| i = 15 ). (11.18)
i=1 i=1

1<j

where the sum runs over all particlds We have included both a onebody potentiglepody (r;) Which
acts on one particle at the time and a twobody interactigp(| r; — r; |) which acts between two
particles at the time. We can obviously extend this to moraglicated three-body and/or many-body
forces as well. The main contributions to the energy of ptalsiystems is largely dominated by one-
and two-body forces. We will therefore limit our attentianduch interactions only.

Our local energy operator becomes then

R 1 2 XN , N N
BL(R;) = Gy | 2 ¥+ 2 Vomoar(0) + 3 Vi mi =y ) | v (R,
(11.19)
resulting in

~ 1 K2 N N N
E 5 = — _——— 2 5 4 in i 11.20
L(R;a) T Ra) ( 5 ;:1 VZ> Yr(R; o) + ;:1 Vonebody (Ti) + Z_Zj Vint(| 1 =15 [), ( )

The numerically time-consuming part in the variational Mo@arlo calculation is the evaluation of the
kinetic energy term. The potential energy, as long as it hsimple r-dependence adds only a simple
term to the local energy operator.

In our discussion below, we base our numerical Monte Cailiatisa on the Metropolis algorithm.
The implementation is rather similar to the one discussezbimection with the Ising model, the main
difference residing in the form of the PDF. The main test topbeformed is a ratio of probabilities.
Suppose we are attempting to move from posifivoio R’. Then we perform the following two tests.

1. If
PR/;a) )
P(R;q) ’
whereR’ is the new position, the new step is accepted, or
2.
. PR:q)
-~ PR;a)’
wherer is random number generated with uniform PDF such that [0,1], the step is also

accepted.

In the Ising model we were flipping one spin at the time. Herechange the position of say a given
particle to a trial positioR’, and then evaluate the ratio between two probabilities. @ée again that
we do not need to evaluate the n&(ﬁ]z/zT(R; a)]Q dR (an in general impossible task), since we are
only computing ratios.

2This corresponds to the partition functighin statistical physics.
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Quantum Monte Carlo methods

When writing a variational Monte Carlo program, one shollbgs prepare in advance the required
formulae for the local energ¥;, in Eq. (T1.1¥) and the wave function needed in order to coefhé
ratios of probabilities in the Metropolis algorithm. Thewse functions are almost called as often as a
random number generator, and care should therefore beissein order to prepare an efficient code.

If we now focus on the Metropolis algorithm and the Monte Gavaluation of EQI{IT.17), a more
detailed algorithm is as follows

— Initialisation: Fix the number of Monte Carlo steps and thalization steps. Choose an initigl
and variational parametersand calculatéyr(R; «)|*. Define also the value of the stepsize to be
used when moving from one value Bfto a new one.

— Initialise the energy and the variance.
— Start the Monte Carlo calculation with a loop over a given banof Monte Carlo cycles

1. Calculate a trial positioRR, = R + r * step wherer is a random variable < [0, 1].
2. Use then the Metropolis algorithm to accept or rejectiis’e by calculating the ratio

w=P(R,)/P(R).

If w > s, wheres is a random numbeyt € [0, 1], the new position is accepted, else we stay
at the same place.

3. Ifthe step is accepted, then we et= R,,.
4. Update the local energy and the variance.

— When the Monte Carlo sampling is finished, we calculate them@mergy and the standard devia-
tion. Finally, we may print our results to a specified file.

Note well that the way we choose the next skp = R + r * step is not determined by the wave
function. The wave function enters only the determinatibthe ratio of probabilities, similar to the way
we simulated systems in statistical physics. This meansrimthat our sampling of points may not be
very efficient. We will return to an efficient sampling of igtation points in our discussion of diffusion
Monte Carlo in chaptdr18. This leads to the concept of ingmme sampling. As such, we limit ourselves
in this chapter to the simplest possible form of the Metrigalgorithm, and relegate both importance
sampling and advanced optimization techniques to chbgter 1

The best way however to understand the above algorithm apddfis method is to study selected
examples.

11.4.1 Firstillustration of variational Monte Carlo mette

The harmonic oscillator in one dimension lends itself nidel illustrative purposes. The hamiltonian is

|
H=——— 4 —ka? 11.21
2m da? + DR ( )
wherem is the mass of the particle aridis the force constant, e.g., the spring tension for a claksic
oscillator. In this example we will make life simple and ckean = h = k£ = 1. We can rewrite the

above equation as
2

d
H= s T z?, (11.22)
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11.4 — Variational Monte Carlo for quantum mechanical systes

The energy of the ground state is thep = 1. The exact wave function for the ground state is

1 —x
Wo(r) = — e °2 (11.23)

but since we wish to illustrate the use of Monte Carlo methwodschoose the trial function

[0
Up(z) = Wl—ae—ﬁoﬁ/?. (11.24)

Inserting this function in the expression for the local gyein Eq. [T1.I6), we obtain the following
expression for the local energy

Ep(z) =ao® + 2%(1 — o), (11.25)
with the expectation value for the hamiltonian of Hq. (T} .4iven by

)= [ o)l B, (11.26)

which reads with the above trial wave function

® dre=?a?q?2 +22(1—at
(Er) = f_oo — > 2( ) (12.27)
oo, dzemvm

o
2.2 T
dre™ " =4/ =,
oo a

Using the fact that

we obtain
a? 1
(Br) =5 + 33 (11.28)
and the variance A )
p2= @~ (11.29)

204
In solving this problem we can choose whether we wish to usé/btropolis algorithm and sample
over relevant configurations, or just use random numbersrgéad from a normal distribution, since
the harmonic oscillator wave functions follow closely sucHistribution. The latter approach is easily
implemented in few lines, namely

initialisations , declarations of variables
... mcs = number of Monte Carlo samplings
/1 loop over Monte Carlo samples

for ( i=0; i < mcs; i++) {

/1 generate random variables from gaussian distribution
X = normal_random(&idum)/sqrt2/alpha;
local_energy = alphaalpha + xxx(1—pow(alpha,4));
energy += local_energy;
energy2 += local_energylocal_energy;

/1 end of sampling

}

/1 write out the mean energy and the standard deviation

cout << energy/mcs << sqrt((energy2/mesenergy/mcsk=*2)/mcs));
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This variational Monte Carlo calculation is rather simplg just generate a large numhb€rof random
numbers corresponding to the gaussian RD7|? and for each random number we compute the local
energy according to the approximation

N
N PN 1
(Be) = [ PORIBLRIR ~ 3 i) (11.30
and the energy squared through

N
(E2) = / P(R)EZ(R)dR ~ % ;E%(wi). (11.31)

In a certain sense, this is nothing but the importance MoaroGampling discussed in chagdfér 8 Before

we proceed however, there is an important aside which ishalgéping in mind when computing the

local energy. We could think of splitting the computatiorttué expectation value of the local energy into

a kinetic energy part and a potential energy part. If we agdimig with a three-dimensional system, the

expectation value of the kinetic energy is

[ dRYL(R)V?Ur(R)

RV (R) U7 (R) (11.32)

and we could be tempted to compute, if the wave function okpherical symmetry, just the second
derivative with respect to one coordinate axis and thenipiylby three. This will most likely increase
the variance, and should be avoided, even if the final expeataalues are similar. Recall that one of
the subgoals of a Monte Carlo computation is to decreaseathance.

Another shortcut we could think of is to transform the nunharin the latter equation to

/dR\I'}(R)W\I/T(R) = —/dR(V\I/*T(R))(V\IIT(R)), (12.33)
using integration by parts and the relation
/dRV(\I/*T(R)V\I'T(R)) =0, (11.34)

where we have used the fact that the wave function is zel® at +-co. This relation can in turn be
rewritten through integration by parts to

/ dR(VUL(R)) (VI (R)) + / dRU:(R)V2U 1 (R)) = 0. (11.35)

The rhs of Eq.[[I1.33) is easier and quicker to compute. Hewenm case the wave function is the
exact one, or rather close to the exact one, the Ihs yieltls jognstant times the wave function squared,
implying zero variance. The rhs does not and may therefarease the variance.

If we use integration by part for the harmonic oscillatoregahe new local energy is

Ep(z) = 22(1+ o), (11.36)
and the variance . )
g2 = @+ (11.37)
204

which is larger than the variance of EG.{11.29).
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11.5 — Variational Monte Carlo for atoms

11.5 Variational Monte Carlo for atoms

The Hamiltonian for anV-electron atomic system consists of two terms

H(x) = T(x) + V(x); (11.38)

the kinetic and the potential energy operator. Here {x;,xs,...xy} is the spatial and spin degrees
of freedom associated with the different particles. Thesitzl kinetic energy

P2 N p2
27’@

is transformed to the quantum mechanical kinetic energyadpeby operator substitution of the momen-
tum (pp — —ihd/0xy,)

T(x) =—=—=V§— — V7. 11.39
(%) 6 Zl o (11.39)
Here the first term is the kinetic energy operator of the rug;l¢he second term is the kinetic energy
operator of the electrong/ is the mass of the nucleus andis the electron mass. The potential energy

operator is given by
N ze2
- Y E—— 11.40
Z (4dmep)r; + Z 47‘(’60 )rij’ ( )

where ther;'s are the electron-nucleus distances andrthie are the inter-electronic distances.

We seek to find controlled and well understood approximationorder to reduce the complexity
of the above equations. TH&orn-Oppenheimer approximatida a commonly used approximation, in
which the motion of the nucleus is disregarded.

11.5.1 The Born-Oppenheimer Approximation

In a system of interacting electrons and a nucleus therausiilally be little momentum transfer between
the two types of particles due to their differing masses. fOnees between the particles are of similar
magnitude due to their similar charge. If one assumes tleatnibmenta of the particles are also similar,
the nucleus must have a much smaller velocity than the elextdue to its far greater mass. On the
time-scale of nuclear motion, one can therefore consideelictrons to relax to a ground-state given by
the Hamiltonian of Eqs[{I1.B8],(11]139) afd (11.40) with tlucleus at a fixed location. This separation
of the electronic and nuclear degrees of freedom is knowheaBorn-Oppenheimer approximation.

In the center of mass system the kinetic energy operatosread

X

R h? )
109 = ~gtr s vy v © ZV gL (11.41)

while the potential energy operator remains unchangede bhatt the Laplace operato¥&’ now are in
the center of mass reference system.

The first term of Eq.[{TTT.41) represents the kinetic energyratpr of the center of mass. The second
term represents the sum of the kinetic energy operatorseaivtielectrons, each of them having their
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massm replaced by the reduced mass= mM/(m + M) because of the motion of the nucleus. The
nuclear motion is also responsible for the third term, ontfass polarizatiorterm.

The nucleus consists of protons and neutrons. The pro&mtreh mass ratio is abou1836 and
the neutron-electron mass ratio is ab®yit839, so regarding the nucleus as stationary is a natural ap-
proximation. Taking the limit\/ — oo in Eq. (I1.41), the kinetic energy operator reduces to

R YRz,
T=— ; Vi (11.42)

The Born-Oppenheimer approximation thus disregards thattkinetic energy of the center of mass
as well as the mass polarization term. The effects of the Bppenheimer approximation are quite
small and they are also well accounted for. However, thiphfiad electronic Hamiltonian remains very
difficult to solve, and analytical solutions do not exist mneral systems with more than one electron.
We use the Born-Oppenheimer approximation in our discassi@tomic and molecular systems.

The first term of Eq.[TT1.40) is the nucleus-electron potrand the second term is the electron-
electron potential. The inter-electronic potentials & main problem in atomic physics. Because of
these terms, the Hamiltonian cannot be separated into antielp parts, and the problem must be solved
as awhole. A common approximation is to regard the effecte@glectron-electron interactions either
as averaged over the domain or by means of introducing atgdnosictional, such as by Hartree-Fock
(HF) or Density Functional Theory (DFT). These approachresaatually very efficient, and abo99%
or more of the electronic energies are obtained for most Hfulzions. Other observables are usually
obtained to an accuracy of abaiit — 95% (ref. [73]).

11.5.2 The hydrogen Atom

The spatial Schrédinger equation for the three-dimensibpdrogen atom can be solved analytically,
see for example Ref. [74] for details. To achieve this, weritewthe equation in terms of spherical
coordinates using

x = rsinfcoso, (11.43)
Yy = rsinfsing, (11.44)
and
z = rcosd. (11.45)
The reason we introduce spherical coordinates is the gthasimmetry of the Coulomb potential
¢’ e (11.46)

Ameor  dmegr/a2 + Y2 + 22

where we have used= /z2 + y2 + 22. It is not possible to find a separable solution of the type
V(z,y, 2) = Y(x)Y(y)(z). (11.47)

as we can with the harmonic oscillator in three dimensiormwvéter, with spherical coordinates we can
find a solution of the form
U(r,0,¢) = R(r)P(0)F(¢) = RPF. (11.48)

These three coordinates yield in turn three quantum numbgich determine the enegy of the systems.
We obtain three sets of ordinary second-order differemtalations which can be solved analytically,
resulting in

1 0°F

—— = -C? 11.49

F 8(]32 ¢ ( )
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11.5 — Variational Monte Carlo for atoms

C,sin?(0)P + sin(H)%(sin(H)%—];) = C3P, (11.50)

and

10, ,0R,  2mrke* 2mr?

Ror" o)t TR TR
whereC, and(C,, are constants. The angle-dependent differential equeatiesult in the spherical har-
monic functions as solutions, with quantum numbesadm;. These functions are given by

E=0C,, (11.51)

(2l4j;é) f n_@l?!m! P (cos()) exp (imy), (11.52)

Yim, (0, ¢) = P(0)F(¢) = \/

with P/ being the associated Legendre polynomials They can bettemes

Yim, (0, ¢) = sinI™1(0) x (polynom(cos)) exp (imi¢), (11.53)

1
Yoo = 1/ e (11.54)
3
Y10 =4/ Ecos(@), (11.55)

Y11 = \/gsm(ﬂ)e:ﬁp(iigb), (11.56)

Yo = \/16%(30032(9) —1) (11.57)

for I = 2 ogm; = 0. The quantum numbeisandm; represent the orbital momentum and projection of
the orbital momentum, respectively and take the values

with the following selected examples

fori =m; =0,

forl=10gm; =0,

forl =1o0gm; = £+1, and

1.
1>0
2.
1=0,1,2,...
3.

mp=—l,—l+1,...,01—1,]

The spherical harmonics fér< 3 are listed in TablEZIT1 1.
We concentrate on the radial equation, which can be rewritte

B (2000 e

2
i R+ P+

r 2mr?

R(r) = ER(r). (11.58)

Introducing the function(r) = rR(r), we can rewrite the last equation as
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Spherical Harmonics

my\l 0 1 2 3

+3 —L(82)1/25in3pet3i0

+2 %(1—2)1/2sin296+2i¢ 1 %)1/200393271296””’
+1 —%(%)1/28in96+i¢ %(%)1/260893in96+i¢ —%(ﬁ) 2(5¢c05%0 — 1)sinfet™®
0 Soi7 $(2)2cos0 1(2)V%(3cos%0 — 1) 1(D)V2(2 - 5sin6)cosd

-1 +%(%)1/2sin96_2¢ +%(%—75r)1/200393in96_i¢ +%(2 )2 (5c05%0 — 1)sinfe ™"
-2 i(%)l/zsm fe—2i0 5(7)1/%0393@'112952@

-3 +%(3?)1/23m e3¢

Table 11.1: Spherical harmonig$,,, for the lowest andm; values.

The radial Schrédinger equation for the hydrogen atom camrtiten as

R% 0%u(r) ke RA(1+1)
S 2m oz (T o 2my? > ulr) = Bl (59
wherem is the mass of the electrohits orbital momentum taking valuds= 0,1, 2, ..., and the term

ke? /r is the Coulomb potential. The first terms is the kinetic epefhe full wave function will also
depend on the other variablésand ¢ as well. The energy, with no external magnetic field is howeve
determined by the above equation . We can then think of tHalr@dhrodinger equation to be equivalent
to a one-dimensional movement conditioned by an effectbtergial

ke RA(1+1)

Veff(r) = _T + W (1160)

The radial equation can also be solved analytically remyiti the quantum numbersin addition to
Imy. The solutionR,,; to the radial equation is given by the Laguerre polynomiaélee analytic solutions
are given by

T;Z)nlml (Ta 97 ¢) = ¢nlml = Rnl (T)Yiml (97 ¢) = Rnlelml (1161)
The ground state is defined bby= 1 og/ = m; = 0 and reads
1
Y100 = —5—e "/, (11.62)
ag/zﬁ
where we have defined the Bohr raditgs= 0.05 nm
h2
= . 11.63
a = ( )

The first excited state with= 0 is

WYa00 = 2 — L) e/20, (11.64)

1
3/2\/277 < aop
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For states with withi = 1 andn = 2, we can have the following combinations witly = 0

1 T
Y210 = —75— <—> e "2 cos(), (11.65)
4a3*\/2w \ao
andm; = +1
1 ,
Po141 = T <L> e~ "/290 sin(0)et?. (11.66)
8ay' " /T \ G0

The exact energy is independent@ndm;, since the potential is spherically symmetric.
The first few non-normalized radial solutions of equatiomlated in Tabl€TT]2. A problem with the

Hydrogen-Like Atomic Radial Functions

N1 2 3

0 e 4T (2—r)e 272 (27 — 181 + 2r2)e=27/3
1 re=2r/2 r(6 — T)€_ZT/3

2 r2e—21/3

Table 11.2: The first few radial functions of the hydrogélatoms.

spherical harmonics of table_Tl.1 is that they are complére iitroduction ofsolid harmonicsallows
the use of real orbital wave-functions for a wide range ofliapfions. The complex solid harmonics
Yim, (r) are related to the spherical harmonigs,, (r) through

ylml (I') = leiml (I')
By factoring out the leading-dependency of the radial-function
Ru(r) = r 'Ry (r),

we obtain
\I’nlml (7“, 97 ¢) = Rnl(r) . ylml (I‘)

For the theoretical development of tieal solid harmonicssee Ref. [75]. Here Helgakeat al first
express the complex solid harmonics,,,, by (complex) Cartesian coordinates, and arrive at the real
solid harmonics,5;,,,, , through the unitary transformation

Slml . i (_l)lm 1 Olml
Si—m) V2N (=DM i) \Ci_m ]

This transformation will not alter any physical quantitibat are degenerate in the subspace consisting of
opposite magnetic quantum numbers (the angular momehgiagual for both these cases). This means
for example that the above transformation does not altegrieegies, unless an external magnetic field is
applied to the system. Henceforth, we will use the solid fwamigs, and note that changing the spherical
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Real Solid Harmonics

m\ 0 1 2 3

+3 13 - 3p)a
+2 3V3(@? —y?)  3V15(a? —y?)z
+1 X V3zz /3052 =)z
0 1 y 2322 —1r?) 2(522 = 3r¥)z
-1 z V3yz %\/§(5z2 —7r2)y
-2 \/gwy \/1—5wyz

3 53622 — )y

Table 11.3: The first-order real solid harmonigs,, .

potential beyond the Coulomb potential will not alter théidsbarmonics. The lowest-order real solid
harmonics are listed in tadle_TlL.3.

When solving equations numerically, it is often convenierrewrite the equation in terms of dimen-
sionless variables. One reason is the fact that severakofdhstants may differ largely in value, and
hence result in potential losses of numerical precisiore dther main reason for doing this is that the
equation in dimensionless form is easier to code, sparimgf@neventual typographic errors. In order
to do so, we introduce first the dimensionless variable /3, where/ is a constant we can choose.
Schrédinger’s equation is then rewritten as

10%u(p) mke?s I(l+1) m,3
2 92 R u(p) 272 u(p) = —5Eulp). (11.67)
We can determing by simply requirin§
mke?3
2 =1 (11.68)

With this choice, the constatbecomes the famous Bohr radiug= 0.05 nmag = 8 = h?/mke?.

As a petit digression, we list here the standard units usedamic physics and molecular physics
calculations. It is common to scale atomic units by setting- ¢ = h = 4wey = 1, see tabl€1114.

We introduce thereafter the variable

m/3>
and inserting? and the exact energy = Fy/n?, with Ey = 13.6 eV, we have that
1
A= —— 11.70
53 (11.70)

3Remember that we are free to chogse
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11.5 — Variational Monte Carlo for atoms

Atomic Units
Quantity SI Atomic unit
Electron massy 9.109 - 103! kg 1
Chargege 1.602-10719 C 1
Planck’s reduced constarit, 1.055-1073* Js 1
Permittivity, 47e 1.113-10719C2 3t m! 1
Energy, 4752% 27.211 eV 1
Length,ay = mal” 0.529 - 10710 m 1

Table 11.4: Scaling from Sl to atomic units

n being the principal quantum number. The equation we aredbéry to solve numerically is now

2
- 37— ) - () =0 (11.71)

with the hamiltonian 52 ( )
1 1 I(l+1
H= 292 + 27 (11.72)
The ground state of the hydrogen atom has the enkrgy—1/2, or E = —13.6 eV. The exact wave
function obtained from Eq{ITF1) is

u(p) = pe?, (11.73)

which yields the energp = —1/2. Sticking to our variational philosophy, we could now irduze a
variational parametex resulting in a trial wave function

ut(p) = ape™ . (11.74)
Inserting this wave function into the expression for thealenergyE;, of Eq. (I1.I6) yields (check
it!)
En(p) = -2+ -2 <a . 3) . (11.75)
p 2 p

For the hydrogen atom, we could perform the variationaludation along the same lines as we did
for the harmonic oscillator. The only difference is that EdLIT) now reads

1) = [ PR)ELR)R - /0 " 2020 B, () dp, (11.76)

sincep € [0, 00]. In this case we would use the exponential distributioneiadtof the normal distrubu-
tion, and our code would contain the following elements

initialisations , declarations of variables
mcs = number of Monte Carlo samplings

/1 loop over Monte Carlo samples
for ( i=0; i < mcs; i++) {
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/1 generate random variables from the exponential
/1 distribution using ranl and transforming to
/1 to an exponential mapping y =In(1-x)
x=ranl(&idum);
y=—log(1.—x);
/1 in our case y = rhocalphax2
rho = y/alphal/2;
local_energy =-1/rho —0.5xalphax(alpha—2/rho);
energy += (local_energy);
energy2 += local_energylocal_energy;
/1 end of sampling
}
/1 write out the mean energy and the standard deviation
cout << energy/mcs << sqrt((energy2/megenergy/mcs¥«2)/mcs));

As for the harmonic oscillator case we just need to generdsgge numberN of random numbers
corresponding to the exponential PRFEp?e 22" and for each random number we compute the local
energy and variance.

11.5.3 Metropolis sampling for the hydrogen atom and thertanric oscillator

We present in this subsection results for the ground stditdediydrogen atom and harmonic oscillator
using a variational Monte Carlo procedure. For the hydragem, the trial wave function

W (p) = ape°",

depends only on the dimensionless ragiugt is the solution of a one-dimensional differential edoiat
as is the case for the harmonic oscillator as well. The latsrthe trial wave function

a 2.2
Ur(z) = WI—\//_‘le 2,

However, for the hydrogen atom we hawec [0, oo, while for the harmonic oscillator we have €
[—00, 00].

This has important consequences for the way we generatemapdsitions. For the hydrogen atom
we have a random position given by e.g.,

r_old = step_length*(ranl(&idum))/alpha;
which ensures that > 0, while for the harmonic oscillator we have
r_old = step_length*(ranl(&idum)-0.5)/alpha;

in order to haver € [—oo, 00]. This is however not implemented in the program below. Thienpor-
tance sampling is not included. We simulate points inithg and z directions using random numbers
generated by the uniform distribution and multiplied by thep length. Note that we have to define a
step length in our calculations. Here one has to play aroutid different values for the step and as a
rule of thumb (one of the golden Monte Carlo rules), the seegih should be chosen so that roughly
50% of all new moves are accepted. In the program at the erliisoféction we have also scaled the
random position with the variational parameter The reason for this particular choice is that we have
an external loop over the variational parameter. Diffexamtational parameters will obviously yield dif-
ferent acceptance rates if we use the same step length. &natit’e to the code below is to perform the
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5 | I I I
MC simulation with N=100000 ——
Exact result - - - -
4 - _
3 r _
Ey
2 -
1 -
0 | | | | | |
0.2 0.4 0.6 0.8 1 1.2 1.4

Figure 11.1: Result for ground state energy of the harmoaillator as function of the variational
parametery. The exact result is fair = 1 with an energyE’ = 1. See text for further details

Monte Carlo sampling with just one variational parametead play around with different step lengths
in order to achieve a reasonable acceptance ratio. Anotssikplity is to include a more advanced test
which restarts the Monte Carlo sampling with a new step leifghe specific variational parameter and
chosen step length lead to a too low acceptance ratio.

In Figs.[IT1 an@I1l2 we plot the ground state energies éootie-dimensional harmonic oscillator
and the hydrogen atom, respectively, as functions of that@nal parametet.. These results are also
displayed in Tables~T1.5 ahdTll.6. In these tables we listahiance and the standard deviation as well.
We note that atv we obtain the exact result, and the variance is zero, asuigh®he reason is that we
then have the exact wave function, and the action of the iamain on the wave function

H1 = constant x 1,

yields just a constant. The integral which defines varioyseetation values involving moments of the
hamiltonian becomes then

dRYEL(R)H™"(R)¥Y (R dRYL(R)¥Y (R

<H”>:f r(R)H"(R)V7(R) = constant x J r(R)¥r(R)

TdRU%(R) U7 (R) [dRV:(R)U1(R) = constant. (21.77)

This explains why the variance is zero far= 1. However, the hydrogen atom and the harmonic
oscillator are some of the few cases where we can use a tnal fwaction proportional to the exact one.
These two systems are also some of the few examples of casee wk can find an exact solution to
the problem. In most cases of interest, we do not know a pherexact wave function, or how to make
a good trial wave function. In essentially all real problemrge amount of CPU time and numerical
experimenting is needed in order to ascertain the validity onte Carlo estimate. The next examples
deal with such problems.
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Table 11.5: Result for ground state energy of the harmornidla®r as function of the variational pa-
rametera. The exact result is far = 1 with an energyE = 1. The energy variance® and the standard
deviationo /+/N are also listed. The variabl® is the number of Monte Carlo samples. In this calcu-
lation we setV. = 100000 and a step length of 2 was used in order to obtain an acceptdnees0%.

a (H) o? o/vVN
5.00000E-01 2.06479E+00 5.78739E+00 7.60749E-03
6.00000E-01 1.50495E+00 2.32782E+00 4.82475E-03
7.00000E-01 1.23264E+00 9.82479E-01  3.13445E-03
8.00000E-01 1.08007E+00 3.44857E-01 1.85703E-03
9.00000E-01 1.01111E+00 7.24827E-02 8.51368E-04
1.00000E-00 1.00000E+00 0.00000E+00 0.00000E+00
1.10000E+00 1.02621E+00 5.95716E-02 7.71826E-04
1.20000E+00 1.08667E+00 2.23389E-01 1.49462E-03
1.30000E+00 1.17168E+00 4.78446E-01 2.18734E-03
1.40000E+00 1.26374E+00 8.55524E-01 2.92493E-03
1.50000E+00 1.38897E+00 1.30720E+00 3.61553E-03

I | |
MC simulation with N=100000 ——
Exact result - -

-0.8 - .

0.2 0.4 0.6 0.8 1 1.2 14

Figure 11.2: Result for ground state energy of the hydrogem as function of the variational parameter
a. The exact result is for = 1 with an energyll = —1/2. See text for further details
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Table 11.6: Result for ground state energy of the hydrogem ais function of the variational parameter
a. The exact result is forr = 1 with an energyE = —1/2. The energy variance? and the standard
deviationo /v/N are also listed. The variabl¥ is the number of Monte Carlo samples. In this calculation
we fixed N = 100000 and a step length of 4 Bohr radii was used in order to obtaincasmance of

o' (H) o? o/vVN
5.00000E-01 -3.76740E-01 6.10503E-02 7.81347E-04
6.00000E-01 -4.21744E-01 5.22322E-02 7.22718E-04
7.00000E-01 -4.57759E-01 4.51201E-02 6.71715E-04
8.00000E-01 -4.81461E-01 3.05736E-02 5.52934E-04
9.00000E-01 -4.95899E-01 8.20497E-03 2.86443E-04
1.00000E-00 -5.00000E-01 0.00000E+00 0.00000E+00
1.10000E+00 -4.93738E-01 1.16989E-02 3.42036E-04
1.20000E+00 -4.75563E-01 8.85899E-02 9.41222E-04
1.30000E+00 -4.54341E-01 1.45171E-01 1.20487E-03
1.40000E+00 -4.13220E-01 3.14113E-01 1.77232E-03
1.50000E+00 -3.72241E-01 5.45568E-01 2.33574E-03

11.5.4 The helium atom

Most physical problems of interest in atomic, molecular antid state physics consist of a number of
interacting electrons and ions. The total number of pasidl is usually sufficiently large that an exact
solution cannot be found. Typically, the expectation vdhrea chosen hamiltonian for a system &f
particles is

_ JdRidRs ... dRNV*(R1, Ry, ..., Ry)H(R1,Rs,...,Ry)¥(Rq, Ry, ..., Ry)

H
(H) [dR1dR; ... dRyU*(Ry,Ra,...,Ry)¥(Ry, Ry,..., Ry)

. (11.78)

an in general intractable problem. Controlled and well usi®d approximations are sought to reduce
the complexity to a tractable level. Once the equations @ired, a large number of properties may be
calculated from the wave function. Errors or approximatiomade in obtaining the wave function will be
manifest in any property derived from the wave function. Yéhagh accuracy is required, considerable
attention must be paid to the derivation of the wave funcéind any approximations made.

The helium atom consists of two electrons and a nucleus witige Z = 2. In setting up the
hamiltonian of this system, we need to account for the répulsetween the two electrons as well.

A common and very reasonable approximation used in theisolof equation of the Schrédinger
equation for systems of interacting electrons and ionsa8ibrn-Oppenheimer approximation discussed
above. In a system of interacting electrons and nuclei thdlteusually be little momentum transfer
between the two types of particles due to their greatly diffemasses. The forces between the particles
are of similar magnitude due to their similar charge. If drentassumes that the momenta of the particles
are also similar, then the nuclei must have much smallercitede than the electrons due to their far
greater mass. On the time-scale of nuclear motion, one @agsftre consider the electrons to relax to
a ground-state with the nuclei at fixed locations. This satiam of the electronic and nuclear degrees
of freedom is the the Born-Oppenheimer approximation weudised previously in this chapter. But
even this simplified electronic Hamiltonian remains vefficlilt to solve. No analytic solutions exist for
general systems with more than one electron.
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If we label the distance between electron 1 and the nucleus. &imilarly we haver, for electron
2. The contribution to the potential energy due to the aitsadrom the nucleus is

2ke?  2ke?
1 T2

, (11.79)

and if we add the repulsion arising from the two interactifeg®ons, we obtain the potential energy

2ke2  2ke?  ke?
—_ + -

V(r,re) = — , (11.80)
1 T2 T12
with the electrons separated at a distange= |r; — r3|. The hamiltonian becomes then
N h2V2 h2V2 e 2ke2 2
f- VI _WVy 2keT ke kel (11.81)
2m 2m 1 T9 719
and Schrédingers equation reads R
Hvy = Ev. (11.82)

Note that this equation has been written in atomic uaits which are more convenient for quantum
mechanical problems. This means that the final energy hasnuuitiplied by & x Ey, whereEy = 13.6
eV, the binding energy of the hydrogen atom.

A very simple first approximation to this system is to omit tepulsion between the two electrons.
The potential energy becomes then

Zke?>  Zke?
V(ry,re) = — T (11.83)

The advantage of this approximation is that each electronbeatreated as being independent of each
other, implying that each electron sees just a centrallymsgtric potential, or central field.

To see whether this gives a meaningful result, weZet 2 and neglect totally the repulsion between
the two electrons. Electron 1 has the following hamiltonian

- PV 2ke?

1= , (11.84)
2m 1
with pertinent wave function and eigenvalue
h1ve = Eatha, (11.85)
wherea = {n,l,m;, }, are its quantum numbers. The enefgyis
Z2F,
E, =232, (11.86)
nCL

medEy = 13.6 eV, being the ground state energy of the hydrogen atom. Imiasiway, we obatin for
electron 2
_WV3 2ke?

2m T9

hy = , (11.87)

with wave function R
hot)y, = Epthy, (11.88)
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andb = {nylymy, }, and energy

2
E, = Z fo. (11.89)
ny,

Since the electrons do not interact, we can assume thatdbedstate wave function of the helium atom
is given by

Y = Yoy, (11.90)
resulting in the following approximation to Schrédingegiguation
(Bi+ Do) v = (B + 2 ) v (1) ¥s(r2) = Eaptha(r1 )i (x2). (11.91)
The energy becomes then
(Buva(rr)) vu(rz) + (Bovy(r2) ) Yalre) = (Ba + Ey) a(r1) s (r2), (11.92)
yielding
E. = Z%E, <i2 + %) . (11.93)
ng Ny

If we insertZ = 2 and assume that the ground state is determined by two aleatidhe lowest-lying
hydrogen orbit withn, = n;, = 1, the energy becomes

Equ = 8Ey = —108.8 ¢V, (11.94)

while the experimental value is78.8 eV. Clearly, this discrepancy is essentially due to our eiais of
the repulsion arising from the interaction of two electrons

Choice of trial wave function

The choice of trial wave function is critical in variation®lonte Carlo calculations. How to choose

it is however a highly non-trivial task. All observables aealuated with respect to the probability
distribution )

pR) = _Ler®I_

[ 1er(R)] dR

generated by the trial wave function. The trial wave funttioust approximate an exact eigenstate in
order that accurate results are to be obtained. Improvaldatave functions also improve the importance
sampling, reducing the cost of obtaining a certain statis&ccuracy.

Quantum Monte Carlo methods are able to exploit trial wavetions of arbitrary forms. Any wave
function that is physical and for which the value, gradiemtl éaplacian of the wave function may be
efficiently computed can be used. The power of Quantum Moaro@nethods lies in the flexibility of
the form of the trial wave function.

It is important that the trial wave function satisfies as méngwn properties of the exact wave
function as possible. A good trial wave function should bikhinuch of the same features as does the
exact wave function. Especially, it should be well-definetha origin, that ist(|R| = 0) # 0, and its
derivative at the origin should also be well-defined . Onesjtids guideline in choosing the trial wave
function is the use of constraints about the behavior of tagesfunction when the distance between
one electron and the nucleus or two electrons approacheseese constraints are the so-called “cusp
conditions” and are related to the derivatives of the wawetion.

(11.95)
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To see this, let us single out one of the electrons in the mefitom and assume that this electron is
close to the nucleus, i.e;; — 0. We assume also that the two electrons are far from each atitethat
r9 # 0. The local energy can then be written as

1 1 1 Z
Er(R)= ——=Hyp(R)= —— [ —=Vi - = R) + finite terms. 11.96
L(R) - 7 (R) I @®) ( 2V1 Tl)z/JT( ) + finite terms ( )
Writing out the kinetic energy term in the spherical cooad@s of electror, we arrive at the following
expression for the local energy
1 1d> 1d Z
_— - - — fini 11.97
( 247w dn 7"1) Rr(r1) + finite terms, ( )
whereRr(r) is the radial part of the wave function for electron We have also used that the orbital
momentum of electron 1 is= 0. For small values of;, the terms which dominate are

lim Er(R) =

1 1 d Z
r1—0 RT (7‘1 )

—— -—— R , 11.98
= D) Ratr) (11.99)
since the second derivative does not diverge due to therfasteofl at the origin. The latter implies
that in order for the kinetic energy term to balance the djgace in the potential term, we must have

1 dRp(r)
=—Z, 11.99
RT(T‘l) d’l“l ( )
implying that
Ry(ry) oc e 2. (11.100)

A similar condition applies to electron 2 as well. For orbittomental > 0 we have (show this!)

1 dRr(r)  Z

= - . 11.101
Rr(r) dr [+1 ( )

Another constraint on the wave function is found for two &igies approaching each other. In this
case it is the dependence on the separatjgietween the two electrons which has to reflect the correct
behavior in the limitro — 0. The resulting radial equation for thg; dependence is the same for the
electron-nucleus case, except that the attractive Couiotataction between the nucleus and the electron
is replaced by a repulsive interaction and the kinetic gntrgn is twice as large. We obtain then

1 4 d 2
lim Bf(R)=—— | -——— + = | R , 11.102
m;go L( ) RT(T’lg) < 12 d?"12 * T12> T(T12) ( )

with still [ = 0. This yields the so-called 'cusp’-condition

1 dRT(T’lg) 1
=, 11.103
RT(T‘lg) dris 2 ( )

while for ! > 0 we have

1 dRT(Tlg) 1
= . 11.104
RT(Tlg) d?”lg 2(l + 1) ( )

For general systems containing more than two electronsawe this condition for each electron pajr
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Based on these consideration, a possible trial wave fumgtitich ignores the 'cusp’-condition be-
tween the two electrons is
Yr(R) = e nir2), (11.105)

wherer; o are dimensionless radii and is a variational parameter which is to be interpreted as an
effective charge.
A possible trial wave function which also reflects the 'cusphdition between the two electrons is

Yr(R) = e~ @ntr2)enz/2, (11.106)

The last equation can be generalized to

Yr(R) = ¢(r1)d(r2) ... den) [[ £0riy), (11.107)

1<j

for a system withV electrons or particles. The wave functiofr;) is the single-particle wave function
for particled, while f(r;;) account for more complicated two-body correlations. Fertikelium atom,
we placed both electrons in the hydrogenic otiit We know that the ground state for the helium atom
has a symmetric spatial part, while the spin wave functioanis-symmetric in order to obey the Pauli
principle. In the present case we need not to deal with sgregs of freedom, since we are mainly trying
to reproduce the ground state of the system. However, adpptich a single-particle representation for
the individual electrons means that for atoms beyond heliuencannot continue to place electrons in the
lowest hydrogenic orbit. This is a consenquence of the Rawlciple, which states that the total wave
function for a system of identical particles such as fermjdmas to be anti-symmetric. The program
we include below can use either EG.{IT1105) or Eq.(11.166)He trial wave function. One or two
electrons can be placed in the lowest hydrogen orbit, imglyhat the program can only be used for
studies of the ground state of hydrogen or helium.

A similar approach can be applied to the cusp resulting froimgbhg two electrons close together.
The mathematical trick is to expand the wave functions inegphl coordinates centered on one of
the two electrons. Let us denote the distance between thelsetrons as;;. Remembering that the
Coulomb potential is now repulsive and the kinetic term igénas large (because both electrons give
kinetic contributions) we get:

d? 4 d 2 I(l+1
2 + — +__<§)+2E Ri;=0
drij Tij drij Tij rij

wherel is now equab if the spins of the two electrons are anti-parallel antithey are parallel. Repeat-
ing the argument for the electron-nucleus cusp with theofation of the leading-dependency, we get
the similar cusp condition:

dR(Tij) - 1

dry ~ agrn ) 0

resulting in:
e"i/2  for anti-parallel spins] = 0

i/t for parallel spins] = 1

We do not have to pay any attention to the exact values of th#ficients in such exponentials to
realize that in order to incorporate the proper inter-pirtcorrelations, we need our wave functions to
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depend explicitly on the inter-particle distances. Thusaweemotivated to extend our product-state based
wave functions by a correlation function. Higher order caepditions can also be incorporated to deal
with the cases where more than two particles bundle up. Teséd consist of factors dependent on
the coordinates of multiplets of particles, both absolustatices and inter-particle distances. For the
numerical experiments exemplified in this thesis, we wiitriet ourselves to the simplest correlations
dependent only on particle pairs.

Several forms of the correlation function exist in the htieire and we will mention only a selected
few to give the general idea of how they are constructed. dfgiven by Hylleraas that had great success
for the helium atom was the series expansion:

H =e Z cprth s TR
k

where the inter-particle separatioy) for simplicity is written ag-. In additions = r; 4 r; andt = r; —r;
with r; andr; being the two electron-nucleus distances. All the othemtjies are free parameters.
Notice that the cusp condition is satisfied by the exponentilnfortunately the convergence of this
function turned out to be quite slow. For example, to pinptile He-energy to the fourth decimal digit a
nine term function would suffice. To double the number oftdigbne needed almokt00 terms.

The so called Padé-Jastrow form, however, is more suitedafger systems. It is based on an
exponential function with a rational exponent:

J=eY

In its general form[J is a potential series expansion on both the absolute padamrdinates; and the
inter-particle coordinates;;:

N Z ayry N Z ﬂkrfj
U= k|4 _k
; 1+Za§€rf ZZ: 1+ZBI{¢TZ
% %

A very typical Padé-Jastrow function used for QMC calcolasi of molecular and atomic systems is:

e (5722
2(1 + ﬁrij)
wherea and 8 are adjustable parameters. Later on, when testing our gmogwe will employ this

Jastrow function together with a Slater determinant of iéarFock optimized Slater-orbitals for a VMC
simulation of the four electron beryllium (Be) atom.

11.5.5 Program example for atomic systems

The variational Monte Carlo algorithm consists of two distiphases. In the first a walker, a single
electron in our case, consisting of an initially random deatlectron positions is propagated according
to the Metropolis algorithm, in order to equilibrate it anegn sampling . In the second phase, the
walker continues to be moved, but energies and other olislessare also accumulated for later averaging
and statistical analysis. In the program below, the elestiere moved individually and not as a whole
configuration. This improves the efficiency of the algorittmiarger systems, where configuration moves
require increasingly small steps to maintain the acceptaatio.
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The main part of the code contains calls to various functieesup and declarations of arrays etc.
Note that we have defined a fixed step lengtfor the numerical computation of the second derivative
of the kinetic energy. Furthermore, we perform the Metrigptdst when we have moved all electrons.
This should be compared to the case where we move one elettiiom time and perform the Metropolis
test. The latter is similar to the algorithm for the Ising rebdiscussed in the previous chapter. A more
detailed discussion and better statistical treatmentsaaatyses are discussed in chapkels 1dahd 16.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapterll/cpp/programl.cpp

/!l Variational Monte Carlo for atoms with up to two electrons
#include <iostream >

#include <fstream>

#include <iomanip>

#include "1ib.h"

using namespace std;

/!l output file as global variable

ofstream ofile;

I/l the step length and its squared inverse for the second dative
#define h 0.001

#define h2 1000000

/!l declaraton of functions

/!l Function to read in data from screen, note call by referenc
void initialise (int&, int&, int&, int&, int&, int&, double&) ;

[/l The Mc sampling for the variational Monte Carlo
void mc_sampling(nt, int, int, int, int, int, double, double x, double x);

/! The variational wave function
double wave_function@ouble xx, double, int, int);

/!l The local energy
double local_energy@ouble *xx, double, double, int, int, int);

I/l prints to screen the results of the calculations
void output(int, int, int, double x, double x);

/I Begin of main program

//int main()
int main(int argc, charx argv([])
{
char xoutfilename;
int number_cycles, max_variations, thermalization, charge;
int dimension, number_particles;
double step_length;
double xcumulative_e,xcumulative_e2;

/I Read in output file, abort if there are too few commatthe arguments
if ( argc <=1 ){
cout << "Bad Usage: " << argv[0] <<
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" read also output file on same line" << endl;

exit(1);
}
else{

outfilename=argv[1];
}

ofile .open(outfilename);

/1 Read in data

initialise (dimension, number_particles, charge,
max_variations, number_cycles,
thermalization, step_length) ;

cumulative_e =new double[max_variations +1];

cumulative_e2 =new double[max_variations +1];

/I Do the mc sampling
mc_sampling (dimension, number_particles, charge,
max_variations, thermalization,
number_cycles, step_length, cumulative_e, cumulativ®) e
/I Print out results
output(max_variations, number_cycles, charge, cumulatie, cumulative_e?2

delete [] cumulative_e; delete [] cumulative_e;
ofile .close(); // close output file
return O;

The implementation of the brute force Metropolis algoritlnshown in the next function. Here we
have a loop over the variational variableslt calls two functions, one to compute the wave function and
one to update the local energy.

/' Monte Carlo sampling with the Metropolis algorithm

void mc_sampling (nt dimension, int number_particles ,int charge,
int max_variations,
int thermalization, int number_cycles,double step_length,
double xcumulative_e, double xcumulative_e2)
{
int cycles, variate, accept, dim, i, j;
long idum;
double wfnew, wfold, alpha, energy, energy2, delta_e;
double *xr_old, xxr_new;
alpha = 0.%charge;
idum=-1;
/Il allocate matrices which contain the position of the pactes
r_old = (double xx) matrix( number_particles, dimension sizeof(double));
r_ new = (double xx) matrix( number_particles, dimensionsizeof(double));
for (i = 0; i < number_particles; i++) {
for ( j=0; j < dimension; j++) {
r_old[i][j] = r_new[i][j] = O;
}

}

/I loop over variational parameters
for (variate=1; variate <= max_variations; variate++){
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/1 initialisations of variational parameters and energies
alpha += 0.1;
energy = energy2 = 0; accept =0; delta_e=0;
/1l initial trial position, note calling with alpha
/I and in three dimensions
for (i = 0; i < number_particles; i++) {

for ( j=0; j < dimension; j++) {

r old[i][j] = step_lengthx(ranl(&idum)—0.5);
}

wfold = wave_function(r_old, alpha, dimension, numberrpales);
/l loop over monte carlo cycles
for (cycles = 1; cycles <= number_cycles+thermalization; cgs#+){
/I new position
for (i = 0; i < number_particles; i++) {
for ( j=0; j < dimension; j++) {
r_newl[i][j] = r_old[i][j]+step_lengthx(ranl(&idum)—0.5);

}
wfnew = wave_function(r_new, alpha, dimension, numberrteales);
/I Metropolis test
if (ranl(&idum) <= wfnewwfnew/wfold/wfold ) {
for (i = 0; i < number_particles; i++) {
for ( j=0; j < dimension; j++) {
r_old[i][j]=r_new[i][j];

}

wfold =

accept
}

/I compute local energy
if ( cycles > thermalization ) {
delta_e = local_energy(r_old, alpha, wfold, dimension,
number_particles , charge);

wfnew;
= accept+1;

Il update energies
energy += delta_e;
energy2 += delta_edelta_e;
}
} /!l end of loop over MC trials
cout << "variational parameter= " << alpha
<< " accepted steps= " << accept << endl;
/Il update the energy average and its squared
cumulative_e[variate] = energy/number_cycles;
cumulative_e2[variate] = energy2/number_cycles;

} /I end of loop over variational steps
free_matrix ((void %) r_old); // free memory
free_matrix ((void %) r_new); // free memory
} /' end mc_sampling function

The wave function is in turn defined in the next function. Heselimit ourselves to a function which
consists only of the product of single-particle wave fuoies.
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/!l Function to compute the squared wave function, simpleetmf

double wave_function@ouble xxr, double alpha ,int dimension, int
number_particles)

{
int i, j, k;
double wf, argument, r_single_ particle , r_12;

argument = wf = 0;

for (i = 0; i < number_particles; i++) {
r _single_particle = 0;
for (j = 0; jJ < dimension; j++) {

r_single_particle += r[il[jkr[i]l[i];
}
argument += sqrt(r_single_particle);
}
wf = exp(—argumenkalpha) ;
return wf;

}

Finally, the local energy is computed using a numericalva¢ion for the kinetic energy. We use the
familiar expression derived in Eq.(3.4), that is

" __ fh_2f0+f—h
0=

in order to compute
1

- 2Yr(R)
The variableh is a chosen step length. For helium, since it is rather eagydtuate the local energy,
the above is an unnecessary complication. However, for refagtron or other many-particle systems,

the derivation of an analytic expression for the kineticrggecan be quite involved, and the numerical
evaluation of the kinetic energy using EQ_{3.4) may resu#t simpler code and/or even a faster one.

V27 (R). (11.108)

/!l Function to calculate the local energy with num derivativ

double local_energy@ouble xxr, double alpha, double wfold, int dimension,
int number_particles ,int charge)
{
int i, j , k;
double e_local, wfminus, wfplus, e_kinetic, e_potential, r_12,
r_single_particle;
double xxr_plus , xxr_minus;

/Il allocate matrices which contain the position of the pactes

/I the function matrix is defined in the progam library

r_plus = (double xx) matrix( number_particles, dimensionsizeof(double));
r_minus = (double xx) matrix( number_particles, dimensionsizeof(double))

for ’(i = 0; i < number_particles; i++) {
for ( j=0; j < dimension; j++) {
} r_plus[i](j] = r_minus[i][j] = r[i][j];
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}
/I compute the kinetic energy
e _kinetic = 0;
for (i = 0; i < number_particles; i++) {
for (j = 0; j < dimension; j++) {
r_plus[i][j] = r[i][j]+h;
r_minus[i][j] = r[i][j] —h;
wfminus = wave_function(r_minus, alpha, dimension, numbparticles);
wfplus = wave_function(r_plus, alpha, dimension, numbparticles);
e_kinetic —= (wfminus+wfplus—2«wfold) ;
r_plusi](j] = r[illjl;
r_minus[i][j] = r[i][j];
}
}
/1 include electron mass and hbar squared and divide by wauecftion
e _kinetic = 0.%h2«xe_kinetic/wfold;
/l compute the potential energy

e _potential = 0;

[/l contribution from electrorproton potential

for (i = 0; i < number_particles; i++) {
r_single_particle = 0;

for (j = 0; jJ < dimension; j++) {
r single_particle += r[i][jkr[illi];

}
e _potential —= charge/sqrt(r_single_particle);
}
/Il contribution from electron-electron potential
for (i = 0; i < number_particles-1; i++) {
for (j = i+1; j < number_particles; j++) {
r 12 = 0;
for (k = 0; k < dimension; k++) {
} r_12 4= (r[i][KI=r[j1[k]) «(r[i]10K] =r[j]1[k]);
e_potential += 1/sqrt(r_12);
}
}

free_matrix ((void %) r_plus); // free memory
free_matrix ((void x*x) r_minus);

e _local = e_potential+e_Kkinetic;

return e_local;

}

The remaining part of the program consists of the output aitidlize functions and is not listed here.
The way we have rewritten Schrddinger's equation resuleniergies given in atomic units. If we
wish to convert these energies into more familiar units gkectronvolt (eV), we have to multiply our
reults with2Ey where Ey = 13.6 eV, the binding energy of the hydrogen atom. Using Eq.(13) f6r
the trial wave function, we obtain an energy minimurmeat: 1.75. The ground state i&¥ = —2.85
in atomic units orE = —77.5 eV. The experimental value is78.8 eV. Obviously, improvements to
the wave function such as including the 'cusp’-conditiontfee two electrons as well, see EQ. (1T]106),
could improve our agreement with experiment. Such an imefeation is the topic for the next project.
We note that the effective charge is less than the chargeafittleus. We can interpret this reduction
as an effective way of incorporating the repulsive electtactron interaction. Finally, since we do not
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Figure 11.3: Result for ground state energy of the heliunmabsing Eq. [[T1.105) for the trial wave
function. The variance is also plotted. A total of 100000 KMo@arlo moves were used with a step
length of 2 Bohr radii.

have the exact wave function, we see from Eig. 111.3 that thien@e is not zero at the energy mini-
mum. Techniques such as importance sampling, to be caedrésthe brute force Metropolis sampling
used here, and various optimization techniques of the megiand the energy, will be discussed under
advanced topics, see chayitel 18.

11.5.6 Helium and beyond

We need to establish some rules regarding the construcfigiysically reliable wave-functions for
systems with more than one electron. Halli principle, after Wolfgang Pauli states th@he total wave
function must be antisymmetric under the interchange ofpily of identical fermions and symmetric
under the interchange of any pair of identical bosons.

A result of the Pauli principle is the so-called Pauli ex@bdasprinciple which thano two electrons
can occupy the same state.

Overall wave functions that satisfy the Pauli principle aften written asSlater Determinants

The Slater Determinant

For the helium atom we assumed that the two electrons weleibdhe 1s state. This fulfills the Pauli
exclusion principle as the two electrons in the ground dtates different intrinsic spin. However, the
wave function we discussed above was not antisymmetric igthect to an interchange of the different
electrons. This is not totally true as we only included thatisp part of the wave function. For the
helium ground state the spatial part of the wave functioymsraetric and the spin part is antisymmetric.
The product is therefore antisymmetric as well. The Sld&erminant consists of single-partidpin-
orbitals; joint spin-space states of the electrons

Ul (1) = Wy(1) 1 (1),
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and similarly
Bl (2) = U1(2) | (2).
Here the two spin functions are given by

1 i me(I) =1
T([)_{o if my(I) = —4
and
n=l 0 fmdd) =3 11.109
D=1 if my(I)=—3 (11-109)

with I = 1, 2. The ground state can then be expressed by the followingrdietant

L M) w2 1)
V@) | U1 L (1) P1s(2) | (2)
This is an example of 8later determinantThis determinant is antisymmetric since particle intarae

is identical to an interchange of the two columns. For theugdostate the spatial wave-function is
symmetric. Therefore we simply get

U(1,2) = Uis(D)W1s(2) [T (1) L )= 1(2) L (D]

The spin part of the wave-function is here antisymmetricisas no effect when calculating physical
observables because the sign of the wave function is squagdicexpectation values.
The general form of a Slater determinant composed @fthonormal orbitald ¢; } is

p1(1)  ¢1(2) ... #1(N)

o 1| (1) 202) ... ¢2(N) (11.110)
UM : : : ' '

U(1,2)

on(1) on(2) ... on(N)

The introduction of the Slater determinant is very impadrfanthe treatment of many-body systems,
and is the principal building block for various variatiomedve functions. As long as we express the wave-
function in terms of either one Slater determinant or a lireeanbination of several Slater determinants,
the Pauli principle is satisfied. When constructing mamctebn wave functions this picture provides
an easy way to include many of the physical features. Ondgmolwith the Slater matrix is that it is
computationally demanding. Limiting the number of caltigias will be one of the most important issues
concerning the implementation of the Slater determinahts Will be discussed in detail in chapfed 18.
Chapter”IB is dedicated to the discussion of advanced maahy-methods for solving Schrodinger’s
equation.

Thels hydrogen like wave function

3/2
Rug(r) = 2 (50) exp (—ZrJag) = wio)r

The total energy for helium (not the Hartree or Fock termmfthe direct and the exchange term should
give57/8.
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The single-particle energy with no interactions shoulcegivz? /2n?.
The2s hydrogen-like wave function is

Roo(r) =2 <£>3/2 (1 - ﬁ) exp (—2Zr/2ap) = ug/r

2&0 2&0

and the2p hydrogen -like wave function is

1 (2 \**zr
Roi(r) = — | — —exp (—2Z7r/2ag) = us1 /7
21() \/§<2a0> a0 p(—Zr/2a0) = uz1/
We useny = 1.

If we compute the total energy of the helium atom with the fimc

7\ 3/2
Ruo(r) =2 (2) " exp (-2 a) = o/,
as a trial single-particle wave fuction, we obtain a totargy (one-body and two-body)

E(Z)=27?—-4Z + gz.

The minimum is not af = 2. Take the derivative wrfZ and we find that the minimum is at
Z =2 o _ 1.6875
N 16

and represents an optimal effective charge.

11.6 The H molecule

The H molecule consists of two protons and one electron, withibjénergyE; = —2.8 eV and an
equilibrium positionry = 0.106 nm between the two protons.

We define our system through the following variables. Theteda is at a distance from a chosen
origo, one of the protons is at the distane® /2 while the other one is placed &/2 from origo,
resulting in a distance to the electronrof R/2 andr + R /2, respectively.

In our solution of Schrédinger’s equation for this systemane going to neglect the kinetic energies
of the protons, since they are 2000 times heavier than tltr@fe We assume thus that their velocities
are negligible compared to the velocity of the electron. ddiion we omit contributions from nuclear
forces, since they act at distances of several orders of in@grsmaller than the equilibrium position.

We can then write Schrodinger’s equation as follows

{_ h2V?2 ke? ke? ke?

ame  T-Rj2 [+ R2 f}¢(rv R) = BY(r,R), (11.111)

where the first term is the kinetic energy of the electron, dbeond term is the potential energy the
electron feels from the proton atR /2 while the third term arises from the potential energy cdwiion
from the proton aR /2. The last term arises due to the repulsion between the twonmsolIn Fig[ITKh
we show a plot of the potential energy

B ke? B ke? i k:_62
r—R/2| |r+R/2| R

V(r,R) = (11.112)
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Here we have fixedR| = 2a¢ og |R| = 8ao, being 2 and 8 Bohr radii, respectively. Note that in the
region betweenr| = —|R|/2 (units arer/ag in this figure, withay = 0.0529) and|r| = |R|/2 the
electron can tunnel through the potential barrier. Retall + R/2 og R/2 correspond to the positions
of the two protons. We note also thatAfis increased, the potential becomes less attractive. Hsis h
consequences for the binding energy of the molecule. Thadirgrenergy decreases as the distaRce
increases. Since the potential is symmetric with respetttdanterchange dR — —R andr — —r it

0 I

A0k

20+

) [eV]

30+

V(r,
A
S

|

r/ag

Figure 11.4: Plot oV (r, R) for |R|=0.1 and 0.4 nm. Units along theaxis arer/aq . The straight line
is the binding energy of the hydrogen ataims —13.6 eV.

means that the probability for the electron to move from orwgm to the other must be equal in both
directions. We can say that the electron shares it's timedst both protons.

With this caveat, we can now construct a model for simulatimgmolecule. Since we have only one
elctron, we could assume that in the linkit — oo, i.e., when the distance between the two protons is
large, the electron is essentially bound to only one of tliégms. This should correspond to a hydrogen
atom. As a trial wave function, we could therefore use thetadaic wave function for the ground state
of hydrogen, namely

1 1/2
VYro0(r) = <—3> e~/ (11.113)
7Ta0
Since we do not know exactly where the electron is, we havédw or the possibility that the electron
can be coupled to one of the two protons. This form includes’thisp’-condition discussed in the
previous section. We define thence two hydrogen wave fumetio

1\ 1/2
Y1(r,R) = <_3> e~ Ir—R/2l/a0, (11.114)
and
1\ /2
Yo(r,R) = <—3> e~ Ir+R/2|/a0 (11.115)
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Based on these two wave functions, which represent whemrédlotron can be, we attempt at the follow-
ing linear combination

Y+(r,R) = Cx (P1(r, R) £ 92(r, R)), (11.116)

with C4+ a constant. Based on this discussion, we add a second eléstayder to simulate the H
molecule. That is the topic for project 11.3.

11.7 Improved variational calculations
To be finished for spring 2010.

11.7.1 Importance sampling

As mentioned in connection with the generation of randomimensy sequential correlation must be given
thorough attention as it may lead to bad error estimates rofiaonerical results.

There are several things we need to keep in mind in order o tkeecorrelation low. First of all, the
transition acceptance must be kept as high as possible n@slee a walker will dwell at the same spot
in state space for several iterations at a time, which waadly lead to high correlation between nearby
succeeding measurements.

Secondly, when using the simple symmetric formugfroid, Znew), ONe has to keep in mind the
random walk nature of the algorithm. Transitions will be m&etween points that are relatively close to
each other in state space, which also clearly contributé@sctease correlation. The seemingly obvious
way to deal with this would be just to increase the step siimyang the walkers to cover more of the state
space in fewer steps (thus requiring fewer steps to readdieity). But unfortunately, long before the
step length becomes desirably large, the algorithm breaks dWhen proposing moves symmetrically
and uniformly aroundeq, the step acceptance becomes directly dependent on thiestgb in such a
way that a too large step length reduces the acceptance.e@berr for this is very simple. As the step
length increases, a walker will more likely be given a moveppisition to areas of very low probability,
particularly if the governing trial wave function describa localized system. In effect, the effective
movement of the walkers again becomes too small, resultitarge correlation. For optimal results we
therefore have to balance the step length with the accemtanc

With a transition suggestion rule as simple as the uniform symmetrical one emphasized sdér, t
usual rule of thumb is to keep the acceptance ar@uhdBut the optimal interval varies a lot from case
to case. We therefore have to treat each numerical experimtncare.

By choosing a bettew, we can still improve the efficiency of the step length veraoseptance.
Recall thatv may be chosen arbitrarily as long as it fulfills ergodicityganing that it has to allow the
walker to reach any point of the state space in a finite numbsteps. What we basically want is an
w that pushes the ratio towards unity, increasing the acoeptaThe theoretical situation af exactly
equal top itself:

W(a?new- $old) = W(wnew) = p(a?new)

would give the maximal acceptancelofBut then we would already have solved the problem of produc-
ing points distributed according t@ One typically settles on modifying the symmetricako that the
walkers move more towards areas of the state space wheristtibution is large. One such procedure is
the Fokker-Planck formalism where the walkers are movedrdaug to the gradient of the distribution.
The formalism “pushes” the walkers in a “desirable” direnti The idea is to propose moves similarly to
an isotropic diffusion process with a drift. A new positi@Re, is calculated from the old one;yqg, as
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follows:
Znew = Told + X + DF (x0iq)0t (11.117)

Herey is a Gaussian pseudo-random number with mean equal zer@aadce equal Dét. It accounts
for the diffusion part of the transition. The third term ore tleft hand side accounts for the driff! is a
drift velocity dependent on the position of the walker andesived from the quantum mechanical wave
function. The constani), being the diffusion constant of, also adjusts the size of the drifit is a
time step parameter whose presence will be clarified shortly

It can be shown that the corresponding to the move proposition rule in Eq._ (17l 1le6dmes (in
non-normalized form):

Tnew — Told — DOtF (x 2
w(Zold, Tnew) = €XP <—( e Old4D5t (o) > (11.118)
which, as expected, is a Gaussian with variap€sit centered slightly oftrqg due to the drift term

DF(xq)dt.
What is the optimal choice for the drift term? From statitimechanics we know that a simple
isotropic drift diffusion process obeys a Fokker-Planckaopn of the form:

Of .0 (0
o ;Daxi (Z?xi _ E(p)) s (11.119)

wheref is the continuous distribution of walkers. Equatién (I a discretized realization of such
a process wherét is the discretized time step. In order for the solutjpo converge to the desired
distributionp, it can be shown that the drift velocity has to be chosen dsvist

1
F fV f
where the operatoV is the vector of first derivatives of all spatial coordinat€onvergence for such a
diffusion process is only guaranteed when the time stepoagpes zero. But in the Metropolis algorithm,
where drift diffusion is used just as a transition propesitiule, this bias is corrected automatically by the
rejection mechanism. In our application, the desired PDigane square absolute of the wave function,
f = ||?, the drift velocity becomes:

F = %Vzp (11.120)

As expected, the walker is “pushed” along the gradient ofithee function.

When dealing with many-particle systems, as those thatogitudied in this thesis, we should also
consider whether to move only one patrticle at a time at eaatsition or all at once. The former method
may often be more efficient. A movement of only one particlé sestrict the accessible space a walker
can move to in a single transition even more, thus introduciorrelation. But on the other hand, the
acceptance is increased so that each particle can be maveerfthan it could in a standard all-particle
move. Itis also computationally far more efficient to do qasticle transitions particularly when dealing
with complicated distributions governing many-dimensibanti-symmetrical fermionic systems.

Alternatively, we can treat the sequence of all one-partichnsitions as one total transition of all
particles. This gives a larger effective step length thuliceng the correlation. From a computational
point of view, we may not gain any speed by summing up the iddal one-particle transitions as
opposed to doing an all-particle transition. But the reduoarrelation increases the total efficiency. We
are able to do fewer calculations in order to reach the sammenoal accuracy.

Another way to acquire some control over the correlatiomidd a so called blocking procedure on
our set of numerical measurements.
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11.7.2 Guiding Functions

Evaluation of the energy functional can be further improlgga transformation similar to the one in the
importance sampling scheme. Consider the mean of a fung¢tmrer a PDFp and letp, be a function
that resembleg but is computationally less expensive. We can then estithatenean off as follows:

[p@)f(@)dz _ [p(@w@)f(@de  Tac, (@) ()

N = T@dr ~ [p@e@ds . See, o@)
where @)
wiz) = pg(T)

is a weight converting the distribution from, to p. Similarly as with regular importance sampling
described above, we need to accumulateweighted byw. Note that the normalization factor has to
be reweighted as well so that we actually need to evaluatérttegrals. Fortunately this does not pose
any significant efficiency loss. The only extra thing we needd is to accumulate the value wfitself,
which we have to evaluate anyway.

We might worry that the estimate (the rightmost part of thevabexpression) actually represents a
normalized integration while the exact expressions do notain any normalization constants. This is
needless to worry about because the normalization constahé numerator is the same as that of the
denominator, namely p,(x)dz. It would cancel from the exact expressions anyway.

Guiding functions become especially useful in conjunctati the Metropolis algorithm. There we
wished to keep the sequential correlation as low as poskibiacreasing the effective step size. This
can be done by keeping only everyh point that is produced in the random walk. But such a method
is most efficient when a guiding functioi, mimicking the trial wave functionl is used to generate
the actual walk. A reweighted local energyt;, is then used to obtain the correct energy average. If
v, is sufficiently less expensive to evaluate thinthen the extra time used on the rejected points is
compensated for by the increased evaluation speed.

To see the benefit of using a guiding function, the correlatedple error is

Var(z Var
err’ = n( ) (1 + 2 Z md>

wherer is the correlation time. Assuming equals at least a correlation length, we can cut off the sum
atm, since correlations exceeding this distance are expeatgé little contribution tor. Now using a
guiding function and keeping only everyth point we reduce the number of points fromto n/m but
then we also reduceto 1, so that:

mVar(x
err2 = 7( )
9 n
The ratio of these two error estimates is:
errg m

err2  1+2Y 0 kg

Becausex, decreases exponentially startingsgt= 1, the sum in the denominator must yield a value
less thanm. A reasonable estimate &f; ~ 1/2 for all d up tom gives that the I’ati@rrg/errz ~ 1. It
appears that we have not gained any efficiency. Bpf ifan be evaluated times as fast ag, then we
can producel times as many points in the same time, thus reducing the leyrarfactory/d.
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11.7.3 Energy and Variance Minimization

There are two main approaches for optimizing a trial wavestion U.. By the variational principle
we can do a straight forward minimization of the energy fioral on the space of the parameters of
V. This means minimizing the estimate of the mean of the lonafgy. Because of its simplicity,
such a scheme seems to be extremely powerful. The energynuammiis sought out by generating a
grid on the space of variational parameters and estimaliadunctional on each point of this grid. A
suitable minimization algorithm, like the steepest descerthe Newton method, can then be applied.
Unfortunately this approach is often haunted by problemmsthbility complicating the minimization
algorithms that usually rely on very accurate estimatesefgy differences.

If the number of integration points is kept constant, thenfthither away we move from the optimal
point on the parameter grid, the greater the varianc&pbecomes. This greatly hampers a proper
estimation of the energy minimum since the local energy mdlctuate. One possible way to work
around the instabilities is by the method of correlated demgpto be described shortly.

The second approach for optimizing the trial wave funct®by minimizing the variance. Such an
approach is often preferred to the minimization of the epaigce the variance has an a priori known
lower bound, namely zero, as opposed to the energy itsetftwkiunknown. Also, the variance vanishes
for all eigenstates, not just the ground state, which is midggeous when one wishes to optimize excited
states. In addition, the variance generally shows higteilgly, thus being more easily applicable to
minimization algorithms.

The usual strategy is to combine both energy and variancemizistion. What we often notice is
that the minimum of the variance does not coincide exactth wie minimum of the energy, unless we
are actually able to reproduce the exact solution, in whagedhe two minima must coincide.

This discrepancy may in part be explained by realizing thatdample variance that we attempt to
minimize is only an estimate of the true theoretical vareaimcthat we are unable to obtain an exact value
of the mean of the local energy. L& be the small difference betweéhy, )., and(Er). We can then
write the estimate of the variance as follows:

% Z (EL — <EL>{aci})2 = % Z(EL - <EL> - 5E)2

T;EP x;€p

= 3 (B~ (B~ BB~ (Bu) + 0F?)

x;Ep

n
= 3 (B (L)~ 20B(FL)e) — (BL) + 6
x;Ep

Focusing our attention on the last line, we see that the &rst is the one that we intend to minimize.
The last term is just a constant that does not influence thidgrosf the minimum. The middle term,
however, is linearly dependent on the local energy thugisgithe minimum of the estimate from the
true minimum. Of course, increasing the computationalretby sampling more points should make
(EL) (=} approach Ey,), reducing this effect.

Instead of the typical estimate of the variance one oftestubes(£y, )} by a reference energy
Erof:

1 n
_ Z (EL - Erof)2
n
T, Ep
E,.f being as close to the best optimized valué Bf ) as possible£..s can be updated continuously as
the optimization converges.
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Finally, one always has to be aware of the risk of gettinglstut local minima. Since the energy
functional estimate, as noted, is never necessarily wokhbed on the parameter space, it is difficult to
construct efficient automated minimization algorithms. S¥loften we need to study the behavior of the
energy carefully “by hand” to determine whether our resaittstrustworthy.

11.7.4 Correlated Sampling

Minimization algorithms are, as mentioned, easily coredpby the statistical fluctuations of the mean
energy estimates. The problem may in part be overcome byiagpso called correlated sampling,
a procedure involving guiding functions The method smoathsthe mean energy estimates on the
variational parameter grid.

The main idea is to choose a particular point on the grid,gpadlly one that is as close to the true
minimum as is possible to achieve. Let this point be repiteselny the vectorx. Now use the trial wave
function | ¥, (z)|? for that particular point as a guiding function for the meaemgy estimates of all the
other pointsa’ (instead of writing the trial wave function aBr we use¥ ., to explicitly state which
pointa’ on the parameter grid it belongs to). Estimating the energgmor all pointsx’ now becomes:

[ Vo (@)EL(x)de [ |Va(@) w(x)EL(@)de 3 w(z)EL(z)
[ 1o () Pde f\‘I’ !2w x)dz > w(z)

<EL>0/ =

where the points: are sampled from the guiding functiow ., (x)|? and the weighting factor is:

‘\I/a’ (w)P

@) = T o)

The trick is now to generate the sgt;} of integration points sampled frof¥ . (x)|? only onceand
use this set to estimate the means and variances for all liee points as well. By imposing such a
statistical dependency we hope that the fluctuations of iffereht estimates become synchronized so
that their graph is smoothed out. We can indeed show thatleted sampling reduces the variance when
estimating energylifferences These are typically needed by minimization algorithms. aMé® save
computation time since we only need to generate one setagfration points for all the estimates. But
we still need to evaluate the weightindividually for all points on the grid of variational paraters.

11.8 Exercises and projects

Project 11.1: Studies of light Atoms

The aim of this project is to test the variational Monte Capppled to light atoms. We will test different
trial wave function?r. The systems we study are atoms consisting of two electrolys such as the
helium atom, Lj; and Bg;;. The atom Lj; has two electrons and = 3 while Be;;; hasZ = 4 but
still two electrons only. A general ansatz for the trial wéanection is

T;Z)T(R) = ¢(r1)¢(r2)f(T12). (11121)

For all systems we assume that the one-electron wave fusctia;) are described by the an elecron in
the lowest hydrogen orbitdls.
The specific trial functions we study are

Yri1(r1,re,r12) = exp (—a(r; +r2)), (11.122)
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whereq is the variational parameter,

Yro(r1,re,r12) = exp (—a(ry + r2))(1 + Bria), (11.123)

with 3 as a new variational parameter and

Yr3(ry,ra,r12) = exp (—a(ry +r2)) exp (ﬁ) (11.124)

a) Find the analytic expressions for the local energy foratheve trial wave function for the helium
atom. Study the behavior of the local energy with these fanstin the limitsr; — 0, 7 — 0 and
T12 — 0.

b) Compute
(fy — LRV RHER) U7 (R)
JdRVL(R)¥r(R)
for the helium atom using the variational Monte Carlo metbotploying the Metropolis algorithm

to sample the different states using the trial wave functign(ry, r2, r12). Compare your results
with the analytic expression

(11.125)

2 2
_ M 2T (11.126)

H) =
(H) Me 327reoa

c) Use the optimal value a@f from the previous point to compute the ground state of thizifmeatom
using the other two trial wave functiongr,(ry,r2,r12) andyrs(ry,ra,r12). In this case you
have to vary botly and 3. Explain briefly which function)r; (r1,r2,r12), ¥1r2(r1,re,r12) and
1/JT3 (1‘1, ro, 1‘12) is the best.

d) Use the optimal value for all parameters and all wave fonstto compute the expectation value
of the mean distancg-2) between the two electrons. Comment your results.

e) We will now repeat point 1c), but we replace the helium atdth the ions Li; and Be ;. Perform
first a variational calculation using the first ansatz for tified wave functionyr;(rq, rz,r12) in
order to find an optimal value far. Use then this value to start the variational calculatiothef
energy for the wave functiongrs(ry, ra, r12) andyrs(ry, ra, r12). Comment your results.

Project 11.2: Ground state of He, Be and Ne

The task here is to perform a variational Monte Carlo cateuteof the ground state energy of the atoms
He, Be and Ne.

a) Here we limit the attention to He and employ the followirigltwave function

12
Yp(ri,re,r12) = exp (—a(r; + o)) exp <7>, (11.127)
(r1,T2,r12) (—a(ri +r2)) 20T )
with o and as variational parameters. The interaction is

Vir,r) = —— — = 4+ - (11.128)
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b)

yielding the following hamiltonian for the helium atom
H=--t1-2_-_-4 (11.129)

Your task is to perform a Variational Monte Carlo calculatiosing the Metropolis algorithm to
compute the integral
J dR7(R)¥r(R)

We turn the attention to the ground state energy for thet@®a.aln this case the trial wave function
is given by

(11.130)

4 ..
r(r1,T2,13,14) = Det (¢1(r1), ¢2(r2), ¢3(rs), ¢a(ra)) [ [ exp (W) (11.131)
i<j K

where theDet is a Slater determinant and the single-particle wave fonstare the hydrogen wave
functions for thel s and2s orbitals. Their form within the variational ansatz is given

P1s(ry) = e ", (11.132)

and
Pas(ry) = (2 — ary) e OTi/2, (11.133)

Set up the expression for the Slater determinant and pedoraniational calculation with and3
as variational parameters.

Now we compute the ground state energy for the Neon atdowfinlg the same steps as in a) and
b) but with the trial wave function

10
Q/JT(I'l, ra,... ,1'10) = Det (¢1(r1), ¢2(I’2), e ,¢10(I’10)) H exXp <W>, (11134)
i<j ”

Set up the expression for the Slater determinant and repgeg a) and b) including the Slater
determinant. The variational parameters are stdind g only. In this case you need to include the
2p wave function as well. It is given as

bop(ri) = arje omi/2, (11.135)
Observe that; = | /r? +r? +7r7.
Project 11.3: the K molecule
The H, molecule consists of two protons and two electrons with aiggostate energyy = —1.17460

a.u. and equilibrium distance between the two hydrogen simim, = 1.40 Bohr radii. We define our
systems using the following variables. Origo is chosen tdhééwvay between the two protons. The
distance from proton 1 is defined asR/2 whereas proton 2 has a distanBg'2. Calculations are
performed for fixed distanceR between the two protons.
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Electron 1 has a distaneg from the chose origo, while electrahhas a distance,. The kinetic
energy operator becomes then
Vi V3
2 2
The distance between the two electronsis = |r; — ry|. The repulsion between the two electrons
results in a potential energy term given by

(11.136)

+ L (11.137)
12

In a similar way we obtain a repulsive contribution from théeraction between the two protons given

by
1

R|’
whereR is the distance between the two protons. To obtain the firnahpial energy we need to include
the attraction the electrons feel from the protons. To mtus] we need to define the distance between
the electrons and the two protons. If we model this along aehe-akse with electron 1 placed at a
distancer; from a chose origo, one proton-aR /2 and the other aR /2, the distance from proton 1 to
electron 1 becomes

+ (11.138)

ripr =ri+ R/2, (11.139)

and
Tip2 =11 — R/2, (11140)

from proton 2. Similarly, for electron 2 we obtain

rop1 =Tro + R/2, (11.141)
and
ropg =TI — R/2 (11142)
These four distances define the attractive contributioiseqotential energy
1 1 1 1
— — — — . (11.143)
T1p1 T1p2 T2p1 T2p2
We can then write the total Hamiltonian as
P 2 2 1 1 1 1 1 1
H:—&—&— — — - + — + =, (11.144)
2 2 rip Tip2 Topr Top2 T2 |RY
and if we choos@®. = 0 we obtain the helium atom.
In this project we will use a trial wave function of the form
712
R) = R R —_— 11.145
Yr(ryr2, R) = 9(r, R)i(rz, R) exp <2(1 - Bm)), (11.145)
with the following trial wave function
P(ri,R) = (exp (—arip1) + exp (—arip)), (11.146)
for electron 1 and
P(ra2, R) = (exp (—argp1) + exp (—ary)) . (11.147)
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The variational parameters ateand .
One can show that in the limit where all distances approact that

a=1+exp(—R/a), (11.148)

resulting ing kas the only variational parameter. The last equation isnalimear equation which we can
solve with for example Newton’s method discussed in chdfter

a) Find the local energy as function Bf

b) Set up and algorithm and write a program which computegtpectation value o¢ﬁ> using the
variational Monte Carlo method with a brute force Metropaampling. For each inter-proton
distanceR you must find the parameter which minimizes the energy. Plot the corresponding
energy as function of the distanéebetween the protons.

c) Use thereafter the optimal parameter sets to computevérage distancér,,) between the elec-
trons where the energy as function®fexhibits its minimum. Comment your results.

d) We modify now the approximation for the wave functions lgicerons 1 and 2 by subtracting the
two terms instead of adding up, viz

P(ri,R) = (exp (—arip1) — exp (—arip)), (11.149)

for electron 1
P(re, R) = (exp (—argp) — exp (—aryy2)), (11.150)

for electron 2. Mathematically, this approach is equallgble as the previous one. Repeat your
calculations from point b) and see if you can obtain an enerigygmum as function oR. Comment

your results.
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