
Chapter 11

Quantum Monte Carlo methods

If, in some cataclysm, all scientific knowledge were to be destroyed, and only one sen-
tence passed on to the next generation of creatures, what statement would contain the most
information in the fewest words? I believe it is the atomic hypothesis (or atomic fact, or
whatever you wish to call it) that all things are made of atoms, little particles that move
around in perpetual motion, attracting each other when theyare a little distance apart, but re-
pelling upon being squeezed into one another. In that one sentence you will see an enormous
amount of information about the world, if just a little imagination and thinking are applied.
Richard Feynman, The Laws of Thermodynamics.

11.1 Introduction

The aim of this chapter is to present examples of applications of Monte Carlo methods in studies of simple
quantum mechanical systems. We study systems such as the harmonic oscillator, the hydrogen atom,
the hydrogen molecule, the helium atom and more complicatedatoms. Systems with man interacting
fermions and bosons such as liquid4He and Bose Einstein condensation of atoms ae discussed in chapter
18. Most quantum mechanical problems of interest in for example atomic, molecular, nuclear and solid
state physics consist of a large number of interacting electrons and ions or nucleons. The total number
of particlesN is usually sufficiently large that an exact solution cannot be found. In quantum mechanics
we can express the expectation value for a givenÔ operator for a system ofN particles as

〈Ô〉 =
∫
dR1dR2 . . . dRNΨ∗(R1,R2, . . . ,RN )ô(R1,R2, . . . ,RN )Ψ(R1,R2, . . . ,RN )∫

dR1dR2 . . . dRNΨ∗(R1,R2, . . . ,RN )Ψ(R1,R2, . . . ,RN )
, (11.1)

whereΨ(R1,R2, . . . ,RN ) is the wave function describing a many-body system. Although we have
omitted the time dependence in this equation, it is an in general intractable problem. As an example from
the nuclear many-body problem, we can write Schrödinger’s equation as a differential equation with the
energy operator̂H (the so-called energy Hamiltonian) acting on the wave function as

ĤΨ(r1, .., rA, α1, .., αA) = EΨ(r1, .., rA, α1, .., αA)

where
r1, .., rA,

are the coordinates and
α1, .., αA,
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are sets of relevant quantum numbers such as spin and isospinfor a system ofA nucleons (A = N + Z,
N being the number of neutrons andZ the number of protons). There are

2A ×
(
A
Z

)

coupled second-order differential equations in3A dimensions. For a nucleus like10Be this number is
215040. This is a truely challenging many-body problem.

Eq. (11.1) is a multidimensional integral. As such, Monte Carlo methods are ideal for obtaining
expectation values of quantum mechanical operators. Our problem is that we do not know the exact
wavefunctionΨ(r1, .., rA, α1, .., αN ). We can circumvent this problem by introducing a function which
depends on selected variational parameters. This functionshould capture essential features of the sys-
tem under consideration. With such a trial wave function we can then attempt to perform a variational
calculation of various observables, using Monte Carlo methods for solving Eq. (11.1).

The present chapter aims therefore at giving you an overviewof the variational Monte Carlo approach
to quantum mechanics. We limit the attention to the simple Metropolis algorithm, without the inclusion of
importance sampling. Importance sampling and diffusion Monte Carlo methods are discussed in chapters
18 and 16.

However, before we proceed we need to recapitulate some of the postulates of quantum mechanics.
This is done in the next section. The remaining sections dealwith mathematical and computational
aspects of the variational Monte Carlo methods, with applications from atomic and molecular physis.

11.2 Postulates of Quantum Mechanics

11.2.1 Mathematical Properties of the Wave Functions

Schrödinger’s equation for a one-dimensional onebody problem reads

− ~
2

2m
∇2Ψ(x, t) + V (x, t)Ψ(x, t) = ı~

∂Ψ(x, t)

∂t
, (11.2)

whereV (x, t) is a potential acting on the particle. The first term is the kinetic energy. The solution to this
partial differential equation is the wave functionΨ(x, t). The wave function itself is not an observable
(or physical quantity) but it serves to define the quantum mechanical probability, which in turn can be
used to compute expectation values of selected operators, such as the kinetic energy or the total energy
itself. The quantum mechanical probabilityP (x, t)dx is defined as1

P (x, t)dx = Ψ(x, t)∗Ψ(x, t)dx, (11.3)

representing the probability of finding the system in a region betweenx andx + dx. It is, as opposed
to the wave function, always real, which can be seen from the following definition of the wave function,
which has real and imaginary parts,

Ψ(x, t) = R(x, t) + ıI(x, t), (11.4)

yielding
Ψ(x, t)∗Ψ(x, t) = (R− ıI)(R + ıI) = R2 + I2. (11.5)

1This is Max Born’s postulate on how to interpret the wave function resulting from the solution of Schrödinger’s equation.
It is also the commonly accepted and operational interpretation.
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11.2 – Postulates of Quantum Mechanics

The variational Monte Carlo approach uses actually this definition of the probability, allowing us thereby
to deal with real quantities only. As a small digression, if we perform a rotation of time into the complex
plane, usingτ = it/~, the time-dependent Schrödinger equation becomes

∂Ψ(x, τ)

∂τ
=

~
2

2m

∂2Ψ(x, τ)

∂x2
− V (x, τ)Ψ(x, τ). (11.6)

With V = 0 we have a diffusion equation in complex time with diffusion constant

D =
~

2

2m
.

This is the starting point for the Diffusion Monte Carlo method discussed in chapter 18. In that case
it is the wave function itself, given by the distribution of random walkers, that defines the probability.
The latter leads to conceptual problems when we have anti-symmetric wave functions, as is the case for
particles with the spin being a multiplum of1/2. Examples of such particles are various leptons such as
electrons, muons and various neutrinos, baryons like protons and neutrons and quarks such as the up and
down quarks.

The Born interpretation constrains the wave function to belong to the class of functions inL2. Some
of the selected conditions whichΨ has to satisfy are

1. Normalization ∫ ∞

−∞
P (x, t)dx =

∫ ∞

−∞
Ψ(x, t)∗Ψ(x, t)dx = 1 (11.7)

meaning that ∫ ∞

−∞
Ψ(x, t)∗Ψ(x, t)dx <∞ (11.8)

2. Ψ(x, t) and∂Ψ(x, t)/∂x must be finite

3. Ψ(x, t) and∂Ψ(x, t)/∂x must be continuous.

4. Ψ(x, t) and∂Ψ(x, t)/∂x must be single valued

11.2.2 Important Postulates

We list here some of the postulates that we will use in our discussion.

Postulate I

Any physical quantityA(r,p) which depends on positionr and momentump has a corresponding quan-
tum mechanical operator by replacingp −i~▽, yielding the quantum mechanical operator

Â = A(r,−i~▽).

Quantity Classical definition QM operator
Position r r̂ = r

Momentum p p̂ = −i~▽

Orbital momentum L = r × p L̂ = r × (−i~▽)

Kinetic energy T = (p)2/2m T̂ = −(~2/2m)(▽)2

Total energy H = (p2/2m) + V (r) Ĥ = −(~2/2m)(▽)2 + V (r)
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Postulate II

The only possible outcome of an ideal measurement of the physical quantityA are the eigenvalues of the
corresponding quantum mechanical operatorÂ.

Âψν = aνψν ,

resulting in the eigenvaluesa1, a2, a3, · · · as the only outcomes of a measurement. The corresponding
eigenstatesψ1, ψ2, ψ3 · · · contain all relevant information about the system.

Postulate III

AssumeΦ is a linear combination of the eigenfunctionsψν for Â,

Φ = c1ψ1 + c2ψ2 + · · · =
∑

ν

cνψν .

The eigenfunctions are orthogonal and we get

cν =

∫
(Φ)∗ψνdτ.

From this we can formulate the third postulate:

When the eigenfunction isΦ, the probability of obtaining the valueaν as the outcome of a mea-
surement of the physical quantityA is given by|cν |2 andψν is an eigenfunction of̂A with eigenvalue
aν .

As a consequence one can show that:
when a quantal system is in the stateΦ, the mean value or expectation value of a physical quantityA(r,p)
is given by

〈A〉 =

∫
(Φ)∗Â(r,−i~▽)Φdτ.

We have assumed thatΦ has been normalized, viz.,
∫

(Φ)∗Φdτ = 1. Else

〈A〉 =

∫
(Φ)∗ÂΦdτ∫
(Φ)∗Φdτ

.

Postulate IV

The time development of a quantal system is given by

i~
∂Ψ

∂t
= ĤΨ,

with Ĥ the quantal Hamiltonian operator for the system.
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11.3 First Encounter with the Variational Monte Carlo Method

The required Monte Carlo techniques for variational Monte Carlo are conceptually simple, but the prac-
tical application may turn out to be rather tedious and complex, relying on a good starting point for the
variational wave functions. These wave functions should include as much as possible of the inherent
physics to the problem, since they form the starting point for a variational calculation of the expecta-
tion value of the hamiltonianH. Given a hamiltonianH and a trial wave functionΨT , the variational
principle states that the expectation value of〈H〉, defined through Postulate III

〈H〉 =

∫
dRΨ∗

T (R)H(R)ΨT (R)∫
dRΨ∗

T (R)ΨT (R)
, (11.9)

is an upper bound to the ground state energyE0 of the hamiltonianH, that is

E0 ≤ 〈H〉. (11.10)

To show this, we note first that the trial wave function can be expanded in the eigenstates of the
hamiltonian since they form a complete set, see again Postulate III,

ΨT (R) =
∑

i

aiΨi(R), (11.11)

and assuming the set of eigenfunctions to be normalized, insertion of the latter equation in Eq. (11.9)
results in

〈H〉 =

∑
mn a

∗
man

∫
dRΨ∗

m(R)H(R)Ψn(R)∑
mn a

∗
man

∫
dRΨ∗

m(R)Ψn(R)
=

∑
mn a

∗
man

∫
dRΨ∗

m(R)En(R)Ψn(R)∑
n a

2
n

, (11.12)

which can be rewritten as ∑
n a

2
nEn∑

n a
2
n

≥ E0. (11.13)

In general, the integrals involved in the calculation of various expectation values are multi-dimensional
ones. Traditional integration methods such as the Gauss-Legendre will not be adequate for say the com-
putation of the energy of a many-body system. The fact that weneed to sample over a multi-dimensional
density and that the probability density is to be normalizedby the division of the norm of the wave
function, suggests that e.g., the Metropolis algorithm maybe appropriate.

We could briefly summarize the above variational procedure in the following three steps.

1. Construct first a trial wave functionψT (R;α), for say a many-body system consisting ofN par-
ticles located at positionsR = (R1, . . . ,RN). The trial wave function depends onα variational
parametersα = (α1, . . . , αN).

2. Then we evaluate the expectation value of the hamiltonianH

〈H〉 =
∫
dRΨ∗

T (R;α)H(R)ΨT (R;α)∫
dRΨ∗

T (R;α)ΨT (R;α)
.

3. Thereafter we varyα according to some minimization algorithm and return to the first step.
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The above loop stops when we reach the minimum of the energy according to some specified criterion.
In most cases, a wave function has only small values in large parts of configuration space, and a straight-
forward procedure which uses homogenously distributed random points in configuration space will most
likely lead to poor results. This may suggest that some kind of importance sampling combined with e.g.,
the Metropolis algorithm may be a more efficient way of obtaining the ground state energy. The hope is
then that those regions of configurations space where the wave function assumes appreciable values are
sampled more efficiently.

The tedious part in a variational Monte Carlo calculation isthe search for the variational minimum.
A good knowledge of the system is required in order to carry out reasonable variational Monte Carlo
calculations. This is not always the case, and often variational Monte Carlo calculations serve rather as
the starting point for so-called diffusion Monte Carlo calculations. Diffusion Monte Carlo is a way of
solving exactly the many-body Schrödinger equation by means of a stochastic procedure. A good guess
on the binding energy and its wave function is however necessary. A carefully performed variational
Monte Carlo calculation can aid in this context. Diffusion Monte Carlo is discussed in depth in chapter
18.

11.4 Variational Monte Carlo for quantum mechanical systems

The variational quantum Monte Carlo has been widely appliedto studies of quantal systems. Here we
expose its philosophy and present applications and critical discussions.

The recipe, as discussed in chapter 8 as well, consists in choosing a trial wave functionψT (R) which
we assume to be as realistic as possible. The variableR stands for the spatial coordinates, in total3N
if we haveN particles present. The trial wave function serves then, following closely the discussion on
importance sampling in section 8.4, as a mean to define the quantal probability distribution

P (R;α) =
|ψT (R;α)|2

∫
|ψT (R;α)|2 dR;α

. (11.14)

This is our new probability distribution function (PDF).
The expectation value of the energy Hamiltonian is given by

〈Ĥ〉 =

∫
dRΨ∗(R)H(R)Ψ(R)∫
dRΨ∗(R)Ψ(R)

, (11.15)

whereΨ is the exact eigenfunction. Using our trial wave function wedefine a new operator, the so-called
local energy,

ÊL(R;α) =
1

ψT (R;α)
ĤψT (R;α), (11.16)

which, together with our trial PDF allows us to compute the expectation value of the local energy

〈EL(α)〉 =

∫
P (R;α)ÊL(R;α)dR. (11.17)

This equation expresses the variational Monte Carlo approach. We compute this integral for a set of
values ofα and possible trial wave functions and search for the minimumof the functionEL(α). If the
trial wave function is close to the exact wave function, then〈EL(α)〉 should approach〈Ĥ〉. Eq. (11.17) is
solved using techniques from Monte Carlo integration, see the discussion below. For most hamiltonians,
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11.4 – Variational Monte Carlo for quantum mechanical systems

H is a sum of kinetic energy, involving a second derivative, and a momentum independent and spatial
dependent potential. The contribution from the potential term is hence just the numerical value of the
potential. A typical Hamiltonian reads thus

Ĥ = − ~
2

2m

N∑

i=1

∇2
i +

N∑

i=1

Vonebody(ri) +

N∑

i<j

Vint(| ri − rj |). (11.18)

where the sum runs over all particlesN . We have included both a onebody potentialVonebody(ri) which
acts on one particle at the time and a twobody interactionVint(| ri − rj |) which acts between two
particles at the time. We can obviously extend this to more complicated three-body and/or many-body
forces as well. The main contributions to the energy of physical systems is largely dominated by one-
and two-body forces. We will therefore limit our attention to such interactions only.

Our local energy operator becomes then

ÊL(R;α) =
1

ψT (R;α)



− ~
2

2m

N∑

i=1

∇2
i +

N∑

i=1

Vonebody(ri) +

N∑

i<j

Vint(| ri − rj |)



ψT (R;α),

(11.19)
resulting in

ÊL(R;α) =
1

ψT (R;α)

(
− ~

2

2m

N∑

i=1

∇2
i

)
ψT (R;α)+

N∑

i=1

Vonebody(ri)+
N∑

i<j

Vint(| ri− rj |), (11.20)

The numerically time-consuming part in the variational Monte Carlo calculation is the evaluation of the
kinetic energy term. The potential energy, as long as it has asimpler-dependence adds only a simple
term to the local energy operator.

In our discussion below, we base our numerical Monte Carlo solution on the Metropolis algorithm.
The implementation is rather similar to the one discussed inconnection with the Ising model, the main
difference residing in the form of the PDF. The main test to beperformed is a ratio of probabilities.
Suppose we are attempting to move from positionR to R′. Then we perform the following two tests.

1. If
P (R′;α)

P (R;α)
> 1,

whereR′ is the new position, the new step is accepted, or

2.

r ≤ P (R′;α)

P (R;α)
,

wherer is random number generated with uniform PDF such thatr ∈ [0, 1], the step is also
accepted.

In the Ising model we were flipping one spin at the time. Here wechange the position of say a given
particle to a trial positionR′, and then evaluate the ratio between two probabilities. We note again that
we do not need to evaluate the norm2

∫
|ψT (R;α)|2 dR (an in general impossible task), since we are

only computing ratios.

2This corresponds to the partition functionZ in statistical physics.
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When writing a variational Monte Carlo program, one should always prepare in advance the required
formulae for the local energyEL in Eq. (11.17) and the wave function needed in order to compute the
ratios of probabilities in the Metropolis algorithm. Thesetwo functions are almost called as often as a
random number generator, and care should therefore be exercised in order to prepare an efficient code.

If we now focus on the Metropolis algorithm and the Monte Carlo evaluation of Eq. (11.17), a more
detailed algorithm is as follows

– Initialisation: Fix the number of Monte Carlo steps and thermalization steps. Choose an initialR
and variational parametersα and calculate|ψT (R;α)|2. Define also the value of the stepsize to be
used when moving from one value ofR to a new one.

– Initialise the energy and the variance.

– Start the Monte Carlo calculation with a loop over a given number of Monte Carlo cycles

1. Calculate a trial positionRp = R + r ∗ step wherer is a random variabler ∈ [0, 1].

2. Use then the Metropolis algorithm to accept or reject thismove by calculating the ratio

w = P (Rp)/P (R).

If w ≥ s, wheres is a random numbers ∈ [0, 1], the new position is accepted, else we stay
at the same place.

3. If the step is accepted, then we setR = Rp.

4. Update the local energy and the variance.

– When the Monte Carlo sampling is finished, we calculate the mean energy and the standard devia-
tion. Finally, we may print our results to a specified file.

Note well that the way we choose the next stepRp = R + r ∗ step is not determined by the wave
function. The wave function enters only the determination of the ratio of probabilities, similar to the way
we simulated systems in statistical physics. This means in turn that our sampling of points may not be
very efficient. We will return to an efficient sampling of integration points in our discussion of diffusion
Monte Carlo in chapter 18. This leads to the concept of importance sampling. As such, we limit ourselves
in this chapter to the simplest possible form of the Metropolis algorithm, and relegate both importance
sampling and advanced optimization techniques to chapter 18.

The best way however to understand the above algorithm and a specific method is to study selected
examples.

11.4.1 First illustration of variational Monte Carlo methods

The harmonic oscillator in one dimension lends itself nicely for illustrative purposes. The hamiltonian is

H = − ~
2

2m

d2

dx2
+

1

2
kx2, (11.21)

wherem is the mass of the particle andk is the force constant, e.g., the spring tension for a classical
oscillator. In this example we will make life simple and choosem = ~ = k = 1. We can rewrite the
above equation as

H = − d2

dx2
+ x2, (11.22)
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11.4 – Variational Monte Carlo for quantum mechanical systems

The energy of the ground state is thenE0 = 1. The exact wave function for the ground state is

Ψ0(x) =
1

π1/4
e−x2/2, (11.23)

but since we wish to illustrate the use of Monte Carlo methods, we choose the trial function

ΨT (x) =

√
α

π1/4
e−x2α2/2. (11.24)

Inserting this function in the expression for the local energy in Eq. (11.16), we obtain the following
expression for the local energy

EL(x) = α2 + x2(1− α4), (11.25)

with the expectation value for the hamiltonian of Eq. (11.17) given by

〈EL〉 =
∫ ∞

−∞
|ψT (x)|2EL(x)dx, (11.26)

which reads with the above trial wave function

〈EL〉 =
∫∞
−∞ dxe−x2α2

α2 + x2(1− α4)
∫∞
−∞ dxe−x2α2 . (11.27)

Using the fact that ∫ ∞

−∞
dxe−x2α2

=

√
π

α2
,

we obtain

〈EL〉 =
α2

2
+

1

2α2
. (11.28)

and the variance

σ2 =
(α4 − 1)2

2α4
. (11.29)

In solving this problem we can choose whether we wish to use the Metropolis algorithm and sample
over relevant configurations, or just use random numbers generated from a normal distribution, since
the harmonic oscillator wave functions follow closely sucha distribution. The latter approach is easily
implemented in few lines, namely

. . . i n i t i a l i s a t i o n s , d e c l a r a t i o n s o f v a r i a b l e s

. . . mcs = number o f Monte Car lo samp l i ngs
/ / loop over Monte Car lo samp les

f o r ( i =0 ; i < mcs ; i ++) {
/ / g e n e r a t e random v a r i a b l e s from gauss ian d i s t r i b u t i o n

x = normal_random(&idum ) / s q r t 2 / a l p h a ;
l o c a l _ e n e r g y = a l p h a∗ a l p h a + x∗x∗(1−pow( a lpha , 4 ) ) ;
energy += l o c a l _ e n e r g y ;
energy2 += l o c a l _ e n e r g y∗ l o c a l _ e n e r g y ;

/ / end o f samp l ing
}

/ / w r i t e ou t t h e mean energy and t h e s tanda rd d e v i a t i o n
cou t << energy / mcs << s q r t ( ( energy2 / mcs−( energy / mcs )∗∗2) / mcs ) ) ;
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This variational Monte Carlo calculation is rather simple,we just generate a large numberN of random
numbers corresponding to the gaussian PDF∼ |ΨT |2 and for each random number we compute the local
energy according to the approximation

〈ÊL〉 =

∫
P (R)ÊL(R)dR ≈ 1

N

N∑

i=1

EL(xi), (11.30)

and the energy squared through

〈Ê2
L〉 =

∫
P (R)Ê2

L(R)dR ≈ 1

N

N∑

i=1

E2
L(xi). (11.31)

In a certain sense, this is nothing but the importance Monte Carlo sampling discussed in chapter 8 Before
we proceed however, there is an important aside which is worth keeping in mind when computing the
local energy. We could think of splitting the computation ofthe expectation value of the local energy into
a kinetic energy part and a potential energy part. If we are dealing with a three-dimensional system, the
expectation value of the kinetic energy is

−
∫
dRΨ∗

T (R)∇2ΨT (R)∫
dRΨ∗

T (R)ΨT (R)
, (11.32)

and we could be tempted to compute, if the wave function obeysspherical symmetry, just the second
derivative with respect to one coordinate axis and then multiply by three. This will most likely increase
the variance, and should be avoided, even if the final expectation values are similar. Recall that one of
the subgoals of a Monte Carlo computation is to decrease the variance.

Another shortcut we could think of is to transform the numerator in the latter equation to
∫
dRΨ∗

T (R)∇2ΨT (R) = −
∫
dR(∇Ψ∗

T (R))(∇ΨT (R)), (11.33)

using integration by parts and the relation
∫
dR∇(Ψ∗

T (R)∇ΨT (R)) = 0, (11.34)

where we have used the fact that the wave function is zero atR = ±∞. This relation can in turn be
rewritten through integration by parts to

∫
dR(∇Ψ∗

T (R))(∇ΨT (R)) +

∫
dRΨ∗

T (R)∇2ΨT (R)) = 0. (11.35)

The rhs of Eq. (11.33) is easier and quicker to compute. However, in case the wave function is the
exact one, or rather close to the exact one, the lhs yields just a constant times the wave function squared,
implying zero variance. The rhs does not and may therefore increase the variance.

If we use integration by part for the harmonic oscillator case, the new local energy is

EL(x) = x2(1 + α4), (11.36)

and the variance

σ2 =
(α4 + 1)2

2α4
, (11.37)

which is larger than the variance of Eq. (11.29).
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11.5 Variational Monte Carlo for atoms

The Hamiltonian for anN -electron atomic system consists of two terms

Ĥ(x) = T̂ (x) + V̂ (x); (11.38)

the kinetic and the potential energy operator. Herex = {x1,x2, . . . xN} is the spatial and spin degrees
of freedom associated with the different particles. The classical kinetic energy

T =
P2

2m
+

N∑

j=1

p2
j

2m

is transformed to the quantum mechanical kinetic energy operator by operator substitution of the momen-
tum (pk → −i~∂/∂xk)

T̂ (x) = − ~
2

2M
∇2

0 −
N∑

i=1

~
2

2m
∇2

i . (11.39)

Here the first term is the kinetic energy operator of the nucleus, the second term is the kinetic energy
operator of the electrons,M is the mass of the nucleus andm is the electron mass. The potential energy
operator is given by

V̂ (x) = −
N∑

i=1

Ze2

(4πǫ0)ri
+

N∑

i=1,i<j

e2

(4πǫ0)rij
, (11.40)

where theri’s are the electron-nucleus distances and therij ’s are the inter-electronic distances.
We seek to find controlled and well understood approximations in order to reduce the complexity

of the above equations. TheBorn-Oppenheimer approximationis a commonly used approximation, in
which the motion of the nucleus is disregarded.

11.5.1 The Born-Oppenheimer Approximation

In a system of interacting electrons and a nucleus there willusually be little momentum transfer between
the two types of particles due to their differing masses. Theforces between the particles are of similar
magnitude due to their similar charge. If one assumes that the momenta of the particles are also similar,
the nucleus must have a much smaller velocity than the electrons due to its far greater mass. On the
time-scale of nuclear motion, one can therefore consider the electrons to relax to a ground-state given by
the Hamiltonian of Eqs. (11.38), (11.39) and (11.40) with the nucleus at a fixed location. This separation
of the electronic and nuclear degrees of freedom is known as the Born-Oppenheimer approximation.

In the center of mass system the kinetic energy operator reads

T̂ (x) = − ~
2

2(M +Nm)
∇2

CM −
~

2

2µ

N∑

i=1

∇2
i −

~
2

M

N∑

i>j

∇i · ∇j, (11.41)

while the potential energy operator remains unchanged. Note that the Laplace operators∇2
i now are in

the center of mass reference system.
The first term of Eq. (11.41) represents the kinetic energy operator of the center of mass. The second

term represents the sum of the kinetic energy operators of the N electrons, each of them having their
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massm replaced by the reduced massµ = mM/(m + M) because of the motion of the nucleus. The
nuclear motion is also responsible for the third term, or themass polarizationterm.

The nucleus consists of protons and neutrons. The proton-electron mass ratio is about1/1836 and
the neutron-electron mass ratio is about1/1839, so regarding the nucleus as stationary is a natural ap-
proximation. Taking the limitM →∞ in Eq. (11.41), the kinetic energy operator reduces to

T̂ = −
N∑

i=1

~
2

2m
∇2

i (11.42)

The Born-Oppenheimer approximation thus disregards both the kinetic energy of the center of mass
as well as the mass polarization term. The effects of the Born-Oppenheimer approximation are quite
small and they are also well accounted for. However, this simplified electronic Hamiltonian remains very
difficult to solve, and analytical solutions do not exist forgeneral systems with more than one electron.
We use the Born-Oppenheimer approximation in our discussion of atomic and molecular systems.

The first term of Eq. (11.40) is the nucleus-electron potential and the second term is the electron-
electron potential. The inter-electronic potentials are the main problem in atomic physics. Because of
these terms, the Hamiltonian cannot be separated into one-particle parts, and the problem must be solved
as a whole. A common approximation is to regard the effects ofthe electron-electron interactions either
as averaged over the domain or by means of introducing a density functional, such as by Hartree-Fock
(HF) or Density Functional Theory (DFT). These approaches are actually very efficient, and about99%
or more of the electronic energies are obtained for most HF calculations. Other observables are usually
obtained to an accuracy of about90− 95% (ref. [73]).

11.5.2 The hydrogen Atom

The spatial Schrödinger equation for the three-dimensional hydrogen atom can be solved analytically,
see for example Ref. [74] for details. To achieve this, we rewrite the equation in terms of spherical
coordinates using

x = rsinθcosφ, (11.43)

y = rsinθsinφ, (11.44)

and
z = rcosθ. (11.45)

The reason we introduce spherical coordinates is the spherical symmetry of the Coulomb potential

e2

4πǫ0r
=

e2

4πǫ0
√
x2 + y2 + z2

, (11.46)

where we have usedr =
√
x2 + y2 + z2. It is not possible to find a separable solution of the type

ψ(x, y, z) = ψ(x)ψ(y)ψ(z). (11.47)

as we can with the harmonic oscillator in three dimensions. However, with spherical coordinates we can
find a solution of the form

ψ(r, θ, φ) = R(r)P (θ)F (φ) = RPF. (11.48)

These three coordinates yield in turn three quantum numberswhich determine the enegy of the systems.
We obtain three sets of ordinary second-order differentialequations which can be solved analytically,
resulting in

1

F

∂2F

∂φ2
= −C2

φ, (11.49)
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Crsin
2(θ)P + sin(θ)

∂

∂θ
(sin(θ)

∂P

∂θ
) = C2

φP, (11.50)

and
1

R

∂

∂r
(r2

∂R

∂r
) +

2mrke2

~2
+

2mr2

~2
E = Cr, (11.51)

whereCr andCφ are constants. The angle-dependent differential equations result in the spherical har-
monic functions as solutions, with quantum numbersl andml. These functions are given by

Ylml
(θ, φ) = P (θ)F (φ) =

√
(2l + 1)(l −ml)!

4π(l +ml)!
Pml

l (cos(θ)) exp (imlφ), (11.52)

with Pml
l being the associated Legendre polynomials They can be rewritten as

Ylml
(θ, φ) = sin|ml|(θ)× (polynom(cosθ)) exp (imlφ), (11.53)

with the following selected examples

Y00 =

√
1

4π
, (11.54)

for l = ml = 0,

Y10 =

√
3

4π
cos(θ), (11.55)

for l = 1 ogml = 0,

Y1±1 =

√
3

8π
sin(θ)exp(±iφ), (11.56)

for l = 1 ogml = ±1, and

Y20 =

√
5

16π
(3cos2(θ)− 1) (11.57)

for l = 2 ogml = 0. The quantum numbersl andml represent the orbital momentum and projection of
the orbital momentum, respectively and take the values

1.
l ≥ 0

2.
l = 0, 1, 2, . . .

3.
ml = −l,−l + 1, . . . , l − 1, l

The spherical harmonics forl ≤ 3 are listed in Table 11.1.
We concentrate on the radial equation, which can be rewritten as

− ~
2r2

2m

(
∂

∂r
(r2

∂R(r)

∂r
)

)
− ke2

r
R(r) +

~
2l(l + 1)

2mr2
R(r) = ER(r). (11.58)

Introducing the functionu(r) = rR(r), we can rewrite the last equation as
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Spherical Harmonics

ml\l 0 1 2 3

+3 −1
8(35

π )1/2sin3θe+3iφ

+2 1
4( 15

2π )1/2sin2θe+2iφ 1
4(105

2π )1/2cosθsin2θe+2iφ

+1 −1
2( 3

2π )1/2sinθe+iφ −1
2( 15

2π )1/2cosθsinθe+iφ −1
8( 21

2π )1/2(5cos2θ − 1)sinθe+iφ

0 1
2π1/2

1
2( 3

π )1/2cosθ 1
4( 5

π )1/2(3cos2θ − 1) 1
4( 7

π )1/2(2− 5sin2θ)cosθ

-1 +1
2( 3

2π )1/2sinθe−iφ +1
2( 15

2π )1/2cosθsinθe−iφ +1
8( 21

2π )1/2(5cos2θ − 1)sinθe−iφ

-2 1
4( 15

2π )1/2sin2θe−2iφ 1
4(105

2π )1/2cosθsin2θe−2iφ

-3 +1
8(35

π )1/2sin3θe−3iφ

Table 11.1: Spherical harmonicsYlml
for the lowestl andml values.

The radial Schrödinger equation for the hydrogen atom can bewritten as

− ~
2

2m

∂2u(r)

∂r2
−
(
ke2

r
− ~

2l(l + 1)

2mr2

)
u(r) = Eu(r), (11.59)

wherem is the mass of the electron,l its orbital momentum taking valuesl = 0, 1, 2, . . . , and the term
ke2/r is the Coulomb potential. The first terms is the kinetic energy. The full wave function will also
depend on the other variablesθ andφ as well. The energy, with no external magnetic field is however
determined by the above equation . We can then think of the radial Schrödinger equation to be equivalent
to a one-dimensional movement conditioned by an effective potential

Veff(r) = −ke
2

r
+

~
2l(l + 1)

2mr2
. (11.60)

The radial equation can also be solved analytically resulting in the quantum numbersn in addition to
lml. The solutionRnl to the radial equation is given by the Laguerre polynomials.The analytic solutions
are given by

ψnlml
(r, θ, φ) = ψnlml

= Rnl(r)Ylml
(θ, φ) = RnlYlml

(11.61)

The ground state is defined byn = 1 og l = ml = 0 and reads

ψ100 =
1

a
3/2
0

√
π
e−r/a0 , (11.62)

where we have defined the Bohr radiusa0 = 0.05 nm

a0 =
~

2

mke2
. (11.63)

The first excited state withl = 0 is

ψ200 =
1

4a
3/2
0

√
2π

(
2− r

a0

)
e−r/2a0 . (11.64)
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For states with withl = 1 andn = 2, we can have the following combinations withml = 0

ψ210 =
1

4a
3/2
0

√
2π

(
r

a0

)
e−r/2a0cos(θ), (11.65)

andml = ±1

ψ21±1 =
1

8a
3/2
0

√
π

(
r

a0

)
e−r/2a0sin(θ)e±iφ. (11.66)

The exact energy is independent ofl andml, since the potential is spherically symmetric.
The first few non-normalized radial solutions of equation are listed in Table 11.2. A problem with the

Hydrogen-Like Atomic Radial Functions

l\n 1 2 3

0 e−Zr (2− r)e−Zr/2 (27 − 18r + 2r2)e−Zr/3

1 re−Zr/2 r(6− r)e−Zr/3

2 r2e−Zr/3

Table 11.2: The first few radial functions of the hydrogen-like atoms.

spherical harmonics of table 11.1 is that they are complex. The introduction ofsolid harmonicsallows
the use of real orbital wave-functions for a wide range of applications. The complex solid harmonics
Ylml

(r) are related to the spherical harmonicsYlmL
(r) through

Ylml
(r) = rlYlml

(r).

By factoring out the leadingr-dependency of the radial-function

Rnl(r) = r−lRnl(r),

we obtain
Ψnlml

(r, θ, φ) = Rnl(r) · Ylml
(r).

For the theoretical development of thereal solid harmonicssee Ref. [75]. Here Helgakeret al first
express the complex solid harmonics,Clml

, by (complex) Cartesian coordinates, and arrive at the real
solid harmonics,Slml

, through the unitary transformation

(
Slml

Sl,−ml

)

=
1√
2

(
(−1)ml 1

−(−1)ml i i

)(
Clml

Cl,−ml

)

.

This transformation will not alter any physical quantitiesthat are degenerate in the subspace consisting of
opposite magnetic quantum numbers (the angular momentuml is equal for both these cases). This means
for example that the above transformation does not alter theenergies, unless an external magnetic field is
applied to the system. Henceforth, we will use the solid harmonics, and note that changing the spherical
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Real Solid Harmonics

ml\l 0 1 2 3

+3 1
2

√
5
2(x2 − 3y2)x

+2 1
2

√
3(x2 − y2) 1

2

√
15(x2 − y2)z

+1 x
√

3xz 1
2

√
3
2(5z2 − r2)x

0 1 y 1
2(3z2 − r2) 1

2(5z2 − 3r2)x

-1 z
√

3yz 1
2

√
3
2(5z2 − r2)y

-2
√

3xy
√

15xyz

-3 1
2

√
5
2(3x2 − y2)y

Table 11.3: The first-order real solid harmonicsYlml
.

potential beyond the Coulomb potential will not alter the solid harmonics. The lowest-order real solid
harmonics are listed in table 11.3.

When solving equations numerically, it is often convenientto rewrite the equation in terms of dimen-
sionless variables. One reason is the fact that several of the constants may differ largely in value, and
hence result in potential losses of numerical precision. The other main reason for doing this is that the
equation in dimensionless form is easier to code, sparing one for eventual typographic errors. In order
to do so, we introduce first the dimensionless variableρ = r/β, whereβ is a constant we can choose.
Schrödinger’s equation is then rewritten as

− 1

2

∂2u(ρ)

∂ρ2
− mke2β

~2ρ
u(ρ) +

l(l + 1)

2ρ2
u(ρ) =

mβ2

~2
Eu(ρ). (11.67)

We can determineβ by simply requiring3

mke2β

~2
= 1 (11.68)

With this choice, the constantβ becomes the famous Bohr radiusa0 = 0.05 nma0 = β = ~
2/mke2.

As a petit digression, we list here the standard units used inatomic physics and molecular physics
calculations. It is common to scale atomic units by settingm = e = ~ = 4πǫ0 = 1, see table 11.4.

We introduce thereafter the variableλ

λ =
mβ2

~2
E, (11.69)

and insertingβ and the exact energyE = E0/n
2, with E0 = 13.6 eV, we have that

λ = − 1

2n2
, (11.70)

3Remember that we are free to chooseβ.
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Atomic Units

Quantity SI Atomic unit
Electron mass,m 9.109 · 10−31 kg 1
Charge,e 1.602 · 10−19 C 1
Planck’s reduced constant,~ 1.055 · 10−34 Js 1
Permittivity,4πǫ0 1.113 · 10−10 C2 J−1 m−1 1
Energy, e2

4πǫ0a0
27.211 eV 1

Length,a0 = 4πǫ0~2

me2 0.529 · 10−10 m 1

Table 11.4: Scaling from SI to atomic units

n being the principal quantum number. The equation we are thengoing to solve numerically is now

− 1

2

∂2u(ρ)

∂ρ2
− u(ρ)

ρ
+
l(l + 1)

2ρ2
u(ρ)− λu(ρ) = 0, (11.71)

with the hamiltonian

H = −1

2

∂2

∂ρ2
− 1

ρ
+
l(l + 1)

2ρ2
. (11.72)

The ground state of the hydrogen atom has the energyλ = −1/2, orE = −13.6 eV. The exact wave
function obtained from Eq. (11.71) is

u(ρ) = ρe−ρ, (11.73)

which yields the energyλ = −1/2. Sticking to our variational philosophy, we could now introduce a
variational parameterα resulting in a trial wave function

uα
T (ρ) = αρe−αρ. (11.74)

Inserting this wave function into the expression for the local energyEL of Eq. (11.16) yields (check
it!)

EL(ρ) = −1

ρ
− α

2

(
α− 2

ρ

)
. (11.75)

For the hydrogen atom, we could perform the variational calculation along the same lines as we did
for the harmonic oscillator. The only difference is that Eq.(11.17) now reads

〈H〉 =

∫
P (R)EL(R)dR =

∫ ∞

0
α2ρ2e−2αρEL(ρ)ρ2dρ, (11.76)

sinceρ ∈ [0,∞]. In this case we would use the exponential distribution instead of the normal distrubu-
tion, and our code would contain the following elements

. . . i n i t i a l i s a t i o n s , d e c l a r a t i o n s o f v a r i a b l e s

. . . mcs = number o f Monte Car lo samp l i ngs

/ / loop over Monte Car lo samp les
f o r ( i =0 ; i < mcs ; i ++) {

299



Quantum Monte Carlo methods

/ / g e n e r a t e random v a r i a b l e s from t h e e x p o n e n t i a l
/ / d i s t r i b u t i o n u s i n g ran1 and t r a n s f o r m i n g t o
/ / t o an e x p o n e n t i a l mapping y =− l n (1−x )

x= ran1 (&idum ) ;
y=− l og (1.−x ) ;

/ / i n our case y = rho∗a lpha∗2
rho = y / a l p h a / 2 ;
l o c a l _ e n e r g y =−1/ rho −0.5∗ a l p h a∗ ( a lpha−2/ rho ) ;
energy += ( l o c a l _ e n e r g y ) ;
energy2 += l o c a l _ e n e r g y∗ l o c a l _ e n e r g y ;

/ / end o f samp l ing
}

/ / w r i t e ou t t h e mean energy and t h e s tanda rd d e v i a t i o n
cou t << energy / mcs << s q r t ( ( energy2 / mcs−( energy / mcs )∗∗2) / mcs ) ) ;

As for the harmonic oscillator case we just need to generate alarge numberN of random numbers
corresponding to the exponential PDFα2ρ2e−2αρ and for each random number we compute the local
energy and variance.

11.5.3 Metropolis sampling for the hydrogen atom and the harmonic oscillator

We present in this subsection results for the ground states of the hydrogen atom and harmonic oscillator
using a variational Monte Carlo procedure. For the hydrogenatom, the trial wave function

uα
T (ρ) = αρe−αρ,

depends only on the dimensionless radiusρ. It is the solution of a one-dimensional differential equation,
as is the case for the harmonic oscillator as well. The latterhas the trial wave function

ΨT (x) =

√
α

π1/4
e−x2α2/2.

However, for the hydrogen atom we haveρ ∈ [0,∞], while for the harmonic oscillator we havex ∈
[−∞,∞].

This has important consequences for the way we generate random positions. For the hydrogen atom
we have a random position given by e.g.,r_old = step_length*(ran1(&idum))/alpha;
which ensures thatρ ≥ 0, while for the harmonic oscillator we haver_old = step_length*(ran1(&idum)-0.5)/alpha;
in order to havex ∈ [−∞,∞]. This is however not implemented in the program below. There, impor-
tance sampling is not included. We simulate points in thex, y andz directions using random numbers
generated by the uniform distribution and multiplied by thestep length. Note that we have to define a
step length in our calculations. Here one has to play around with different values for the step and as a
rule of thumb (one of the golden Monte Carlo rules), the step length should be chosen so that roughly
50% of all new moves are accepted. In the program at the end of this section we have also scaled the
random position with the variational parameterα. The reason for this particular choice is that we have
an external loop over the variational parameter. Differentvariational parameters will obviously yield dif-
ferent acceptance rates if we use the same step length. An alternative to the code below is to perform the
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0
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MC simulation with N=100000
Exact result

Figure 11.1: Result for ground state energy of the harmonic oscillator as function of the variational
parameterα. The exact result is forα = 1 with an energyE = 1. See text for further details

Monte Carlo sampling with just one variational parameter, and play around with different step lengths
in order to achieve a reasonable acceptance ratio. Another possibility is to include a more advanced test
which restarts the Monte Carlo sampling with a new step length if the specific variational parameter and
chosen step length lead to a too low acceptance ratio.

In Figs. 11.1 and 11.2 we plot the ground state energies for the one-dimensional harmonic oscillator
and the hydrogen atom, respectively, as functions of the variational parameterα. These results are also
displayed in Tables 11.5 and 11.6. In these tables we list thevariance and the standard deviation as well.
We note that atα we obtain the exact result, and the variance is zero, as it should. The reason is that we
then have the exact wave function, and the action of the hamiltionan on the wave function

Hψ = constant × ψ,

yields just a constant. The integral which defines various expectation values involving moments of the
hamiltonian becomes then

〈Hn〉 =
∫
dRΨ∗

T (R)Hn(R)ΨT (R)∫
dRΨ∗

T (R)ΨT (R)
= constant×

∫
dRΨ∗

T (R)ΨT (R)∫
dRΨ∗

T (R)ΨT (R)
= constant. (11.77)

This explains why the variance is zero forα = 1. However, the hydrogen atom and the harmonic
oscillator are some of the few cases where we can use a trial wave function proportional to the exact one.
These two systems are also some of the few examples of cases where we can find an exact solution to
the problem. In most cases of interest, we do not know a priorithe exact wave function, or how to make
a good trial wave function. In essentially all real problemsa large amount of CPU time and numerical
experimenting is needed in order to ascertain the validity of a Monte Carlo estimate. The next examples
deal with such problems.
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Table 11.5: Result for ground state energy of the harmonic oscillator as function of the variational pa-
rameterα. The exact result is forα = 1 with an energyE = 1. The energy varianceσ2 and the standard
deviationσ/

√
N are also listed. The variableN is the number of Monte Carlo samples. In this calcu-

lation we setN = 100000 and a step length of 2 was used in order to obtain an acceptanceof ≈ 50%.

α 〈H〉 σ2 σ/
√
N

5.00000E-01 2.06479E+00 5.78739E+00 7.60749E-03
6.00000E-01 1.50495E+00 2.32782E+00 4.82475E-03
7.00000E-01 1.23264E+00 9.82479E-01 3.13445E-03
8.00000E-01 1.08007E+00 3.44857E-01 1.85703E-03
9.00000E-01 1.01111E+00 7.24827E-02 8.51368E-04
1.00000E-00 1.00000E+00 0.00000E+00 0.00000E+00
1.10000E+00 1.02621E+00 5.95716E-02 7.71826E-04
1.20000E+00 1.08667E+00 2.23389E-01 1.49462E-03
1.30000E+00 1.17168E+00 4.78446E-01 2.18734E-03
1.40000E+00 1.26374E+00 8.55524E-01 2.92493E-03
1.50000E+00 1.38897E+00 1.30720E+00 3.61553E-03

-1

-0.8

-0.6

-0.4

-0.2

0

0.2 0.4 0.6 0.8 1 1.2 1.4

E0

α

MC simulation with N=100000
Exact result

Figure 11.2: Result for ground state energy of the hydrogen atom as function of the variational parameter
α. The exact result is forα = 1 with an energyE = −1/2. See text for further details
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Table 11.6: Result for ground state energy of the hydrogen atom as function of the variational parameter
α. The exact result is forα = 1 with an energyE = −1/2. The energy varianceσ2 and the standard
deviationσ/

√
N are also listed. The variableN is the number of Monte Carlo samples. In this calculation

we fixedN = 100000 and a step length of 4 Bohr radii was used in order to obtain an acceptance of
≈ 50%.

α 〈H〉 σ2 σ/
√
N

5.00000E-01 -3.76740E-01 6.10503E-02 7.81347E-04
6.00000E-01 -4.21744E-01 5.22322E-02 7.22718E-04
7.00000E-01 -4.57759E-01 4.51201E-02 6.71715E-04
8.00000E-01 -4.81461E-01 3.05736E-02 5.52934E-04
9.00000E-01 -4.95899E-01 8.20497E-03 2.86443E-04
1.00000E-00 -5.00000E-01 0.00000E+00 0.00000E+00
1.10000E+00 -4.93738E-01 1.16989E-02 3.42036E-04
1.20000E+00 -4.75563E-01 8.85899E-02 9.41222E-04
1.30000E+00 -4.54341E-01 1.45171E-01 1.20487E-03
1.40000E+00 -4.13220E-01 3.14113E-01 1.77232E-03
1.50000E+00 -3.72241E-01 5.45568E-01 2.33574E-03

11.5.4 The helium atom

Most physical problems of interest in atomic, molecular andsolid state physics consist of a number of
interacting electrons and ions. The total number of particlesN is usually sufficiently large that an exact
solution cannot be found. Typically, the expectation valuefor a chosen hamiltonian for a system ofN
particles is

〈H〉 =

∫
dR1dR2 . . . dRNΨ∗(R1,R2, . . . ,RN )H(R1,R2, . . . ,RN )Ψ(R1,R2, . . . ,RN )∫

dR1dR2 . . . dRNΨ∗(R1,R2, . . . ,RN )Ψ(R1,R2, . . . ,RN )
, (11.78)

an in general intractable problem. Controlled and well understood approximations are sought to reduce
the complexity to a tractable level. Once the equations are solved, a large number of properties may be
calculated from the wave function. Errors or approximations made in obtaining the wave function will be
manifest in any property derived from the wave function. Where high accuracy is required, considerable
attention must be paid to the derivation of the wave functionand any approximations made.

The helium atom consists of two electrons and a nucleus with chargeZ = 2. In setting up the
hamiltonian of this system, we need to account for the repulsion between the two electrons as well.

A common and very reasonable approximation used in the solution of equation of the Schrödinger
equation for systems of interacting electrons and ions is the Born-Oppenheimer approximation discussed
above. In a system of interacting electrons and nuclei therewill usually be little momentum transfer
between the two types of particles due to their greatly differing masses. The forces between the particles
are of similar magnitude due to their similar charge. If one then assumes that the momenta of the particles
are also similar, then the nuclei must have much smaller velocities than the electrons due to their far
greater mass. On the time-scale of nuclear motion, one can therefore consider the electrons to relax to
a ground-state with the nuclei at fixed locations. This separation of the electronic and nuclear degrees
of freedom is the the Born-Oppenheimer approximation we discussed previously in this chapter. But
even this simplified electronic Hamiltonian remains very difficult to solve. No analytic solutions exist for
general systems with more than one electron.
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If we label the distance between electron 1 and the nucleus asr1. Similarly we haver2 for electron
2. The contribution to the potential energy due to the attraction from the nucleus is

− 2ke2

r1
− 2ke2

r2
, (11.79)

and if we add the repulsion arising from the two interacting electrons, we obtain the potential energy

V (r1, r2) = −2ke2

r1
− 2ke2

r2
+
ke2

r12
, (11.80)

with the electrons separated at a distancer12 = |r1 − r2|. The hamiltonian becomes then

Ĥ = −~
2∇2

1

2m
− ~

2∇2
2

2m
− 2ke2

r1
− 2ke2

r2
+
ke2

r12
, (11.81)

and Schrödingers equation reads
Ĥψ = Eψ. (11.82)

Note that this equation has been written in atomic unitsa.u. which are more convenient for quantum
mechanical problems. This means that the final energy has to be multiplied by a2×E0, whereE0 = 13.6
eV, the binding energy of the hydrogen atom.

A very simple first approximation to this system is to omit therepulsion between the two electrons.
The potential energy becomes then

V (r1, r2) ≈ −
Zke2

r1
− Zke2

r2
. (11.83)

The advantage of this approximation is that each electron can be treated as being independent of each
other, implying that each electron sees just a centrally symmetric potential, or central field.

To see whether this gives a meaningful result, we setZ = 2 and neglect totally the repulsion between
the two electrons. Electron 1 has the following hamiltonian

ĥ1 = −~
2∇2

1

2m
− 2ke2

r1
, (11.84)

with pertinent wave function and eigenvalue

ĥ1ψa = Eaψa, (11.85)

wherea = {nalamla}, are its quantum numbers. The energyEa is

Ea = −Z
2E0

n2
a

, (11.86)

medE0 = 13.6 eV, being the ground state energy of the hydrogen atom. In a similar way, we obatin for
electron 2

ĥ2 = −~
2∇2

2

2m
− 2ke2

r2
, (11.87)

with wave function
ĥ2ψb = Ebψb, (11.88)
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andb = {nblbmlb}, and energy

Eb =
Z2E0

n2
b

. (11.89)

Since the electrons do not interact, we can assume that the ground state wave function of the helium atom
is given by

ψ = ψaψb, (11.90)

resulting in the following approximation to Schrödinger’sequation
(
ĥ1 + ĥ2

)
ψ =

(
ĥ1 + ĥ2

)
ψa(r1)ψb(r2) = Eabψa(r1)ψb(r2). (11.91)

The energy becomes then
(
ĥ1ψa(r1)

)
ψb(r2) +

(
ĥ2ψb(r2)

)
ψa(r1) = (Ea + Eb)ψa(r1)ψb(r2), (11.92)

yielding

Eab = Z2E0

(
1

n2
a

+
1

n2
b

)
. (11.93)

If we insertZ = 2 and assume that the ground state is determined by two electrons in the lowest-lying
hydrogen orbit withna = nb = 1, the energy becomes

Eab = 8E0 = −108.8 eV, (11.94)

while the experimental value is−78.8 eV. Clearly, this discrepancy is essentially due to our omission of
the repulsion arising from the interaction of two electrons.

Choice of trial wave function

The choice of trial wave function is critical in variationalMonte Carlo calculations. How to choose
it is however a highly non-trivial task. All observables areevaluated with respect to the probability
distribution

P (R) =
|ψT (R)|2

∫
|ψT (R)|2 dR

. (11.95)

generated by the trial wave function. The trial wave function must approximate an exact eigenstate in
order that accurate results are to be obtained. Improved trial wave functions also improve the importance
sampling, reducing the cost of obtaining a certain statistical accuracy.

Quantum Monte Carlo methods are able to exploit trial wave functions of arbitrary forms. Any wave
function that is physical and for which the value, gradient and laplacian of the wave function may be
efficiently computed can be used. The power of Quantum Monte Carlo methods lies in the flexibility of
the form of the trial wave function.

It is important that the trial wave function satisfies as manyknown properties of the exact wave
function as possible. A good trial wave function should exhibit much of the same features as does the
exact wave function. Especially, it should be well-defined at the origin, that isΨ(|R| = 0) 6= 0, and its
derivative at the origin should also be well-defined . One possible guideline in choosing the trial wave
function is the use of constraints about the behavior of the wave function when the distance between
one electron and the nucleus or two electrons approaches zero. These constraints are the so-called “cusp
conditions” and are related to the derivatives of the wave function.
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To see this, let us single out one of the electrons in the helium atom and assume that this electron is
close to the nucleus, i.e.,r1 → 0. We assume also that the two electrons are far from each otherand that
r2 6= 0. The local energy can then be written as

EL(R) =
1

ψT (R)
HψT (R) =

1

ψT (R)

(
−1

2
∇2

1 −
Z

r1

)
ψT (R) + finite terms. (11.96)

Writing out the kinetic energy term in the spherical coordinates of electron1, we arrive at the following
expression for the local energy

EL(R) =
1

RT (r1)

(
−1

2

d2

dr21
− 1

r1

d

dr1
− Z

r1

)
RT (r1) + finite terms, (11.97)

whereRT (r1) is the radial part of the wave function for electron1. We have also used that the orbital
momentum of electron 1 isl = 0. For small values ofr1, the terms which dominate are

lim
r1→0

EL(R) =
1

RT (r1)

(
− 1

r1

d

dr1
− Z

r1

)
RT (r1), (11.98)

since the second derivative does not diverge due to the finiteness ofΨ at the origin. The latter implies
that in order for the kinetic energy term to balance the divergence in the potential term, we must have

1

RT (r1)

dRT (r1)

dr1
= −Z, (11.99)

implying that
RT (r1) ∝ e−Zr1. (11.100)

A similar condition applies to electron 2 as well. For orbital momental > 0 we have (show this!)

1

RT (r)

dRT (r)

dr
= − Z

l + 1
. (11.101)

Another constraint on the wave function is found for two electrons approaching each other. In this
case it is the dependence on the separationr12 between the two electrons which has to reflect the correct
behavior in the limitr12 → 0. The resulting radial equation for ther12 dependence is the same for the
electron-nucleus case, except that the attractive Coulombinteraction between the nucleus and the electron
is replaced by a repulsive interaction and the kinetic energy term is twice as large. We obtain then

lim
r12→0

EL(R) =
1

RT (r12)

(
− 4

r12

d

dr12
+

2

r12

)
RT (r12), (11.102)

with still l = 0. This yields the so-called ’cusp’-condition

1

RT (r12)

dRT (r12)

dr12
=

1

2
, (11.103)

while for l > 0 we have
1

RT (r12)

dRT (r12)

dr12
=

1

2(l + 1)
. (11.104)

For general systems containing more than two electrons, we have this condition for each electron pairij.
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Based on these consideration, a possible trial wave function which ignores the ’cusp’-condition be-
tween the two electrons is

ψT (R) = e−α(r1+r2), (11.105)

wherer1,2 are dimensionless radii andα is a variational parameter which is to be interpreted as an
effective charge.

A possible trial wave function which also reflects the ’cusp’-condition between the two electrons is

ψT (R) = e−α(r1+r2)er12/2. (11.106)

The last equation can be generalized to

ψT (R) = φ(r1)φ(r2) . . . φ(rN )
∏

i<j

f(rij), (11.107)

for a system withN electrons or particles. The wave functionφ(ri) is the single-particle wave function
for particle i, while f(rij) account for more complicated two-body correlations. For the helium atom,
we placed both electrons in the hydrogenic orbit1s. We know that the ground state for the helium atom
has a symmetric spatial part, while the spin wave function isanti-symmetric in order to obey the Pauli
principle. In the present case we need not to deal with spin degrees of freedom, since we are mainly trying
to reproduce the ground state of the system. However, adopting such a single-particle representation for
the individual electrons means that for atoms beyond helium, we cannot continue to place electrons in the
lowest hydrogenic orbit. This is a consenquence of the Pauliprinciple, which states that the total wave
function for a system of identical particles such as fermions, has to be anti-symmetric. The program
we include below can use either Eq. (11.105) or Eq. (11.106) for the trial wave function. One or two
electrons can be placed in the lowest hydrogen orbit, implying that the program can only be used for
studies of the ground state of hydrogen or helium.

A similar approach can be applied to the cusp resulting from bringing two electrons close together.
The mathematical trick is to expand the wave functions in spherical coordinates centered on one of
the two electrons. Let us denote the distance between the twoelectrons asrij. Remembering that the
Coulomb potential is now repulsive and the kinetic term is twice as large (because both electrons give
kinetic contributions) we get:

(
2
d2

dr2ij
+

4

rij

d

drij
+

2

rij
− l(l + 1)

r2ij
+ 2E

)
Rij = 0

wherel is now equal0 if the spins of the two electrons are anti-parallel and1 if they are parallel. Repeat-
ing the argument for the electron-nucleus cusp with the factorization of the leadingr-dependency, we get
the similar cusp condition:

dR(rij)

drij
= − 1

2(l + 1)
R(rij) rij → 0

resulting in:

R(l = 0) ∝






erij/2 for anti-parallel spins,l = 0

erij/4 for parallel spins,l = 1

We do not have to pay any attention to the exact values of the coefficients in such exponentials to
realize that in order to incorporate the proper inter-particle correlations, we need our wave functions to
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depend explicitly on the inter-particle distances. Thus weare motivated to extend our product-state based
wave functions by a correlation function. Higher order cuspconditions can also be incorporated to deal
with the cases where more than two particles bundle up. Thesewould consist of factors dependent on
the coordinates of multiplets of particles, both absolute distances and inter-particle distances. For the
numerical experiments exemplified in this thesis, we will restrict ourselves to the simplest correlations
dependent only on particle pairs.

Several forms of the correlation function exist in the literature and we will mention only a selected
few to give the general idea of how they are constructed. A form given by Hylleraas that had great success
for the helium atom was the series expansion:

H = eǫs
∑

k

ckr
lksmktnk

where the inter-particle separationrij for simplicity is written asr. In additions = ri +ri andt = ri−ri
with ri and rj being the two electron-nucleus distances. All the other quantities are free parameters.
Notice that the cusp condition is satisfied by the exponential. Unfortunately the convergence of this
function turned out to be quite slow. For example, to pinpoint the He-energy to the fourth decimal digit a
nine term function would suffice. To double the number of digits, one needed almost1100 terms.

The so called Padé-Jastrow form, however, is more suited forlarger systems. It is based on an
exponential function with a rational exponent:

J = eU

In its general form,U is a potential series expansion on both the absolute particle coordinatesri and the
inter-particle coordinatesrij :

U =
N∑

i<j





∑

k

αkr
k
i

1 +
∑

k

α′
kr

k
i



+
N∑

i





∑

k

βkr
k
ij

1 +
∑

k

β′kr
k
ij





A very typical Padé-Jastrow function used for QMC calculations of molecular and atomic systems is:

exp

(
αrij

2(1 + βrij)

)

whereα andβ are adjustable parameters. Later on, when testing our program, we will employ this
Jastrow function together with a Slater determinant of Hartree-Fock optimized Slater-orbitals for a VMC
simulation of the four electron beryllium (Be) atom.

11.5.5 Program example for atomic systems

The variational Monte Carlo algorithm consists of two distinct phases. In the first a walker, a single
electron in our case, consisting of an initially random set of electron positions is propagated according
to the Metropolis algorithm, in order to equilibrate it and begin sampling . In the second phase, the
walker continues to be moved, but energies and other observables are also accumulated for later averaging
and statistical analysis. In the program below, the electrons are moved individually and not as a whole
configuration. This improves the efficiency of the algorithmin larger systems, where configuration moves
require increasingly small steps to maintain the acceptance ratio.
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11.5 – Variational Monte Carlo for atoms

The main part of the code contains calls to various functions, setup and declarations of arrays etc.
Note that we have defined a fixed step lengthh for the numerical computation of the second derivative
of the kinetic energy. Furthermore, we perform the Metropolis test when we have moved all electrons.
This should be compared to the case where we move one electronat the time and perform the Metropolis
test. The latter is similar to the algorithm for the Ising model discussed in the previous chapter. A more
detailed discussion and better statistical treatments andanalyses are discussed in chapters 18 and 16.http://www.fys.uio.no/
ompphys/
p/programs/FYS3150/
hapter11/
pp/program1.
pp
/ / V a r i a t i o n a l Monte Car lo f o r atoms wi th up t o two e l e c t r o n s
# inc lude < ios t ream >
# inc lude < fs t r eam >
# inc lude < iomanip >
# inc lude "lib.h"
us ing namespace s t d ;
/ / o u t p u t f i l e as g l o b a l v a r i a b l e
o f s t r e a m o f i l e ;
/ / t h e s t e p l e n g t h and i t s squared i n v e r s e f o r t h e second d e r iv a t i v e
# d e f i n e h 0 .001
# d e f i n e h2 1000000

/ / d e c l a r a t o n o f f u n c t i o n s

/ / Func t i on t o read i n da ta from screen , no te c a l l by r e f e r e n ce
vo id i n i t i a l i s e ( i n t &, i n t &, i n t &, i n t &, i n t &, i n t &, double&) ;

/ / The Mc sampl ing f o r t h e v a r i a t i o n a l Monte Car lo
vo id mc_sampling (i n t , i n t , i n t , i n t , i n t , i n t , double , double ∗ , double ∗ ) ;

/ / The v a r i a t i o n a l wave f u n c t i o n
double wave_ func t i on (double ∗∗ , double , i n t , i n t ) ;

/ / The l o c a l energy
double l o c a l _ e n e r g y (double ∗∗ , double , double , i n t , i n t , i n t ) ;

/ / p r i n t s t o s c r e e n t h e r e s u l t s o f t h e c a l c u l a t i o n s
vo id o u t p u t (i n t , i n t , i n t , double ∗ , double ∗ ) ;

/ / Beg in o f main program

/ / i n t main ( )
i n t main ( i n t argc , char∗ argv [ ] )
{

char ∗ o u t f i l e n a m e ;
i n t number_cyc les , m a x _ v a r i a t i ons , t h e r m a l i z a t i o n , cha rge ;
i n t dimension , n u m b e r _ p a r t i c l e s ;
double s t e p _ l e n g t h ;
double ∗ cumu la t i ve_e , ∗ cumu la t i ve_e2 ;

/ / Read i n o u t p u t f i l e , a b o r t i f t h e r e are too few command− l i n e arguments
i f ( a rgc <= 1 ) {

cou t << "Bad Usage: " << argv [ 0 ] <<
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Quantum Monte Carlo methods" read also output file on same line" << end l ;
e x i t ( 1 ) ;

}
e l s e{

o u t f i l e n a m e=argv [ 1 ] ;
}
o f i l e . open ( o u t f i l e n a m e ) ;
/ / Read i n da ta
i n i t i a l i s e ( d imension , n u m b e r _ p a r t i c l e s , charge ,

m a x _ v a r i a t i ons , number_cyc les ,
t h e r m a l i z a t i o n , s t e p _ l e n g t h ) ;

c u m u l a t i v e _e =new double[ m a x _ v a r i a t i o n s + 1 ] ;
cumu la t i ve_e2 =new double[ m a x _ v a r i a t i o n s + 1 ] ;

/ / Do t h e mc sampl ing
mc_sampling ( d imension , n u m b e r _ p a r t i c l e s , charge ,

m a x _ v a r i a t i ons , t h e r m a l i z a t i o n ,
number_cyc les , s t e p _ l e n g t h , cumu la t i ve_e , cumu la t i ve_e2 ) ;

/ / P r i n t ou t r e s u l t s
o u t p u t ( m a x _ v a r i a t i ons , number_cyc les , charge , cumu la t ive_e , cumu la t i ve_e2 )

;
d e l e t e [ ] c u m u l a t i v e _e ; d e l e t e [ ] c u m u l a t i v e _e ;
o f i l e . c l o s e ( ) ; / / c l o s e o u t p u t f i l e
re turn 0 ;

}

The implementation of the brute force Metropolis algorithmis shown in the next function. Here we
have a loop over the variational variablesα. It calls two functions, one to compute the wave function and
one to update the local energy.

/ / Monte Car lo samp l ing w i th t h e M e t r o p o l i s a l g o r i t h m

vo id mc_sampling (i n t dimension , i n t n u m b e r _ p a r t i c l e s , i n t charge ,
i n t m a x _ v a r i a t i ons ,
i n t t h e r m a l i z a t i o n , i n t number_cyc les , double s t e p _ l e n g t h ,
double ∗ cumu la t i ve_e , double ∗ cumu la t i ve_e2 )

{
i n t cyc les , v a r i a t e , accep t , dim , i , j ;
long idum ;
double wfnew , wfold , a lpha , energy , energy2 , d e l t a _ e ;
double ∗∗ r _o ld , ∗∗ r_new ;
a l p h a = 0 .5∗ cha rge ;
idum=−1;
/ / a l l o c a t e m a t r i c e s which c o n t a i n t h e p o s i t i o n o f t h e p a r t ic l e s
r _ o l d = (double ∗∗ ) m a t r i x ( n u m b e r _ p a r t i c l e s , d imension ,s i z e o f( double ) ) ;
r_new = (double ∗∗ ) m a t r i x ( n u m b e r _ p a r t i c l e s , d imension ,s i z e o f( double ) ) ;
f o r ( i = 0 ; i < n u m b e r _ p a r t i c l e s ; i ++) {

f o r ( j =0 ; j < d imens ion ; j ++) {
r _ o l d [ i ] [ j ] = r_new [ i ] [ j ] = 0 ;

}
}
/ / loop over v a r i a t i o n a l pa rame te rs
f o r ( v a r i a t e =1 ; v a r i a t e <= m a x _ v a r i a t i o n s ; v a r i a t e ++) {
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/ / i n i t i a l i s a t i o n s o f v a r i a t i o n a l pa rame te rs and e n e r g i e s
a l p h a += 0 . 1 ;
energy = energy2 = 0 ; a c c e p t =0 ; d e l t a _ e =0 ;
/ / i n i t i a l t r i a l p o s i t i o n , no te c a l l i n g w i th a lpha
/ / and i n t h r e e d imens ions
f o r ( i = 0 ; i < n u m b e r _ p a r t i c l e s ; i ++) {

f o r ( j =0 ; j < d imens ion ; j ++) {
r _ o l d [ i ] [ j ] = s t e p _ l e n g t h∗ ( ran1 (&idum )−0.5) ;

}
}
wfo ld = wave_ func t i on ( r_o ld , a lpha , d imension , n u m b e r _ p ar t i c l e s ) ;
/ / loop over monte c a r l o c y c l e s
f o r ( c y c l e s = 1 ; c y c l e s <= number_cyc les + t h e r m a l i z a t i o n ; c y c le s ++) {

/ / new p o s i t i o n
f o r ( i = 0 ; i < n u m b e r _ p a r t i c l e s ; i ++) {

f o r ( j =0 ; j < d imens ion ; j ++) {
r_new [ i ] [ j ] = r _ o l d [ i ] [ j ]+ s t e p _ l e n g t h∗ ( ran1 (&idum )−0.5) ;

}
}
wfnew = wave_ func t i on ( r_new , a lpha , d imension , n u m b e r _ p ar t i c l e s ) ;
/ / M e t r o p o l i s t e s t
i f ( ran1 (&idum ) <= wfnew∗wfnew / wfo ld / wfo ld ) {

f o r ( i = 0 ; i < n u m b e r _ p a r t i c l e s ; i ++) {
f o r ( j =0 ; j < d imens ion ; j ++) {

r _ o l d [ i ] [ j ]= r_new [ i ] [ j ] ;
}

}
wfo ld = wfnew ;
a c c e p t = a c c e p t +1 ;

}
/ / compute l o c a l energy
i f ( c y c l e s > t h e r m a l i z a t i o n ) {

d e l t a _ e = l o c a l _ e n e r g y ( r_o ld , a lpha , wfold , d imension ,
n u m b e r _ p a r t i c l e s , cha rge ) ;

/ / upda te e n e r g i e s
energy += d e l t a _ e ;
energy2 += d e l t a _ e∗ d e l t a _ e ;

}
} / / end o f loop over MC t r i a l s
cou t << "variational parameter= " << a l p h a

<< " a

epted steps= " << a c c e p t << end l ;
/ / upda te t h e energy average and i t s squared
c u m u l a t i v e_e [ v a r i a t e ] = energy / number_cyc les ;
cumu la t i ve_e2 [ v a r i a t e ] = energy2 / number_cyc les ;

} / / end o f loop over v a r i a t i o n a l s t e p s
f r e e _ m a t r i x ( (vo id ∗∗ ) r _ o l d ) ; / / f r e e memory
f r e e _ m a t r i x ( (vo id ∗∗ ) r_new ) ; / / f r e e memory

} / / end mc_sampl ing f u n c t i o n

The wave function is in turn defined in the next function. Herewe limit ourselves to a function which
consists only of the product of single-particle wave functions.
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/ / Func t i on t o compute t h e squared wave f u n c t i o n , s i m p l e s t form

double wave_ func t i on (double ∗∗ r , double a lpha ,i n t dimension , i n t
n u m b e r _ p a r t i c l e s )

{
i n t i , j , k ;
double wf , argument , r _ s i n g l e _ p a r t i c l e , r_12 ;

argument = wf = 0 ;
f o r ( i = 0 ; i < n u m b e r _ p a r t i c l e s ; i ++) {

r _ s i n g l e _ p a r t i c l e = 0 ;
f o r ( j = 0 ; j < d imens ion ; j ++) {

r _ s i n g l e _ p a r t i c l e += r [ i ] [ j ]∗ r [ i ] [ j ] ;
}
argument += s q r t ( r _ s i n g l e _ p a r t i c l e ) ;

}
wf = exp(−argument∗ a l p h a ) ;
re turn wf ;

}

Finally, the local energy is computed using a numerical derivation for the kinetic energy. We use the
familiar expression derived in Eq. (3.4), that is

f ′′0 =
fh − 2f0 + f−h

h2
,

in order to compute

− 1

2ψT (R)
∇2ψT (R). (11.108)

The variableh is a chosen step length. For helium, since it is rather easy toevaluate the local energy,
the above is an unnecessary complication. However, for many-electron or other many-particle systems,
the derivation of an analytic expression for the kinetic energy can be quite involved, and the numerical
evaluation of the kinetic energy using Eq. (3.4) may result in a simpler code and/or even a faster one.

/ / Func t i on t o c a l c u l a t e t h e l o c a l energy w i th num d e r i v a t i ve

double l o c a l _ e n e r g y (double ∗∗ r , double a lpha , double wfold , i n t dimension ,
i n t n u m b e r _ p a r t i c l e s , i n t cha rge )

{
i n t i , j , k ;
double e _ l o c a l , wfminus , wfp lus , e _ k i n e t i c , e _ p o t e n t i a l , r_12 ,

r _ s i n g l e _ p a r t i c l e ;
double ∗∗ r _p lus , ∗∗ r_minus ;

/ / a l l o c a t e m a t r i c e s which c o n t a i n t h e p o s i t i o n o f t h e p a r t ic l e s
/ / t h e f u n c t i o n m a t r i x i s d e f i n e d i n t h e progam l i b r a r y
r _ p l u s = (double ∗∗ ) m a t r i x ( n u m b e r _ p a r t i c l e s , d imension ,s i z e o f( double ) ) ;
r_minus = (double ∗∗ ) m a t r i x ( n u m b e r _ p a r t i c l e s , d imension ,s i z e o f( double ) )

;
f o r ( i = 0 ; i < n u m b e r _ p a r t i c l e s ; i ++) {

f o r ( j =0 ; j < d imens ion ; j ++) {
r _ p l u s [ i ] [ j ] = r_minus [ i ] [ j ] = r [ i ] [ j ] ;

}
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}
/ / compute t h e k i n e t i c energy
e _ k i n e t i c = 0 ;
f o r ( i = 0 ; i < n u m b e r _ p a r t i c l e s ; i ++) {

f o r ( j = 0 ; j < d imens ion ; j ++) {
r _ p l u s [ i ] [ j ] = r [ i ] [ j ]+ h ;
r_minus [ i ] [ j ] = r [ i ] [ j ] −h ;
wfminus = wave_ func t i on ( r_minus , a lpha , d imension , n u m b er _ p a r t i c l e s ) ;
wfp lus = wave_ func t i on ( r_p lus , a lpha , d imension , n u m b e r _p a r t i c l e s ) ;
e _ k i n e t i c −= ( wfminus+wfp lus−2∗wfo ld ) ;
r _ p l u s [ i ] [ j ] = r [ i ] [ j ] ;
r_minus [ i ] [ j ] = r [ i ] [ j ] ;

}
}
/ / i n c l u d e e l e c t r o n mass and hbar squared and d i v i d e by wave fu n c t i o n
e _ k i n e t i c = 0 .5∗ h2∗ e _ k i n e t i c / wfo ld ;
/ / compute t h e p o t e n t i a l energy
e _ p o t e n t i a l = 0 ;
/ / c o n t r i b u t i o n from e l e c t r o n−p ro ton p o t e n t i a l
f o r ( i = 0 ; i < n u m b e r _ p a r t i c l e s ; i ++) {

r _ s i n g l e _ p a r t i c l e = 0 ;
f o r ( j = 0 ; j < d imens ion ; j ++) {

r _ s i n g l e _ p a r t i c l e += r [ i ] [ j ]∗ r [ i ] [ j ] ;
}
e _ p o t e n t i a l −= cha rge / s q r t ( r _ s i n g l e _ p a r t i c l e ) ;

}
/ / c o n t r i b u t i o n from e l e c t r o n−e l e c t r o n p o t e n t i a l
f o r ( i = 0 ; i < n u m b e r _ p a r t i c l e s−1; i ++) {

f o r ( j = i +1 ; j < n u m b e r _ p a r t i c l e s ; j ++) {
r_12 = 0 ;
f o r ( k = 0 ; k < d imens ion ; k++) {

r_12 += ( r [ i ] [ k]− r [ j ] [ k ] ) ∗ ( r [ i ] [ k] − r [ j ] [ k ] ) ;
}
e _ p o t e n t i a l += 1 / s q r t ( r_12 ) ;

}
}
f r e e _ m a t r i x ( (vo id ∗∗ ) r _ p l u s ) ; / / f r e e memory
f r e e _ m a t r i x ( (vo id ∗∗ ) r_minus ) ;
e _ l o c a l = e _ p o t e n t i a l + e _ k i n e t i c ;
re turn e _ l o c a l ;

}

The remaining part of the program consists of the output and initialize functions and is not listed here.
The way we have rewritten Schrödinger’s equation results inenergies given in atomic units. If we

wish to convert these energies into more familiar units likeelectronvolt (eV), we have to multiply our
reults with2E0 whereE0 = 13.6 eV, the binding energy of the hydrogen atom. Using Eq. (11.105) for
the trial wave function, we obtain an energy minimum atα ≈ 1.75. The ground state isE = −2.85
in atomic units orE = −77.5 eV. The experimental value is−78.8 eV. Obviously, improvements to
the wave function such as including the ’cusp’-condition for the two electrons as well, see Eq. (11.106),
could improve our agreement with experiment. Such an implementation is the topic for the next project.

We note that the effective charge is less than the charge of the nucleus. We can interpret this reduction
as an effective way of incorporating the repulsive electron-electron interaction. Finally, since we do not
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Figure 11.3: Result for ground state energy of the helium atom using Eq. (11.105) for the trial wave
function. The variance is also plotted. A total of 100000 Monte Carlo moves were used with a step
length of 2 Bohr radii.

have the exact wave function, we see from Fig. 11.3 that the variance is not zero at the energy mini-
mum. Techniques such as importance sampling, to be contrasted to the brute force Metropolis sampling
used here, and various optimization techniques of the variance and the energy, will be discussed under
advanced topics, see chapter 18.

11.5.6 Helium and beyond

We need to establish some rules regarding the construction of physically reliable wave-functions for
systems with more than one electron. ThePauli principle, after Wolfgang Pauli states thatThe total wave
function must be antisymmetric under the interchange of anypair of identical fermions and symmetric
under the interchange of any pair of identical bosons.

A result of the Pauli principle is the so-called Pauli exclusion principle which thatno two electrons
can occupy the same state.

Overall wave functions that satisfy the Pauli principle areoften written asSlater Determinants.

The Slater Determinant

For the helium atom we assumed that the two electrons were both in the1s state. This fulfills the Pauli
exclusion principle as the two electrons in the ground statehave different intrinsic spin. However, the
wave function we discussed above was not antisymmetric withrespect to an interchange of the different
electrons. This is not totally true as we only included the spatial part of the wave function. For the
helium ground state the spatial part of the wave function is symmetric and the spin part is antisymmetric.
The product is therefore antisymmetric as well. The Slater-determinant consists of single-particlespin-
orbitals; joint spin-space states of the electrons

Ψ↑
1s(1) = Ψ1s(1) ↑ (1),
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and similarly
Ψ↓

1s(2) = Ψ1s(2) ↓ (2).

Here the two spin functions are given by

↑ (I) =

{
1 if ms(I) = 1

2

0 if ms(I) = −1
2

,

and

↓ (I) =

{
0 if ms(I) = 1

2

1 if ms(I) = −1
2

, (11.109)

with I = 1, 2. The ground state can then be expressed by the following determinant

Ψ(1, 2) =
1√
(2)

∣∣∣∣∣
Ψ1s(1) ↑ (1) Ψ1s(2) ↑ (2)

Ψ1s(1) ↓ (1) Ψ1s(2) ↓ (2)

∣∣∣∣∣ .

This is an example of aSlater determinant. This determinant is antisymmetric since particle interchange
is identical to an interchange of the two columns. For the ground state the spatial wave-function is
symmetric. Therefore we simply get

Ψ(1, 2) = Ψ1s(1)Ψ1s(2) [↑ (1) ↓ (2)− ↑ (2) ↓ (1)] .

The spin part of the wave-function is here antisymmetric. This has no effect when calculating physical
observables because the sign of the wave function is squaredin all expectation values.

The general form of a Slater determinant composed ofn orthonormal orbitals{φi} is

Ψ =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣

φ1(1) φ1(2) . . . φ1(N)

φ2(1) φ2(2) . . . φ2(N)

...
...

. . .
...

φN (1) φN (2) . . . φN (N)

∣∣∣∣∣∣∣∣∣∣∣

. (11.110)

The introduction of the Slater determinant is very important for the treatment of many-body systems,
and is the principal building block for various variationalwave functions. As long as we express the wave-
function in terms of either one Slater determinant or a linear combination of several Slater determinants,
the Pauli principle is satisfied. When constructing many-electron wave functions this picture provides
an easy way to include many of the physical features. One problem with the Slater matrix is that it is
computationally demanding. Limiting the number of calculations will be one of the most important issues
concerning the implementation of the Slater determinant. This will be discussed in detail in chapter 18.
Chapter 18 is dedicated to the discussion of advanced many-body methods for solving Schrödinger’s
equation.

The1s hydrogen like wave function

R10(r) = 2

(
Z

a0

)3/2

exp (−Zr/a0) = u10/r

The total energy for helium (not the Hartree or Fock terms) from the direct and the exchange term should
give5Z/8.
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The single-particle energy with no interactions should give−Z2/2n2.
The2s hydrogen-like wave function is

R20(r) = 2

(
Z

2a0

)3/2(
1− Zr

2a0

)
exp (−Zr/2a0) = u20/r

and the2p hydrogen -like wave function is

R21(r) =
1√
3

(
Z

2a0

)3/2 Zr

a0
exp (−Zr/2a0) = u21/r

We usea0 = 1.
If we compute the total energy of the helium atom with the function

R10(r) = 2

(
Z

a0

)3/2

exp (−Zr/a0) = u10/r,

as a trial single-particle wave fuction, we obtain a total energy (one-body and two-body)

E[Z] = Z2 − 4Z +
5

8
Z.

The minimum is not atZ = 2. Take the derivative wrtZ and we find that the minimum is at

Z = 2− 5

16
= 1.6875

and represents an optimal effective charge.

11.6 The H+
2 molecule

The H+
2 molecule consists of two protons and one electron, with binding energyEB = −2.8 eV and an

equilibrium positionr0 = 0.106 nm between the two protons.
We define our system through the following variables. The electron is at a distancer from a chosen

origo, one of the protons is at the distance−R/2 while the other one is placed atR/2 from origo,
resulting in a distance to the electron ofr−R/2 andr + R/2, respectively.

In our solution of Schrödinger’s equation for this system weare going to neglect the kinetic energies
of the protons, since they are 2000 times heavier than the electron. We assume thus that their velocities
are negligible compared to the velocity of the electron. In addition we omit contributions from nuclear
forces, since they act at distances of several orders of magnitude smaller than the equilibrium position.

We can then write Schrödinger’s equation as follows
{
−~

2∇2
r

2me
− ke2

|r−R/2| −
ke2

|r + R/2| +
ke2

R

}
ψ(r,R) = Eψ(r,R), (11.111)

where the first term is the kinetic energy of the electron, thesecond term is the potential energy the
electron feels from the proton at−R/2 while the third term arises from the potential energy contribution
from the proton atR/2. The last term arises due to the repulsion between the two protons. In Fig. 11.4
we show a plot of the potential energy

V (r,R) = − ke2

|r−R/2| −
ke2

|r + R/2| +
ke2

R
. (11.112)
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Here we have fixed|R| = 2a0 og |R| = 8a0, being 2 and 8 Bohr radii, respectively. Note that in the
region between|r| = −|R|/2 (units arer/a0 in this figure, witha0 = 0.0529) and |r| = |R|/2 the
electron can tunnel through the potential barrier. Recall that−R/2 og R/2 correspond to the positions
of the two protons. We note also that ifR is increased, the potential becomes less attractive. This has
consequences for the binding energy of the molecule. The binding energy decreases as the distanceR
increases. Since the potential is symmetric with respect tothe interchange ofR → −R andr → −r it

R = 0.4 nm
ε = −13.6 eV
R = 0.1 nm

r/a0

V
(r
,R

)
[e

V
]

86420-2-4-6-8

0

-10

-20

-30

-40

-50

-60

Figure 11.4: Plot ofV (r,R) for |R|=0.1 and 0.4 nm. Units along thex-axis arer/a0 . The straight line
is the binding energy of the hydrogen atom,ε = −13.6 eV.

means that the probability for the electron to move from one proton to the other must be equal in both
directions. We can say that the electron shares it’s time between both protons.

With this caveat, we can now construct a model for simulatingthis molecule. Since we have only one
elctron, we could assume that in the limitR → ∞, i.e., when the distance between the two protons is
large, the electron is essentially bound to only one of the protons. This should correspond to a hydrogen
atom. As a trial wave function, we could therefore use the electronic wave function for the ground state
of hydrogen, namely

ψ100(r) =

(
1

πa3
0

)1/2

e−r/a0 . (11.113)

Since we do not know exactly where the electron is, we have to allow for the possibility that the electron
can be coupled to one of the two protons. This form includes the ’cusp’-condition discussed in the
previous section. We define thence two hydrogen wave functions

ψ1(r,R) =

(
1

πa3
0

)1/2

e−|r−R/2|/a0 , (11.114)

and

ψ2(r,R) =

(
1

πa3
0

)1/2

e−|r+R/2|/a0 . (11.115)
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Based on these two wave functions, which represent where theelectron can be, we attempt at the follow-
ing linear combination

ψ±(r,R) = C± (ψ1(r,R) ± ψ2(r,R)) , (11.116)

with C± a constant. Based on this discussion, we add a second electron in order to simulate the H2
molecule. That is the topic for project 11.3.

11.7 Improved variational calculations

To be finished for spring 2010.

11.7.1 Importance sampling

As mentioned in connection with the generation of random numbers, sequential correlation must be given
thorough attention as it may lead to bad error estimates of our numerical results.

There are several things we need to keep in mind in order to keep the correlation low. First of all, the
transition acceptance must be kept as high as possible. Otherwise, a walker will dwell at the same spot
in state space for several iterations at a time, which will clearly lead to high correlation between nearby
succeeding measurements.

Secondly, when using the simple symmetric form ofω(xold, xnew), one has to keep in mind the
random walk nature of the algorithm. Transitions will be made between points that are relatively close to
each other in state space, which also clearly contributes toincrease correlation. The seemingly obvious
way to deal with this would be just to increase the step size, allowing the walkers to cover more of the state
space in fewer steps (thus requiring fewer steps to reach ergodicity). But unfortunately, long before the
step length becomes desirably large, the algorithm breaks down. When proposing moves symmetrically
and uniformly aroundxold, the step acceptance becomes directly dependent on the steplength in such a
way that a too large step length reduces the acceptance. The reason for this is very simple. As the step
length increases, a walker will more likely be given a move proposition to areas of very low probability,
particularly if the governing trial wave function describes a localized system. In effect, the effective
movement of the walkers again becomes too small, resulting in large correlation. For optimal results we
therefore have to balance the step length with the acceptance.

With a transition suggestion ruleω as simple as the uniform symmetrical one emphasized so far, the
usual rule of thumb is to keep the acceptance around0.5. But the optimal interval varies a lot from case
to case. We therefore have to treat each numerical experiment with care.

By choosing a betterω, we can still improve the efficiency of the step length versusacceptance.
Recall thatω may be chosen arbitrarily as long as it fulfills ergodicity, meaning that it has to allow the
walker to reach any point of the state space in a finite number of steps. What we basically want is an
ω that pushes the ratio towards unity, increasing the acceptance. The theoretical situation ofω exactly
equal top itself:

ω(xnew, xold) = ω(xnew) = p(xnew)

would give the maximal acceptance of1. But then we would already have solved the problem of produc-
ing points distributed according top. One typically settles on modifying the symmetricalω so that the
walkers move more towards areas of the state space where the distribution is large. One such procedure is
the Fokker-Planck formalism where the walkers are moved according to the gradient of the distribution.
The formalism “pushes” the walkers in a “desirable” direction. The idea is to propose moves similarly to
an isotropic diffusion process with a drift. A new positionxnew is calculated from the old one,xold, as
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follows:
xnew = xold + χ+DF (xold)δt (11.117)

Hereχ is a Gaussian pseudo-random number with mean equal zero and variance equal2Dδt. It accounts
for the diffusion part of the transition. The third term on the left hand side accounts for the drift.F is a
drift velocity dependent on the position of the walker and isderived from the quantum mechanical wave
functionψ. The constantD, being the diffusion constant ofχ, also adjusts the size of the drift.δt is a
time step parameter whose presence will be clarified shortly.

It can be shown that theω corresponding to the move proposition rule in Eq. (11.117) becomes (in
non-normalized form):

ω(xold, xnew) = exp

(
−(xnew− xold−DδtF (xold))

2

4Dδt

)
(11.118)

which, as expected, is a Gaussian with variance2Dδt centered slightly offxold due to the drift term
DF (xold)δt.

What is the optimal choice for the drift term? From statistical mechanics we know that a simple
isotropic drift diffusion process obeys a Fokker-Planck equation of the form:

∂f

∂t
=
∑

i

D
∂

∂xi

(
∂

∂xi
− Fi(F )

)
f (11.119)

wheref is the continuous distribution of walkers. Equation (11.117) is a discretized realization of such
a process whereδt is the discretized time step. In order for the solutionf to converge to the desired
distributionp, it can be shown that the drift velocity has to be chosen as follows:

F =
1

f
∇f

where the operator∇ is the vector of first derivatives of all spatial coordinates. Convergence for such a
diffusion process is only guaranteed when the time step approaches zero. But in the Metropolis algorithm,
where drift diffusion is used just as a transition proposition rule, this bias is corrected automatically by the
rejection mechanism. In our application, the desired PDF being the square absolute of the wave function,
f = |ψ|2, the drift velocity becomes:

F = 2
1

ψ
∇ψ (11.120)

As expected, the walker is “pushed” along the gradient of thewave function.
When dealing with many-particle systems, as those that willbe studied in this thesis, we should also

consider whether to move only one particle at a time at each transition or all at once. The former method
may often be more efficient. A movement of only one particle will restrict the accessible space a walker
can move to in a single transition even more, thus introducing correlation. But on the other hand, the
acceptance is increased so that each particle can be moved further than it could in a standard all-particle
move. It is also computationally far more efficient to do one-particle transitions particularly when dealing
with complicated distributions governing many-dimensional anti-symmetrical fermionic systems.

Alternatively, we can treat the sequence of all one-particle transitions as one total transition of all
particles. This gives a larger effective step length thus reducing the correlation. From a computational
point of view, we may not gain any speed by summing up the individual one-particle transitions as
opposed to doing an all-particle transition. But the reduced correlation increases the total efficiency. We
are able to do fewer calculations in order to reach the same numerical accuracy.

Another way to acquire some control over the correlation is to do a so called blocking procedure on
our set of numerical measurements.
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11.7.2 Guiding Functions

Evaluation of the energy functional can be further improvedby a transformation similar to the one in the
importance sampling scheme. Consider the mean of a functionf over a PDFp and letpg be a function
that resemblesp but is computationally less expensive. We can then estimatethe mean off as follows:

〈f〉 =
∫
p(x)f(x)dx∫
p(x)dx

=

∫
pg(x)ω(x)f(x)dx∫
pg(x)ω(x)dx

≈
∑

x∈pg
ω(x)f(x)

∑
x∈pg

ω(x)

where

ω(x) ≡ p(x)

pg(x)

is a weight converting the distribution frompg to p. Similarly as with regular importance sampling
described above, we need to accumulatef reweighted byω. Note that the normalization factor has to
be reweighted as well so that we actually need to evaluate twointegrals. Fortunately this does not pose
any significant efficiency loss. The only extra thing we need to do is to accumulate the value ofω itself,
which we have to evaluate anyway.

We might worry that the estimate (the rightmost part of the above expression) actually represents a
normalized integration while the exact expressions do not contain any normalization constants. This is
needless to worry about because the normalization constantof the numerator is the same as that of the
denominator, namely

∫
pg(x)dx. It would cancel from the exact expressions anyway.

Guiding functions become especially useful in conjunctionwith the Metropolis algorithm. There we
wished to keep the sequential correlation as low as possibleby increasing the effective step size. This
can be done by keeping only everynth point that is produced in the random walk. But such a method
is most efficient when a guiding functionΨg mimicking the trial wave functionΨ is used to generate
the actual walk. A reweighted local energyωEL is then used to obtain the correct energy average. If
Ψg is sufficiently less expensive to evaluate thanΨ, then the extra time used on the rejected points is
compensated for by the increased evaluation speed.

To see the benefit of using a guiding function, the correlatedsample error is

err2 =
Var(x)

n
τ =

Var(x)

n

(
1 + 2

m∑

d=1

κd

)

whereτ is the correlation time. Assumingm equals at least a correlation length, we can cut off the sum
atm, since correlations exceeding this distance are expected to give little contribution toτ . Now using a
guiding function and keeping only everymth point we reduce the number of points fromn to n/m but
then we also reduceτ to 1, so that:

err2g =
mVar(x)

n

The ratio of these two error estimates is:

err2g
err2

=
m

1 + 2
∑m

d=1 κd

Becauseκd decreases exponentially starting atκ0 = 1, the sum in the denominator must yield a value
less thanm. A reasonable estimate ofκd ≈ 1/2 for all d up tom gives that the ratioerr2g/err

2 ≈ 1. It
appears that we have not gained any efficiency. But ifpg can be evaluatedd times as fast asp, then we
can produced times as many points in the same time, thus reducing the errorby a factor

√
d.
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11.7.3 Energy and Variance Minimization

There are two main approaches for optimizing a trial wave function ΨT. By the variational principle
we can do a straight forward minimization of the energy functional on the space of the parameters of
ΨT. This means minimizing the estimate of the mean of the local energy. Because of its simplicity,
such a scheme seems to be extremely powerful. The energy minimum is sought out by generating a
grid on the space of variational parameters and estimating the functional on each point of this grid. A
suitable minimization algorithm, like the steepest descent or the Newton method, can then be applied.
Unfortunately this approach is often haunted by problems ofinstability complicating the minimization
algorithms that usually rely on very accurate estimates of energy differences.

If the number of integration points is kept constant, then the further away we move from the optimal
point on the parameter grid, the greater the variance ofEL becomes. This greatly hampers a proper
estimation of the energy minimum since the local energy means fluctuate. One possible way to work
around the instabilities is by the method of correlated sampling, to be described shortly.

The second approach for optimizing the trial wave function is by minimizing the variance. Such an
approach is often preferred to the minimization of the energy since the variance has an a priori known
lower bound, namely zero, as opposed to the energy itself which is unknown. Also, the variance vanishes
for all eigenstates, not just the ground state, which is advantageous when one wishes to optimize excited
states. In addition, the variance generally shows higher stability, thus being more easily applicable to
minimization algorithms.

The usual strategy is to combine both energy and variance minimization. What we often notice is
that the minimum of the variance does not coincide exactly with the minimum of the energy, unless we
are actually able to reproduce the exact solution, in which case the two minima must coincide.

This discrepancy may in part be explained by realizing that the sample variance that we attempt to
minimize is only an estimate of the true theoretical variance in that we are unable to obtain an exact value
of the mean of the local energy. LetδE be the small difference between〈EL〉{xi} and〈EL〉. We can then
write the estimate of the variance as follows:

1

n

n∑

xi∈p

(EL − 〈EL〉{xi})
2 =

1

n

n∑

xi∈p

(EL − 〈EL〉 − δE)2

=
1

n

n∑

xi∈p

(
(EL − 〈EL〉)2 − 2δE(EL − 〈EL〉) + δE2

)

=
1

n

n∑

xi∈p

(EL − 〈EL〉)2 − 2δE(〈EL〉{xi})− 〈EL〉) + δE2

Focusing our attention on the last line, we see that the first term is the one that we intend to minimize.
The last term is just a constant that does not influence the position of the minimum. The middle term,
however, is linearly dependent on the local energy thus shifting the minimum of the estimate from the
true minimum. Of course, increasing the computational effort by sampling more points should make
〈EL〉{xi} approach〈EL〉, reducing this effect.

Instead of the typical estimate of the variance one often substitutes〈EL〉{xi} by a reference energy
Eref :

1

n

n∑

xi∈p

(EL − Eref)
2

Eref being as close to the best optimized value of〈EL〉 as possible.Eref can be updated continuously as
the optimization converges.
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Finally, one always has to be aware of the risk of getting stuck on local minima. Since the energy
functional estimate, as noted, is never necessarily well behaved on the parameter space, it is difficult to
construct efficient automated minimization algorithms. Most often we need to study the behavior of the
energy carefully “by hand” to determine whether our resultsare trustworthy.

11.7.4 Correlated Sampling

Minimization algorithms are, as mentioned, easily corrupted by the statistical fluctuations of the mean
energy estimates. The problem may in part be overcome by applying so called correlated sampling,
a procedure involving guiding functions The method smoothsout the mean energy estimates on the
variational parameter grid.

The main idea is to choose a particular point on the grid, preferably one that is as close to the true
minimum as is possible to achieve. Let this point be represented by the vectorα. Now use the trial wave
function |Ψα(x)|2 for that particular point as a guiding function for the mean energy estimates of all the
other pointsα′ (instead of writing the trial wave function asΨT we useΨα

′ to explicitly state which
pointα′ on the parameter grid it belongs to). Estimating the energy mean for all pointsα′ now becomes:

〈EL〉α′ =

∫
|Ψ

α
′(x)|2EL(x)dx∫
|Ψα

′(x)|2dx =

∫
|Ψα(x)|2ω(x)EL(x)dx∫
|Ψα(x)|2ω(x)dx

≈
∑
ω(x)EL(x)∑

ω(x)

where the pointsx are sampled from the guiding function|Ψα(x)|2 and the weighting factor is:

ω(x) =
|Ψ

α
′(x)|2

|Ψα(x)|2

The trick is now to generate the set{xi} of integration points sampled from|Ψα(x)|2 only onceand
use this set to estimate the means and variances for all the other points as well. By imposing such a
statistical dependency we hope that the fluctuations of the different estimates become synchronized so
that their graph is smoothed out. We can indeed show that correlated sampling reduces the variance when
estimating energydifferences. These are typically needed by minimization algorithms. Wealso save
computation time since we only need to generate one set of integration points for all the estimates. But
we still need to evaluate the weightω individually for all points on the grid of variational parameters.

11.8 Exercises and projects

Project 11.1: Studies of light Atoms

The aim of this project is to test the variational Monte Carloapppled to light atoms. We will test different
trial wave functionΨT . The systems we study are atoms consisting of two electrons only, such as the
helium atom, LiII and BeIII . The atom LiII has two electrons andZ = 3 while BeIII hasZ = 4 but
still two electrons only. A general ansatz for the trial wavefunction is

ψT (R) = φ(r1)φ(r2)f(r12). (11.121)

For all systems we assume that the one-electron wave functionsφ(ri) are described by the an elecron in
the lowest hydrogen orbital1s.

The specific trial functions we study are

ψT1(r1, r2, r12) = exp (−α(r1 + r2)), (11.122)
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whereα is the variational parameter,

ψT2(r1, r2, r12) = exp (−α(r1 + r2))(1 + βr12), (11.123)

with β as a new variational parameter and

ψT3(r1, r2, r12) = exp (−α(r1 + r2)) exp

(
r12

2(1 + βr12)

)
. (11.124)

a) Find the analytic expressions for the local energy for theabove trial wave function for the helium
atom. Study the behavior of the local energy with these functions in the limitsr1 → 0, r2 → 0 and
r12 → 0.

b) Compute

〈Ĥ〉 =
∫
dRΨ∗

T (R)Ĥ(R)ΨT (R)∫
dRΨ∗

T (R)ΨT (R)
, (11.125)

for the helium atom using the variational Monte Carlo methodemploying the Metropolis algorithm
to sample the different states using the trial wave functionψT1(r1, r2, r12). Compare your results
with the analytic expression

〈Ĥ〉 = ~
2

me
α2 − 27

32

e2

πǫ0
α. (11.126)

c) Use the optimal value ofα from the previous point to compute the ground state of the helium atom
using the other two trial wave functionsψT2(r1, r2, r12) andψT3(r1, r2, r12). In this case you
have to vary bothα andβ. Explain briefly which functionψT1(r1, r2, r12), ψT2(r1, r2, r12) and
ψT3(r1, r2, r12) is the best.

d) Use the optimal value for all parameters and all wave functions to compute the expectation value
of the mean distance〈r12〉 between the two electrons. Comment your results.

e) We will now repeat point 1c), but we replace the helium atomwith the ions LiII and BeIII . Perform
first a variational calculation using the first ansatz for thetrial wave functionψT1(r1, r2, r12) in
order to find an optimal value forα. Use then this value to start the variational calculation ofthe
energy for the wave functionsψT2(r1, r2, r12) andψT3(r1, r2, r12). Comment your results.

Project 11.2: Ground state of He, Be and Ne

The task here is to perform a variational Monte Carlo calculation of the ground state energy of the atoms
He, Be and Ne.

a) Here we limit the attention to He and employ the following trial wave function

ψT (r1, r2, r12) = exp (−α(r1 + r2)) exp

(
r12

2(1 + βr12)

)
, (11.127)

with α andβ as variational parameters. The interaction is

V (r1, r2) = − 2

r1
− 2

r2
+

1

r12
, (11.128)
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yielding the following hamiltonian for the helium atom

Ĥ = −∇
2
1

2
− ∇

2
2

2
− 2

r1
− 2

r2
+

1

r12
. (11.129)

Your task is to perform a Variational Monte Carlo calculation using the Metropolis algorithm to
compute the integral

〈H〉 =

∫
dRψ∗

T (R)H(R)ψT (R)∫
dRψ∗

T (R)ψT (R)
. (11.130)

b) We turn the attention to the ground state energy for the Be atom. In this case the trial wave function
is given by

ψT (r1, r2, r3, r4) = Det (φ1(r1), φ2(r2), φ3(r3), φ4(r4))
4∏

i<j

exp

(
rij

2(1 + βrij)

)
, (11.131)

where theDet is a Slater determinant and the single-particle wave functions are the hydrogen wave
functions for the1s and2s orbitals. Their form within the variational ansatz is givenby

φ1s(ri) = e−αri , (11.132)

and
φ2s(ri) = (2− αri) e−αri/2. (11.133)

Set up the expression for the Slater determinant and performa variational calculation withα andβ
as variational parameters.

c) Now we compute the ground state energy for the Neon atom following the same steps as in a) and
b) but with the trial wave function

ψT (r1, r2, . . . , r10) = Det (φ1(r1), φ2(r2), . . . , φ10(r10))

10∏

i<j

exp

(
rij

2(1 + βrij)

)
, (11.134)

Set up the expression for the Slater determinant and repeat steps a) and b) including the Slater
determinant. The variational parameters are stillα andβ only. In this case you need to include the
2p wave function as well. It is given as

φ2p(ri) = αrie
−αri/2. (11.135)

Observe thatri =
√
r2ix + r2iy + r2iz .

Project 11.3: the H2 molecule

The H2 molecule consists of two protons and two electrons with a ground state energyE = −1.17460
a.u. and equilibrium distance between the two hydrogen atoms of r0 = 1.40 Bohr radii. We define our
systems using the following variables. Origo is chosen to behalfway between the two protons. The
distance from proton 1 is defined as−R/2 whereas proton 2 has a distanceR/2. Calculations are
performed for fixed distancesR between the two protons.
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11.8 – Exercises and projects

Electron 1 has a distancer1 from the chose origo, while electron2 has a distancer2. The kinetic
energy operator becomes then

− ∇
2
1

2
− ∇

2
2

2
. (11.136)

The distance between the two electrons isr12 = |r1 − r2|. The repulsion between the two electrons
results in a potential energy term given by

+
1

r12
. (11.137)

In a similar way we obtain a repulsive contribution from the interaction between the two protons given
by

+
1

|R| , (11.138)

whereR is the distance between the two protons. To obtain the final potential energy we need to include
the attraction the electrons feel from the protons. To modelthis, we need to define the distance between
the electrons and the two protons. If we model this along a chosenz-akse with electron 1 placed at a
distancer1 from a chose origo, one proton at−R/2 and the other atR/2, the distance from proton 1 to
electron 1 becomes

r1p1 = r1 + R/2, (11.139)

and
r1p2 = r1 −R/2, (11.140)

from proton 2. Similarly, for electron 2 we obtain

r2p1 = r2 + R/2, (11.141)

and
r2p2 = r2 −R/2. (11.142)

These four distances define the attractive contributions tothe potential energy

− 1

r1p1
− 1

r1p2
− 1

r2p1
− 1

r2p2
. (11.143)

We can then write the total Hamiltonian as

Ĥ = −∇
2
1

2
− ∇

2
2

2
− 1

r1p1
− 1

r1p2
− 1

r2p1
− 1

r2p2
+

1

r12
+

1

|R| , (11.144)

and if we chooseR = 0 we obtain the helium atom.
In this project we will use a trial wave function of the form

ψT (r1, r2,R) = ψ(r1,R)ψ(r2,R) exp

(
r12

2(1 + βr12)

)
, (11.145)

with the following trial wave function

ψ(r1,R) = (exp (−αr1p1) + exp (−αr1p2)) , (11.146)

for electron 1 and
ψ(r2,R) = (exp (−αr2p1) + exp (−αr2p2)) . (11.147)
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The variational parameters areα andβ.
One can show that in the limit where all distances approach zero that

α = 1 + exp (−R/α), (11.148)

resulting inβ kas the only variational parameter. The last equation is a non-linear equation which we can
solve with for example Newton’s method discussed in chapter5.

a) Find the local energy as function ofR.

b) Set up and algorithm and write a program which computes theexpectation value of〈Ĥ〉 using the
variational Monte Carlo method with a brute force Metropolis sampling. For each inter-proton
distanceR you must find the parameterβ which minimizes the energy. Plot the corresponding
energy as function of the distanceR between the protons.

c) Use thereafter the optimal parameter sets to compute the average distance〈r12〉 between the elec-
trons where the energy as function ofR exhibits its minimum. Comment your results.

d) We modify now the approximation for the wave functions of electrons 1 and 2 by subtracting the
two terms instead of adding up, viz

ψ(r1,R) = (exp (−αr1p1)− exp (−αr1p2)) , (11.149)

for electron 1
ψ(r2,R) = (exp (−αr2p1)− exp (−αr2p2)) , (11.150)

for electron 2. Mathematically, this approach is equally viable as the previous one. Repeat your
calculations from point b) and see if you can obtain an energyminimum as function ofR. Comment
your results.
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