
Chapter 9

Random walks and the Metropolis
algorithm

Nel mezzo del cammin di nostra vita, mi ritrovai per una selvaoscura, ché la diritta via
era smarrita. (Divina Commedia, Inferno, Canto I, 1-3)Dante Alighieri

The way that can be spoken of is not the constant way. (Tao Te Ching, Book I, I.1)Lao
Tzu

9.1 Motivation

In the previous chapter we discussed technical aspects of Monte Carlo integration such as algorithms for
generating random numbers and integration of multidimensional integrals. The latter topic served to il-
lustrate two key topics in Monte Carlo simulations, namely aproper selection of variables and importance
sampling. An intelligent selection of variables, good sampling techniques and guiding functions can be
crucial for the outcome of our Monte Carlo simulations. Examples of this will be demonstrated in the
chapters on statistical and quantum physics applications.Here we make a detour from this main area of
applications. The focus is on diffusion and random walks. The rationale for this is that the tricky part of
an actual Monte Carlo simulation resides in the appropriateselection of random states, and thereby num-
bers, according to the probability distribution (PDF) at hand. With appropriate there is however much
more to the picture than meets the eye.

Suppose our PDF is given by the well-known normal distribution. Think of for example the velocity
distribution of an ideal gas in a container. In our simulations we could then accept or reject new moves
with a probability proportional to the normal distribution. This would parallel our example on the sixth
dimensional integral in the previous chapter. However, in this case we would end up rejecting basically
all moves since the probabilities are exponentially small in most cases. The result would be that we
barely moved from the initial position. Our statistical averages would then be significantly biased and
most likely not very reliable.

Instead, all Monte Carlo schemes used are based on Markov processes in order to generate new
random states. A Markov process is a random walk with a selected probability for making a move. The
new move is independent of the previous history of the system. The Markov process is used repeatedly
in Monte Carlo simulations in order to generate new random states. The reason for choosing a Markov
process is that when it is run for a long enough time starting with a random state, we will eventually
reach the most likely state of the system. In thermodynamics, this means that after a certain number of

211

Random walks and the Metropolis algorithm

Markov processes we reach an equilibrium distribution. This mimicks the way a real system reaches its
most likely state at a given temperature of the surroundings.

To reach this distribution, the Markov process needs to obeytwo important conditions, that of er-
godicity and detailed balance. These conditions impose constraints on our algorithms for accepting or
rejecting new random states. The Metropolis algorithm discussed here abides to both these constraints
and is discussed in more detail in Section 9.5. The Metropolis algorithm is widely used in Monte Carlo
simulations of physical systems and the understanding of itrests within the interpretation of random
walks and Markov processes. However, before we do that we discuss the intimate link between random
walks, Markov processes and the diffusion equation. In section 9.3 we show that a Markov process is
nothing but the discretized version of the diffusion equation. Diffusion and random walks are discussed
from a more experimental point of view in the next section. There we show also a simple algorithm for
random walks and discuss eventual physical implications. We end this chapter with a discussion of one
of the most used algorithms for generating new steps, namelythe Metropolis algorithm. This algorithm,
which is based on Markovian random walks satisfies both the ergodicity and detailed balance require-
ments and is widely in applications of Monte Carlo simulations in the natural sciences. The Metropolis
algorithm is used in our studies of phase transitions in statistical physics and the simulations of quantum
mechanical systems.

9.2 Diffusion equation and random walks

Physical systems subject to random influences from the ambient have a long history, dating back to the
famous experiments by the British Botanist R. Brown on pollen of different plants dispersed in water. This
lead to the famous concept of Brownian motion. In general, small fractions of any system exhibit the same
behavior when exposed to random fluctuations of the medium. Although apparently non-deterministic,
the rules obeyed by such Brownian systems are laid out withinthe framework of diffusion and Markov
chains. The fundamental works on Brownian motion were developed by A. Einstein at the turn of the last
century.

Diffusion and the diffusion equation are central topics in both Physics and Mathematics, and their
ranges of applicability span from stellar dynamics to the diffusion of particles governed by Schrödinger’s
equation. The latter is, for a free particle, nothing but thediffusion equation in complex time!

Let us consider the one-dimensional diffusion equation. Westudy a large ensemble of particles
performing Brownian motion along thex-axis. There is no interaction between the particles.

We definew(x, t)dx as the probability of finding a given number of particles in aninterval of length
dx in x ∈ [x, x+dx] at a timet. This quantity is our probability distribution function (PDF). The quantum
physics equivalent ofw(x, t) is the wave function itself. This diffusion interpretationof Schrödinger’s
equation forms the starting point for diffusion Monte Carlotechniques in quantum physics.

Good overview texts are the books of Robert and Casella and Karatsas, see Refs. [46, 51].

9.2.1 Diffusion equation

From experiment there are strong indications that the flux ofparticlesj(x, t), viz., the number of par-
ticles passingx at a timet is proportional to the gradient ofw(x, t). This proportionality is expressed
mathematically through

j(x, t) = −D∂w(x, t)

∂x
, (9.1)

212

9.2 – Diffusion equation and random walks

whereD is the so-called diffusion constant, with dimensionality length2 per time. If the number of
particles is conserved, we have the continuity equation

∂j(x, t)

∂x
= −∂w(x, t)

∂t
, (9.2)

which leads to
∂w(x, t)

∂t
= D

∂2w(x, t)

∂x2
, (9.3)

which is the diffusion equation in one dimension.
With the probability distribution functionw(x, t)dx we can use the results from the previous chapter

to compute expectation values such as the mean distance

〈x(t)〉 =

∫ ∞

−∞
xw(x, t)dx, (9.4)

or

〈x2(t)〉 =

∫ ∞

−∞
x2w(x, t)dx, (9.5)

which allows for the computation of the varianceσ2 = 〈x2(t)〉−〈x(t)〉2. Note well that these expectation
values are time-dependent. In a similar way we can also defineexpectation values of functionsf(x, t) as

〈f(x, t)〉 =

∫ ∞

−∞
f(x, t)w(x, t)dx. (9.6)

Sincew(x, t) is now treated as a PDF, it needs to obey the same criteria as discussed in the previous
chapter. However, the normalization condition

∫ ∞

−∞
w(x, t)dx = 1 (9.7)

imposes significant constraints onw(x, t). These are

w(x = ±∞, t) = 0
∂nw(x, t)

∂xn
|x=±∞ = 0, (9.8)

implying that when we study the time-derivative∂〈x(t)〉/∂t, we obtain after integration by parts and
using Eq. (9.3)

∂〈x〉
∂t

=

∫ ∞

−∞
x
∂w(x, t)

∂t
dx = D

∫ ∞

−∞
x
∂2w(x, t)

∂x2
dx, (9.9)

leading to
∂〈x〉
∂t

= Dx
∂w(x, t)

∂x
|x=±∞ −D

∫ ∞

−∞

∂w(x, t)

∂x
dx, (9.10)

implying that
∂〈x〉
∂t

= 0. (9.11)

This means in turn that〈x〉 is independent of time. If we choose the initial positionx(t = 0) = 0,
the average displacement〈x〉 = 0. If we link this discussion to a random walk in one dimension with
equal probability of jumping to the left or right and with an initial positionx = 0, then our probability

213

Random walks and the Metropolis algorithm

distribution remains centered around〈x〉 = 0 as function of time. However, the variance is not necessarily
0. Consider first

∂〈x2〉
∂t

= Dx2∂w(x, t)

∂x
|x=±∞ − 2D

∫ ∞

−∞
x
∂w(x, t)

∂x
dx, (9.12)

where we have performed an integration by parts as we did for∂〈x〉
∂t . A further integration by parts results

in
∂〈x2〉
∂t

= −Dxw(x, t)|x=±∞ + 2D

∫ ∞

−∞
w(x, t)dx = 2D, (9.13)

leading to
〈x2〉 = 2Dt, (9.14)

and the variance as
〈x2〉 − 〈x〉2 = 2Dt. (9.15)

The root mean square displacement after a timet is then

√
〈x2〉 − 〈x〉2 =

√
2Dt. (9.16)

This should be contrasted to the displacement of a free particle with initial velocityv0. In that case the
distance from the initial position after a timet is x(t) = vt whereas for a diffusion process the root mean
square value is

√
〈x2〉 − 〈x〉2 ∝

√
t. Since diffusion is strongly linked with random walks, we could say

that a random walker escapes much more slowly from the starting point than would a free particle. We
can vizualize the above in the following figure. In Fig. 9.1 wehave assumed that our distribution is given
by a normal distribution with varianceσ2 = 2Dt, centered atx = 0. The distribution reads

w(x, t)dx =
1√

4πDt
exp (− x2

4Dt
)dx. (9.17)

At a timet = 2s the new variance isσ2 = 4Ds, implying that the root mean square value is
√
〈x2〉 − 〈x〉2 =

2
√
D. At a further timet = 8 we have

√
〈x2〉 − 〈x〉2 = 4

√
D. While time has elapsed by a factor of

4, the root mean square has only changed by a factor of 2. Fig. 9.1 demonstrates the spreadout of the
distribution as time elapses. A typical example can be the diffusion of gas molecules in a container or
the distribution of cream in a cup of coffee. In both cases we can assume that the the initial distribution
is represented by a normal distribution.

9.2.2 Random walks

Consider now a random walker in one dimension, with probability R of moving to the right andL for
moving to the left. Att = 0 we place the walker atx = 0, as indicated in Fig. 9.2. The walker can
then jump, with the above probabilities, either to the left or to the right for each time step. Note that
in principle we could also have the possibility that the walker remains in the same position. This is not
implemented in this example. Every step has length∆x = l. Time is discretized and we have a jump
either to the left or to the right at every time step. Let us nowassume that we have equal probabilities for
jumping to the left or to the right, i.e.,L = R = 1/2. The average displacement aftern time steps is

〈x(n)〉 =

n∑

i

∆xi = 0 ∆xi = ±l, (9.18)

214

9.2 – Diffusion equation and random walks

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

-10 -5 0 5 10

w(x, t)dx

x

Figure 9.1: Time development of a normal distribution with varianceσ2 = 2Dt and withD = 1m2/s.
The solid line represents the distribution att = 2s while the dotted line stands fort = 8s.

• • • • • • • •
.. −3l −2 −l x = 0 l 2l 3l

Figure 9.2: One-dimensional walker which can jump either tothe left or to the right. Every step has
length∆x = l.

215

Random walks and the Metropolis algorithm

since we have an equal probability of jumping either to the left or to right. The value of〈x(n)2〉 is

〈x(n)2〉 =
(

n∑

i

∆xi

)

n∑

j

∆xj

 =

n∑

i

∆x2
i +

n∑

i6=j

∆xi∆xj = l2n. (9.19)

For many enough steps the non-diagonal contribution is

N∑

i6=j

∆xi∆xj = 0, y (9.20)

since∆xi,j = ±l. The variance is then

〈x(n)2〉 − 〈x(n)〉2 = l2n. (9.21)

It is also rather straightforward to compute the variance for L 6= R. The result is

〈x(n)2〉 − 〈x(n)〉2 = 4LRl2n. (9.22)

In Eq. (9.21) the variablen represents the number of time steps. If we definen = t/∆t, we can then
couple the variance result from a random walk in one dimension with the variance from the diffusion
equation of Eq. (9.15) by defining the diffusion constant as

D =
l2

∆t
. (9.23)

In the next section we show in detail that this is the case.
The program below demonstrates the simplicity of the one-dimensional random walk algorithm. It is

straightforward to extend this program to two or three dimensions as well. The input is the number of time
steps, the probability for a move to the left or to the right and the total number of Monte Carlo samples. It
computes the average displacement and the variance for one random walker for a given number of Monte
Carlo samples. Each sample is thus to be considered as one experiment with a given number of walks.
The interesting part of the algorithm is described in the function mc_sampling. The other functions read
or write the results from screen or file and are similar in structure to programs discussed previously. The
main program reads the name of the output file from screen and sets up the arrays containing the walker’s
position after a given number of steps. The corresponding program for a two-dimensional random walk
(not listed in the main text) is found under programs/chapter9/program2.cpphttp://www.fys.uio.no/ompphys/p/programs/FYS3150/hapter09/pp/program1.pp
/∗

1−dim random walk program .
A wa lker makes s e v e r a l t r i a l s s t e p s w i th
a g i v e n number o f wa lks per t r i a l

∗ /
inc lude < ios t ream >
inc lude < fs t r eam >
inc lude < iomanip >
inc lude "lib.h"
us ing namespace s t d ;

/ / Func t i on t o read i n da ta from screen , no te c a l l by r e f e r e n ce

216

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter09/cpp/program1.cpp

9.2 – Diffusion equation and random walks

vo id i n i t i a l i s e (i n t &, i n t &, double&) ;
/ / The Mc sampl ing f o r random walks
vo id mc_sampling (i n t , i n t , double , i n t ∗ , i n t ∗) ;
/ / p r i n t s t o s c r e e n t h e r e s u l t s o f t h e c a l c u l a t i o n s
vo id o u t p u t (i n t , i n t , i n t ∗ , i n t ∗) ;

i n t main ()
{

i n t m a x _ t r i a l s , number_walks ;
double m o v e _ p r o b a b i l i t y ;
/ / Read i n da ta
i n i t i a l i s e (m a x _ t r i a l s , number_walks , m o v e _ p r o b a b i l i t y) ;
i n t ∗wa lk_cumu la t i ve = new i n t [number_walks + 1] ;
i n t ∗wa lk2_cumu la t i ve =new i n t [number_walks + 1] ;
f o r (i n t walks = 1 ; walks <= number_walks ; walks ++) {

wa lk_cumu la t i ve [walks] = wa lk2_cumu la t i ve [walks] = 0 ;
} / / end i n i t i a l i z a t i o n o f v e c t o r s
/ / Do t h e mc sampl ing
mc_sampling (m a x _ t r i a l s , number_walks , move_p robab i l i ty ,

wa lk_cumu la t ive , wa lk2_cumu la t i ve) ;
/ / P r i n t ou t r e s u l t s
o u t p u t (m a x _ t r i a l s , number_walks , wa lk_cumu la t ive ,

wa lk2_cumu la t i ve) ;
d e l e t e [] wa l k_cumu la t i ve ; / / f r e e memory
d e l e t e [] wa l k2_cumu la t i ve ;
re turn 0 ;

} / / end main f u n c t i o n

The input and output functions are

vo id i n i t i a l i s e (i n t & m a x _ t r i a l s , i n t & number_walks , double& m o v e _ p r o b a b i l i t y
)

{
cou t << "Number of Monte Carlo trials =" ;
c i n >> m a x _ t r i a l s ;
cou t << "Number of attempted walks=" ;
c i n >> number_walks ;
cou t << "Move probability=" ;
c i n >> m o v e _ p r o b a b i l i t y ;

} / / end o f f u n c t i o n i n i t i a l i s e

vo id o u t p u t (i n t m a x _ t r i a l s , i n t number_walks ,
i n t ∗walk_cumu la t ive , i n t ∗wa lk2_cumu la t i ve)

{
o f s t r e a m o f i l e ("testwalkers.dat") ;
f o r (i n t i = 1 ; i <= number_walks ; i ++) {

double xave rage = wa lk_cumu la t i ve [i] / ((double) m a x _ t r i a l s) ;
double x2ave rage = wa lk2_cumu la t i ve [i] / ((double) m a x _ t r i a l s) ;
double v a r i a n c e = x2ave rage− xave rage∗ xave rage ;
o f i l e << s e t i o s f l a g s (i o s : : showpo in t | i o s : : u p p e r c a s e) ;
o f i l e << setw (6) << i ;
o f i l e << setw (1 5) << s e t p r e c i s i o n (8) << xave rage ;

217

Random walks and the Metropolis algorithm

o f i l e << setw (1 5) << s e t p r e c i s i o n (8) << v a r i a n c e << end l ;
}
o f i l e . c l o s e () ;

} / / end o f f u n c t i o n o u t p u t

The algorithm is in the functionmc_samplingand tests the probability of moving to the left or to the right
by generating a random number.

vo id mc_sampling (i n t m a x _ t r i a l s , i n t number_walks ,
double move_p robab i l i t y , i n t ∗walk_cumu la t ive ,
i n t ∗wa lk2_cumu la t i ve)

{
long idum ;
idum=−1; / / i n i t i a l i s e random number g e n e r a t o r
f o r (i n t t r i a l =1 ; t r i a l <= m a x _ t r i a l s ; t r i a l ++) {

i n t p o s i t i o n = 0 ;
f o r (i n t walks = 1 ; walks <= number_walks ; walks ++) {

i f (ran0 (&idum) <= m o v e _ p r o b a b i l i t y) {
p o s i t i o n += 1 ;

}
e l s e {

p o s i t i o n −= 1 ;
}
wa lk_cumu la t i ve [walks] += p o s i t i o n ;
wa lk2_cumu la t i ve [walks] += p o s i t i o n∗ p o s i t i o n ;

} / / end o f loop over wa lks
} / / end o f loop over t r i a l s

} / / end mc_sampl ing f u n c t i o n

Fig. 9.3 shows that the variance increases linearly as function of the number of time steps, as expected
from the analytic results. Similarly, the mean displacement in Fig. 9.4 oscillates around zero.

9.3 Microscopic derivation of the diffusion equation

When solving partial differential equations such as the diffusion equation numerically, the derivatives are
always discretized. Recalling our discussions from Chapter 3, we can rewrite the time derivative as

∂w(x, t)

∂t
≈ w(i, n + 1)− w(i, n)

∆t
, (9.24)

whereas the gradient is approximated as

D
∂2w(x, t)

∂x2
≈ Dw(i + 1, n) + w(i − 1, n)− 2w(i, n)

(∆x)2
, (9.25)

resulting in the discretized diffusion equation

w(i, n + 1)− w(i, n)

∆t
= D

w(i + 1, n) + w(i− 1, n)− 2w(i, n)

(∆x)2
, (9.26)

wheren represents a given time step andi a step in thex-direction. We will come back to the solution of
such equations in our chapter on partial differential equations, see Chapter 15. The aim here is to show

218

9.3 – Microscopic derivation of the diffusion equation

0

20

40

60

80

100

0 20 40 60 80 100

σ2

Time steps t

Figure 9.3: Time development ofσ2 for a random walker. 100000 Monte Carlo samples were used with
the function ran1 and a seed set to−1.

-0.04

-0.02

0

0.02

0.04

0 20 40 60 80 100

〈x(t)〉

Time steps t

Figure 9.4: Time development of〈x(t)〉 for a random walker. 100000 Monte Carlo samples were used
with the function ran1 and a seed set to−1.

219

Random walks and the Metropolis algorithm

that we can derive the discretized diffusion equation from aMarkov process and thereby demonstrate the
close connection between the important physical process diffusion and random walks. Random walks
allow for an intuitive way of picturing the process of diffusion. In addition, as demonstrated in the
previous section, it is easy to simulate a random walk.

9.3.1 Discretized diffusion equation and Markov chains

A Markov process allows in principle for a microscopic description of Brownian motion. As with the
random walk studied in the previous section, we consider a particle which moves along thex-axis in the
form of a series of jumps with step length∆x = l. Time and space are discretized and the subsequent
moves are statistically indenpendent, i.e., the new move depends only on the previous step and not on the
results from earlier trials. We start at a positionx = jl = j∆x and move to a new positionx = i∆x
during a step∆t = ǫ, wherei ≥ 0 andj ≥ 0 are integers. The original probability distribution function
(PDF) of the particles is given bywi(t = 0) wherei refers to a specific position on the grid in Fig. 9.2,
with i = 0 representingx = 0. The functionwi(t = 0) is now the discretized version ofw(x, t). We can
regard the discretized PDF as a vector. For the Markov process we have a transition probability from a
positionx = jl to a positionx = il given by

Wij(ǫ) = W (il − jl, ǫ) =

{
1
2 |i− j| = 1
0 else

, (9.27)

whereWij is normally called the transition probability and we can represent it, see below, as a matrix.
Note that this matrix is not a stochastic matrix as long as it is a finite matrix. Our new PDFwi(t = ǫ) is
now related to the PDF att = 0 through the relation

wi(t = ǫ) =
∑

j

W (j → i)wj(t = 0). (9.28)

This equation represents the discretized time-development of an original PDF. It is a microscopic way of
representing the process shown in Fig. 9.1. Since bothW andw represent probabilities, they have to be
normalized, i.e., we require that at each time step we have

∑

i

wi(t) = 1, (9.29)

and ∑

j

W (j → i) = 1, (9.30)

which applies for allj-values. The further constraints are0 ≤ Wij ≤ 1 and0 ≤ wj ≤ 1. Note that
the probability for remaining at the same place is in generalnot necessarily equal zero. In our Markov
process we allow only for jumps to the left or to the right.

The time development of our initial PDF can now be represented through the action of the transition
probability matrix appliedn times. At a timetn = nǫ our initial distribution has developed into

wi(tn) =
∑

j

Wij(tn)wj(0), (9.31)

and defining
W (il − jl, nǫ) = (W n(ǫ))ij (9.32)

220

9.3 – Microscopic derivation of the diffusion equation

we obtain
wi(nǫ) =

∑

j

(W n(ǫ))ijwj(0), (9.33)

or in matrix form
ŵ(nǫ) = Ŵ n(ǫ)ŵ(0). (9.34)

The matrixŴ can be written in terms of two matrices

Ŵ =
1

2

(
L̂+ R̂

)
, (9.35)

whereL̂ andR̂ represent the transition probabilities for a jump to the left or the right, respectively. For a
4× 4 case we could write these matrices as

R̂ =

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

 , (9.36)

and

L̂ =

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 . (9.37)

However, in principle these are infinite dimensional matrices since the number of time steps are very
large or infinite. For the infinite case we can write these matricesRij = δi,(j+1) andLij = δ(i+1),j ,
implying that

L̂R̂ = R̂L̂ = I, (9.38)

which applies in the case of infinite matrices and

L̂ = R̂−1 (9.39)

To see that̂LR̂ = R̂L̂ = 1, perform e.g., the matrix multiplication

L̂R̂ =
∑

k

L̂ikR̂kj =
∑

k

δ(i+1),kδk,(j+1) = δi+1,j+1 = δi,j, (9.40)

and only the diagonal matrix elements are different from zero.
For the first time step we have thus

Ŵ =
1

2

(
L̂+ R̂

)
, (9.41)

and using the properties in Eqs. (9.38) and (9.39) we have after two time steps

Ŵ 2(2ǫ) =
1

4

(
L̂2 + R̂2 + 2R̂L̂

)
, (9.42)

and similarly after three time steps

Ŵ 3(3ǫ) =
1

8

(
L̂3 + R̂3 + 3R̂L̂2 + 3R̂2L̂

)
. (9.43)

221

Random walks and the Metropolis algorithm

Using the binomial formula
n∑

k=0

(
n
k

)
âk b̂n−k = (a+ b)n, (9.44)

we have that the transition matrix aftern time steps can be written as

Ŵ n(nǫ)) =
1

2n

n∑

k=0

(
n
k

)
R̂kL̂n−k, (9.45)

or

Ŵ n(nǫ)) =
1

2n

n∑

k=0

(
n
k

)
L̂n−2k =

1

2n

n∑

k=0

(
n
k

)
R̂2k−n, (9.46)

and usingRm
ij = δi,(j+m) andLm

ij = δ(i+m),j we arrive at

W (il − jl, nǫ) =

1
2n

(
n

1
2(n + i− j)

)
|i− j| ≤ n

0 else
, (9.47)

andn+ i− j has to be an even number. We note that the transition matrix for a Markov process has three
important properties:

– It depends only on the difference in spacei− j, it is thus homogenous in space.

– It is also isotropic in space since it is unchanged when we go from (i, j) to (−i,−j).

– It is homogenous in time since it depends only the differencebetween the initial time and final
time.

If we place the walker atx = 0 at t = 0 we can represent the initial PDF withwi(0) = δi,0. Using
Eq. (9.34) we have

wi(nǫ) =
∑

j

(W n(ǫ))ijwj(0) =
∑

j

1

2n

(
n

1
2(n+ i− j)

)
δj,0, (9.48)

resulting in

wi(nǫ) =
1

2n

(
n

1
2(n+ i)

)
|i| ≤ n. (9.49)

We can then use the recursion relation for the binomials
(

n+ 1
1
2(n+ 1 + i)

)
=

(
n

1
2 (n+ i+ 1)

)
+

(
n

1
2(n+ i)− 1

)
(9.50)

to obtain the discretized diffusion equation. In order to achieve this, we definex = il, wherel andi are
integers, andt = nǫ. We can then rewrite the probability distribution as

w(x, t) = w(il, nǫ) = wi(nǫ) =
1

2n

(
n

1
2(n+ i)

)
|i| ≤ n, (9.51)

and rewrite Eq. (9.50) as

w(x, t+ ǫ) =
1

2
w(x+ l, t) +

1

2
w(x− l, t). (9.52)

222

9.3 – Microscopic derivation of the diffusion equation

Adding and subtractingw(x, t) and multiplying both sides withl2/ǫ we have

w(x, t+ ǫ)− w(x, t)

ǫ
=
l2

2ǫ

w(x+ l, t)− 2w(x, t) + w(x− l, t)
l2

. (9.53)

If we identify D = l2/2ǫ andl = ∆x andǫ = ∆t we see that this is nothing but the discretized version
of the diffusion equation. Taking the limits∆x→ 0 and∆t→ 0 we recover

∂w(x, t)

∂t
= D

∂2w(x, t)

∂x2
,

the diffusion equation.

An illustrative example

The following simple example may help in understanding the meaning of the transition matrix̂W and
the vectorŵ. Consider the3× 3 matrix Ŵ

Ŵ =

1/4 1/8 2/3
3/4 5/8 0
0 1/4 1/3

 ,

and we choose our initial state as

ŵ(t = 0) =

1
0
0

 .

We note that both the vector and the matrix are properly normalized. Summing the vector elements gives
one and summing over columns for the matrix results also in one. We act then on̂w with Ŵ . The first
iteration is

ŵ(t = ǫ) = Ŵ ŵ(t = 0),

resulting in

ŵ(t = ǫ) =

1/4
3/4
0

 .

The next iteration results in
ŵ(t = 2ǫ) = Ŵ ŵ(t = ǫ),

resulting in

ŵ(t = 2ǫ) =

5/32
21/32
6/32

 .

Note that the vector̂w is always normalized to1. We find the steady state of the system by solving the
linear set of equations

w(t =∞) = Ww(t =∞).

This linear set of equations reads

W11w1(t =∞) +W12w2(t =∞) +W13w3(t =∞) = w1(t =∞)

W21w1(t =∞) +W22w2(t =∞) +W23w3(t =∞) = w2(t =∞)

W31w1(t =∞) +W32w2(t =∞) +W33w3(t =∞) = w3(t =∞)

(9.54)

223

Random walks and the Metropolis algorithm

Table 9.1: Convergence to the steady state as function of number of iterations.

Iteration w1 w2 w3

0 1.00000 0.00000 0.00000
1 0.25000 0.75000 0.00000
2 0.15625 0.62625 0.18750
3 0.24609 0.52734 0.22656
4 0.27848 0.51416 0.20736
5 0.27213 0.53021 0.19766
6 0.26608 0.53548 0.19844
7 0.26575 0.53424 0.20002
8 0.26656 0.53321 0.20023
9 0.26678 0.53318 0.20005

10 0.26671 0.53332 0.19998
11 0.26666 0.53335 0.20000
12 0.26666 0.53334 0.20000
13 0.26667 0.53333 0.20000

ŵ(t =∞) 0.26667 0.53333 0.20000

with the constraint that ∑

i

wi(t =∞) = 1,

yielding as solution

ŵ(t =∞) =

4/15
8/15
3/15

 .

Table 9.1 demonstrates the convergence as a function of the number of iterations or time steps. We have
aftert-steps

ŵ(t) = Ŵtŵ(0),

with ŵ(0) the distribution att = 0 andŴ representing the transition probability matrix. We can always
expandŵ(0) in terms of the right eigenvectorŝv of Ŵ as

ŵ(0) =
∑

i

αiv̂i,

resulting in

ŵ(t) = Ŵtŵ(0) = Ŵt
∑

i

αiv̂i =
∑

i

λt
iαiv̂i,

with λi theith eigenvalue corresponding to the eigenvectorv̂i.
If we assume thatλ0 is the largest eigenvector we see that in the limitt → ∞, ŵ(t) becomes

proportional to the corresponding eigenvectorv̂0. This is our steady state or final distribution.

224

9.3 – Microscopic derivation of the diffusion equation

9.3.2 Continuous equations

Hitherto we have considered discretized versions of all equations. Our initial probability distribution
function was then given by

wi(0) = δi,0,

and its time-development after a given time step∆t = ǫ is

wi(t) =
∑

j

W (j → i)wj(t = 0).

The continuous analog towi(0) is
w(x)→ δ(x), (9.55)

where we now have generalized the one-dimensional positionx to a generic-dimensional vectorx. The
Kroeneckerδ function is replaced by theδ distribution functionδ(x) at t = 0.

The transition from a statej to a statei is now replaced by a transition to a state with positiony from
a state with positionx. The discrete sum of transition probabilities can then be replaced by an integral
and we obtain the new distribution at a timet+ ∆t as

w(y, t+ ∆t) =

∫
W (y,x,∆t)w(x, t)dx, (9.56)

and afterm time steps we have

w(y, t +m∆t) =

∫
W (y,x,m∆t)w(x, t)dx. (9.57)

When equilibrium is reached we have

w(y) =

∫
W (y,x, t)w(x)dx. (9.58)

We can solve the equation forw(y, t) by making a Fourier transform to momentum space. The PDF
w(x, t) is related to its Fourier transform̃w(k, t) through

w(x, t) =

∫ ∞

−∞
dk exp (ikx)w̃(k, t), (9.59)

and using the definition of theδ-function

δ(x) =
1

2π

∫ ∞

−∞
dk exp (ikx), (9.60)

we see that
w̃(k, 0) = 1/2π. (9.61)

We can then use the Fourier-transformed diffusion equation

∂w̃(k, t)

∂t
= −Dk2w̃(k, t), (9.62)

with the obvious solution

w̃(k, t) = w̃(k, 0) exp
[
−(Dk2t)

)
=

1

2π
exp

[
−(Dk2t)

]
. (9.63)

225

Random walks and the Metropolis algorithm

Using Eq. (9.59) we obtain

w(x, t) =

∫ ∞

−∞
dk exp [ikx]

1

2π
exp

[
−(Dk2t)

]
=

1√
4πDt

exp
[
−(x2/4Dt)

]
, (9.64)

with the normalization condition ∫ ∞

−∞
w(x, t)dx = 1. (9.65)

It is rather easy to verify by insertion that Eq. (9.64) is a solution of the diffusion equation. The solution
represents the probability of finding our random walker at position x at timet if the initial distribution
was placed atx = 0 at t = 0.

There is another interesting feature worth observing. The discrete transition probabilityW itself is
given by a binomial distribution, see Eq. (9.47). The results from the central limit theorem, see Sect. 8.2.2,
state that transition probability in the limitn→∞ converges to the normal distribution. It is then possible
to show that

W (il − jl, nǫ)→W (y,x,∆t) =
1√

4πD∆t
exp

[
−((y − x)2/4D∆t)

]
, (9.66)

and that it satisfies the normalization condition and is itself a solution to the diffusion equation.

9.3.3 ESKC equation and the Fokker-Planck equation

In preparation for spring 2010.

9.3.4 Numerical simulation

In the two previous subsections we have given evidence that aMarkov process actually yields in the
limit of infinitely many steps the diffusion equation. It links therefore in a physical intuitive way the
fundamental process of diffusion with random walks. It could therefore be of interest to visualize this
connection through a numerical experiment. We saw in the previous subsection that one possible solution
to the diffusion equation is given by a normal distribution.In addition, the transition rate for a given
number of steps develops from a binomial distribution into anormal distribution in the limit of infinitely
many steps. To achieve this we construct in addition a histogram which contains the number of times the
walker was in a particular positionx. This is given by the variableprobability, which is normalized in
the output function. We have omitted the initialization function, since this identical to program1.cpp or
program2.cpp of this chapter. The arrayprobability extends from−number_walksto +number_walkshttp://www.fys.uio.no/ompphys/p/programs/FYS3150/hapter09/pp/program2.pp
/∗

1−dim random walk program .
A wa lker makes s e v e r a l t r i a l s s t e p s w i th
a g i v e n number o f wa lks per t r i a l

∗ /
inc lude < ios t ream >
inc lude < fs t r eam >
inc lude < iomanip >
inc lude "lib.h"
us ing namespace s t d ;

/ / Func t i on t o read i n da ta from screen , no te c a l l by r e f e r e n ce

226

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter09/cpp/program2.cpp

9.3 – Microscopic derivation of the diffusion equation

vo id i n i t i a l i s e (i n t &, i n t &, double&) ;
/ / The Mc sampl ing f o r random walks
vo id mc_sampling (i n t , i n t , double , i n t ∗ , i n t ∗ , i n t ∗) ;
/ / p r i n t s t o s c r e e n t h e r e s u l t s o f t h e c a l c u l a t i o n s
vo id o u t p u t (i n t , i n t , i n t ∗ , i n t ∗ , i n t ∗) ;

i n t main ()
{

i n t m a x _ t r i a l s , number_walks ;
double m o v e _ p r o b a b i l i t y ;
/ / Read i n da ta
i n i t i a l i s e (m a x _ t r i a l s , number_walks , m o v e _ p r o b a b i l i t y) ;
i n t ∗wa lk_cumu la t i ve = new i n t [number_walks + 1] ;
i n t ∗wa lk2_cumu la t i ve =new i n t [number_walks + 1] ;
i n t ∗ p r o b a b i l i t y = new i n t [2∗ (number_walks +1)] ;
f o r (i n t walks = 1 ; walks <= number_walks ; walks ++) {

wa lk_cumu la t i ve [walks] = wa lk2_cumu la t i ve [walks] = 0 ;
}
f o r (i n t walks = 0 ; walks <= 2∗number_walks ; walks ++) {

p r o b a b i l i t y [walks] = 0 ;
} / / end i n i t i a l i z a t i o n o f v e c t o r s
/ / Do t h e mc sampl ing
mc_sampling (m a x _ t r i a l s , number_walks , move_p robab i l i ty ,

wa lk_cumu la t ive , wa lk2_cumula t ive , p r o b a b i l i t y) ;
/ / P r i n t ou t r e s u l t s
o u t p u t (m a x _ t r i a l s , number_walks , wa lk_cumu la t ive ,

wa lk2_cumula t ive , p r o b a b i l i t y) ;
d e l e t e [] wa l k_cumu la t i ve ; / / f r e e memory
d e l e t e [] wa l k2_cumu la t i ve ; d e l e t e [] p r o b a b i l i t y ;
re turn 0 ;

} / / end main f u n c t i o n

The output function contains now the normalization of the probability as well and writes this to its own
file.

vo id o u t p u t (i n t m a x _ t r i a l s , i n t number_walks ,
i n t ∗walk_cumu la t ive , i n t ∗walk2_cumula t ive , i n t ∗ p r o b a b i l i t y)

{
o f s t r e a m o f i l e ("testwalkers.dat") ;
o f s t r e a m p r o b f i l e ("probability.dat") ;
f o r (i n t i = 1 ; i <= number_walks ; i ++) {

double xave rage = wa lk_cumu la t i ve [i] / ((double) m a x _ t r i a l s) ;
double x2ave rage = wa lk2_cumu la t i ve [i] / ((double) m a x _ t r i a l s) ;
double v a r i a n c e = x2ave rage− xave rage∗ xave rage ;
o f i l e << s e t i o s f l a g s (i o s : : showpo in t | i o s : : u p p e r c a s e) ;
o f i l e << setw (6) << i ;
o f i l e << setw (1 5) << s e t p r e c i s i o n (8) << xave rage ;
o f i l e << setw (1 5) << s e t p r e c i s i o n (8) << v a r i a n c e << end l ;

}
o f i l e . c l o s e () ;
/ / f i n d norm o f p r o b a b i l i t y
double norm = 0 . ;
f o r (i n t i = −number_walks ; i <= number_walks ; i ++) {

227

Random walks and the Metropolis algorithm

norm += (double) p r o b a b i l i t y [i +number_walks] ;
}
/ / w r i t e p r o b a b i l i t y
f o r (i n t i = −number_walks ; i <= number_walks ; i ++) {

double h i s t o g r a m = p r o b a b i l i t y [i +number_walks] / norm ;
p r o b f i l e << s e t i o s f l a g s (i o s : : showpo in t | i o s : : u p p e r c a s e) ;
p r o b f i l e << setw (6) << i ;
p r o b f i l e << setw (1 5) << s e t p r e c i s i o n (8) << h i s t o g r a m << endl ;

}
p r o b f i l e . c l o s e () ;

} / / end o f f u n c t i o n o u t p u t

The sampling part is still done in the same function, but contains now the setup of a histogram containing
the number of times the walker visited a given positionx.

vo id mc_sampling (i n t m a x _ t r i a l s , i n t number_walks ,
double move_p robab i l i t y , i n t ∗walk_cumu la t ive ,
i n t ∗walk2_cumula t ive , i n t ∗ p r o b a b i l i t y)

{
long idum ;
idum=−1; / / i n i t i a l i s e random number g e n e r a t o r
f o r (i n t t r i a l =1 ; t r i a l <= m a x _ t r i a l s ; t r i a l ++) {

i n t p o s i t i o n = 0 ;
f o r (i n t walks = 1 ; walks <= number_walks ; walks ++) {

i f (ran0 (&idum) <= m o v e _ p r o b a b i l i t y) {
p o s i t i o n += 1 ;

}
e l s e {

p o s i t i o n −= 1 ;
}
wa lk_cumu la t i ve [walks] += p o s i t i o n ;
wa lk2_cumu la t i ve [walks] += p o s i t i o n∗ p o s i t i o n ;
p r o b a b i l i t y [p o s i t i o n +number_walks] += 1 ;

} / / end o f loop over wa lks
} / / end o f loop over t r i a l s

} / / end mc_sampl ing f u n c t i o n

Fig. 9.5 shows the resulting probability distribution after n steps In Fig. 9.5 we have plotted the probabil-
ity distribution function after a given number of time steps. Do you recognize the shape of the probabiliy
distributions?

9.4 Entropy and Equilibrium Features

We use this section to motivate, in a physically intuitive way, the importance of the ergodic hypothesis via
a discussion of how a Markovian process reaches an equilibrium situation after a given number of random
walks. It serves then purpose of bridging the gap between a Markovian process and our discussion of the
Metropolis algorithm in the next section.

To achieve this, we will use the program from the previous section, see programs/chapter9/program3.cpp
and introduce the concept of entropyS. We discuss the thermodynamical meaning of the entropy and
its link with the second law of thermodynamics in the next chapter. Here it will suffice to state that the
entropy is a measure of the disorder of the system, thus a system which is fully ordered and stays in its

228

9.4 – Entropy and Equilibrium Features

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

-20 -15 -10 -5 0 5 10 15 20

w(x, t)

steps x

10 steps

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

-40 -20 0 20 40

w(x, t)

steps x

100 steps

0

0.005

0.01

0.015

0.02

0.025

-40 -20 0 20 40

w(x, t)

steps x

1000 steps

Figure 9.5: Probability distribution for one walker after 10, 100 and 1000 steps.
229

Random walks and the Metropolis algorithm

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8

S

Time steps in units of10i

Figure 9.6: EntropySj as function of number of time stepsj for a random walk in one dimension. Here
we have used 100 walkers on a lattice of length fromL = −50 toL = 50 employing periodic boundary
conditions meaning that if a walker reaches the pointx = L+ 1 it is shifted tox = −L and ifx = −L
it is shifted tox = L.

fundamental state (ground state) has zero entropy, while a disordered system has a large and nonzero
entropy.

The definition of the entropyS (as a dimensionless quantity here) is

S = −
∑

i

wiln(wi), (9.67)

wherewi is the probability of finding our system in a statei. For our one-dimensional random walk case
discussed in the previous sections it represents the probability for being at positioni = i∆x after a given
number of time steps. In order to test this, we start with the previous program but assume now that we
haveN random walkers ati = 0 andt = 0 and let these random walkers diffuse as function of time. This
means simply an additional loop. We compute then, as in the previous program example, the probability
distribution forN walkers after a given number of stepsi alongx and time stepsj. We can then compute
an entropySj for a given number of time steps by summing over all probabilities i. We show this in
Fig. 9.6. The code used to compute these results is in programs/chapter9/program4.cpp. Here we have
used 100 walkers on a lattice of length fromL = −50 toL = 50 employing periodic boundary conditions
meaning that if a walker reaches the pointx = L it is shifted tox = −L and ifx = −L it is shifted to
x = L. We see from Fig. 9.6 that for small time steps, where all particlesN are in the same position or
close to the initial position, the entropy is very small, reflecting the fact that we have an ordered state. As
time elapses, the random walkers spread out in space (here inone dimension) and the entropy increases
as there are more states, that is positions accesible to the system. We say that the system shows an
increased degree of disorder. After several time steps, we see that the entropy reaches a constant value, a
situation called a steady state. This signals that the system has reached its equilibrium situation and that
the random walkers spread out to occupy all possible available states. At equilibrium it means thus that
all states are equally probable and this is not baked into anydynamical equations such as Newton’s law

230

9.5 – The Metropolis algorithm and detailed balance

of motion. It occurs because the system is allowed to exploreall possibilities. An important hypothesis,
which has never been proven rigorously but for certain systems, is the ergodic hypothesis which states
that in equilibrium all available states of a closed system have equal probability. This hypothesis states
also that if we are able to simulate long enough, then one should be able to trace through all possible
paths in the space of available states to reach the equilibrium situation. Our Markov process should be
able to reach any state of the system from any other state if werun for long enough. Markov processes
fullfil the requirement of ergodicity since all new steps areindependent of the previous ones and the
random walkers can thus explore with equal probability all possible positions. In general however, we
know that physical processes are not independent of each other. The relation between ergodicity and
physical systems is an unsettled topic.

The Metropolis algorithm which we discuss in the next section is based on a Markovian process and
fullfils the requirement of ergodicity. In addition, in the next section we impose the criterion of detailed
balance.

9.5 The Metropolis algorithm and detailed balance

Let us recapitulate some of our results about Markov chains and random walks.

– The time development of our PDFw(t), after one time-step fromt = 0 is given by

wi(t = ǫ) = W (j → i)wj(t = 0).

This equation represents the discretized time-development of an original PDF. We can rewrite this
as a

wi(t = ǫ) = Wijwj(t = 0).

with the transition matrixW for a random walk given by

Wij(ǫ) = W (il − jl, ǫ) =

{
1
2 |i− j| = 1
0 else

We callWij for the transition probability and we represent it as a matrix.

– BothW andw represent probabilities and they have to be normalized, meaning that that at each
time step we have ∑

i

wi(t) = 1,

and ∑

j

W (j → i) = 1.

The further constraints are0 ≤Wij ≤ 1 and0 ≤ wj ≤ 1.

– We can thus write the action ofW as

wi(t+ 1) =
∑

j

Wijwj(t), (9.68)

or as vector-matrix relation
ŵ(t+ 1) = Ŵŵ(t), (9.69)

231

Random walks and the Metropolis algorithm

and if we have that||ŵ(t+ 1)− ŵ(t)|| → 0, we say that we have reached the most likely state of
the system, the so-called steady state or equilibrium state. Another way of phrasing this is

w(t =∞) = Ww(t =∞). (9.70)

An important condition we require that our Markov chain should satisfy is that of detailed balance. In
statistical physics this condition ensures that it is e.g.,the Boltzmann distribution which is generated
when equilibrium is reached.

To derive the conditions for equilibrium, we start from the so-called Master equation, which relates
the temporal dependence of a PDFwi(t) to various transition rates. The equation is given as

dwi(t)

dt
=
∑

j

[W (j → i)wj −W (i→ j)wi] , (9.71)

which simply states that the rate at which the systems moves from a statej to a final statei (the first
term on the right-hand side of the last equation) is balancedby the rate at which the system undergoes
transitions from the statei to a statej (the second term). If we have reached the so-called steady state, then
the temporal development is zero since we are now satisfyingEq. (9.5). This means that in equilibrium
we have

dwi(t)

dt
= 0. (9.72)

The definition for being in equilibrium is thus that the ratesat which a system makes a transition to or
from a given statei have to be equal, that is

∑

j

W (j → i)wj =
∑

j

W (i→ j)wi. (9.73)

We see that this is compatible with our definition of the new probability if we sum overj on the right-hand
side of the last equation and use the fact that our transitionprobability is normalized, that is

∑
j W (i→

j) = 1, which yields

wi =
∑

j

W (j → i)wj .

However, the condition that the rates should equal each other is in general not sufficient to guarantee that
we, after many simulations, generate the correct distribution. We may risk to end up with so-called cyclic
solutions. To avoid this we therefore introduce an additional condition, namely that of detailed balance

W (j → i)wj = W (i→ j)wi. (9.74)

At equilibrium detailed balance gives thus

W (j → i)

W (i→ j)
=
wi

wj
. (9.75)

We introduce now the Boltzmann distribution

wi =
exp (−β(Ei))

Z
, (9.76)

232

9.5 – The Metropolis algorithm and detailed balance

which states that the probability of finding the system in a stateiwith energyEi at an inverse temperature
β = 1/kBT is wi ∝ exp (−β(Ei)). The denominatorZ is a normalization constant which ensures
that the sum of all probabilities is normalized to one. It is defined as the sum of probabilities over all
microstatesj of the system

Z =
∑

j

exp (−β(Ei)). (9.77)

From the partition function we can in principle generate allinteresting quantities for a given system in
equilibrium with its surroundings at a temperatureT . This is demonstrated in the next chapter.

With the probability distribution given by the Boltzmann distribution we are now in a position where
we can generate expectation values for a given variableA through the definition

〈A〉 =
∑

j

Ajwj =

∑
j Aj exp (−β(Ej)

Z
. (9.78)

In general, most systems have an infinity of microstates making thereby the computation ofZ practi-
cally impossible and a brute force Monte Carlo calculation over a given number of randomly selected
microstates may therefore not yield those microstates which are important at equilibrium. To select the
most important contributions we need to use the condition for detailed balance. Since this is just given
by the ratios of probabilities, we never need to evaluate thepartition functionZ. For the Boltzmann
distribution, detailed balance results in

wi

wj
= exp (−β(Ei − Ej)). (9.79)

Let us now specialize to a system whose energy is defined by theorientation of single spins. Consider
the statei, with given energyEi represented by the followingN spins

↑ ↑ ↑ . . . ↑ ↓ ↑ . . . ↑ ↓
1 2 3 . . . k − 1 k k + 1 . . . N − 1 N

We are interested in the transition with one single spinflip to a new statej with energyEj

↑ ↑ ↑ . . . ↑ ↑ ↑ . . . ↑ ↓
1 2 3 . . . k − 1 k k + 1 . . . N − 1 N

This change from one microstatei (or spin configuration) to another microstatej is the configuration
space analogue to a random walk on a lattice. Instead of jumping from one place to another in space, we
’jump’ from one microstate to another.

However, the selection of states has to generate a final distribution which is the Boltzmann distribu-
tion. This is again the same we saw for a random walker, for thediscrete case we had always a binomial
distribution, whereas for the continuous case we had a normal distribution. The way we sample configu-
rations should result, when equilibrium is established, inthe Boltzmann distribution. Else, our algorithm
for selecting microstates has to be wrong.

Since we do not know the analytic form of the transition rate,we are free to model it as

W (i→ j) = g(i→ j)A(i→ j), (9.80)

whereg is a selection probability whileA is the probability for accepting a move. It is also called the
acceptance ratio. The selection probability should be samefor all possible spin orientations, namely

g(i→ j) =
1

N
. (9.81)

233

Random walks and the Metropolis algorithm

With detailed balance this gives

g(j → i)A(j → i)

g(i→ j)A(i→ j)
= exp (−β(Ei − Ej)), (9.82)

but since the selection ratio is the same for both transitions, we have

A(j → i)

A(i→ j)
= exp (−β(Ei − Ej)) (9.83)

In general, we are looking for those spin orientations whichcorrespond to the average energy at equilib-
rium.

We are in this case interested in a new stateEj whose energy is lower thanEi, viz.,∆E = Ej−Ei ≤
0. A simple test would then be to accept only those microstateswhich lower the energy. Suppose we have
ten microstates with energyE0 ≤ E1 ≤ E2 ≤ E3 ≤ · · · ≤ E9. Our desired energy isE0. At a given
temperatureT we start our simulation by randomly choosing stateE9. Flipping spins we may then find
a path fromE9 → E8 → E7 · · · → E1 → E0. This would however lead to biased statistical averages
since it would violate the ergodic hypothesis discussed in the previous section. This principle states that
it should be possible for any Markov process to reach every possible state of the system from any starting
point if the simulations is carried out for a long enough time.

Any state in a Boltzmann distribution has a probability different from zero and if such a state cannot
be reached from a given starting point, then the system is notergodic. This means that another possible
path toE0 could beE9 → E7 → E8 · · · → E9 → E5 → E0 and so forth. Even though such a path could
have a negligible probability it is still a possibility, andif we simulate long enough it should be included
in our computation of an expectation value.

Thus, we require that our algorithm should satisfy the principle of detailed balance and be ergodic.
The problem with our ratio

A(j → i)

A(i→ j)
= exp (−β(Ei −Ej)),

is that obviously do not know the acceptance probability. This equation only specifies the ratio of pairs of
probabilities. Normally we want an algorithm which is as efficient as possible and maximizes the number
of accepted moves. One possibility is given by the so-calledMetropolis algorithm. Here we take into
account the fact that the largest value the acceptance probability can take is one. We adjust thereafter the
other acceptance probability to this constraint.

To understand this better, assume that we have two energies,Ei andEj, with Ei < Ej . This means
that the largest acceptance value must beA(j → i) since we move to a state with lower energy. The trick
then is to fix this value to one. This means that the other acceptance probability has to be

A(i→ j) = exp (−β(Ej − Ei)).

One possible way to encode this equation reads

A(j → i) =

{
exp (−β(Ei −Ej)) Ei − Ej > 0

1 else
(9.84)

This means that if we move to a state with a lower energy, we always accept this move with acceptance
probabilityA(j → i) = 1. If the energy is higher, we need to check this acceptance probability with
the ratio between the probabilities from our PDF. From a practical point view, this ratio is compared with
a random number. If the ratio is smaller than a given random number we accept the move to a higher
energy, else we stay in the same state.

234

9.5 – The Metropolis algorithm and detailed balance

This algorithm satisfies the condition for detailed balanceand ergodicity. It is implemented as fol-
lows:

– Establish an initial energyEb

– Do a random change of this initial state by e.g., flipping an individual spin. This new state has
energyEt. Compute then∆E = Et − Eb

– If ∆E ≤ 0 accept the new configuration.

– If ∆E > 0, computew = e−(β∆E).

– Comparew with a random numberr. If r ≤ w accept, else keep the old configuration.

– Compute the terms in the sums
∑
Asws.

– Repeat the above steps in order to have a large enough number of microstates

– For a given number of MC cycles, compute then expectation values.

The application of this algorithm will be discussed in detail in the next two chapters.

9.5.1 Brief summary

The Monte Carlo approach, combined with the theory for Markov chains can be summarized as follows:
A Markov chain Monte Carlo method for the simulation of a distributionw is any method producing an
ergodic Markov chain of eventsx whose stationary distribution isw. The Metropolis algorithm can be
phrased as

– Generate an initial valuex(i).

– Generate a trial valueyt with probabilityf(yt|x(i)).

– Take a new value

x(i+1) =

{
yt with probability = ρ(x(i), yt)

x(i) with probability = 1− ρ(x(i), yt)

– We have defined

ρ(x, y) = min

{
w(y)f(x|y)
w(x)f(y|x) , 1

}
.

The distributionf is often called the instrumental (we will relate it to the jumping of a walker)
or proposal distribution (or acceptance) whileρ is the Metropolis-Hastings acceptance probability.
Whenf(y|x) is symmetric it is just called the Metropolis algorithm.

Using the Metropolis algorithm we can in turn set up the general calculational scheme as follows:

– Establish an initial state with some selected features to test.

– Do a random change of this initial state.

– Compute the Metropolis-Hastings acceptance probabilityρ

– Compareρ with a random numberr. If r ≤ ρ accept, else keep the old configuration.

– Compute the terms needed to obtain expectations values.

– Repeat the above steps in order to have as good statistics as possible.

– For a given number of MC cycles, compute then the final expectation values.

235

Random walks and the Metropolis algorithm

9.6 Exercises and projects

Exercise 9.1: Two dimensional randow walk

Extend the first program discussed in this chapter to a two-dimensional random walk with probability
1/4 for a move to the right, left, up or down. Compute the variancefor both thex andy directions and
the total variance.

Exercise 9.1: Two dimensional randow walk

Use the second program to fit the computed probability distribution with a normal distribution using your
calculated values ofσ2 and〈x〉.

Project 9.1: simulation of the Boltzmann distribution

In this project the aim is to show that the Metropolis algorithm generates the Boltzmann distribution

P (β) =
e−βE

Z
, (9.85)

with β = 1/kT being the inverse temperature,E is the energy of the system andZ is the partition
function. The only functions you will need are those to generate random numbers.

We are going to study one single particle in equilibrium withits surroundings, the latter modeled via
a large heat bath with temperatureT .

The model used to describe this particle is that of an ideal gas inonedimension and with velocity−v
or v. We are interested in findingP (v)dv, which expresses the probability for finding the system witha
given velocityv ∈ [v, v + dv]. The energy for this one-dimensional system is

E =
1

2
kT =

1

2
v2, (9.86)

with massm = 1. In order to simulate the Boltzmann distribution, your program should contain the
following ingredients:

– Reads in the temperatureT , the number of Monte Carlo cycles, and the initial velocity.You should
also read in the change in velocityδv used in every Monte Carlo step. Let the temperature have
dimension energy.

– Thereafter you choose a maximum velocity given by e.g.,vmax ∼ 10
√
T . Then you construct

a velocity interval defined byvmax and divided it in small intervals throughvmax/N , with N ∼
100 − 1000. For each of these intervals your task is to find out how many times a given velocity
during the Monte Carlo sampling appears in each specific interval.

– The number of times a given velocity appears in a specific interval is used to construct a histogram
representingP (v)dv. To achieve this you should construct a vectorP [N] which contains the
number of times a given velocity appears in the subintervalv, v + dv.

In order to find the number of velocities appearing in each interval we will employ the Metropolis
algorithm. A pseudocode for this is

f o r (m o n t e c a r l o _ c y c l e s =1 ; Max_cyc les ; m o n t e c a r l o _ c y c l e s ++) {
. . .

236

9.6 – Exercises and projects

/ / change speed as f u n c t i o n o f d e l t a v
v_change = (2∗ ran1 (&idum) −1)∗ d e l t a _ v ;
v_new = v_o ld+v_change ;
/ / energy change
d e l t a _ E = 0 . 5∗ (v_new∗v_new − v_o ld∗ v_o ld) ;
.
/ / M e t r o p o l i s a l g o r i t h m b e g i n s here

i f (ran1 (&idum) <= exp(−b e t a∗ d e l t a _ E)) {
a c c e p t _ s t e p = a c c e p t _ s t e p + 1 ;
v_o ld = v_new ;
.

}
/ / t h e r e a f t e r we must f i l l i n P[N] as a f u n c t i o n o f
/ / t h e new speed

P [?] = . . .

/ / upgrade mean v e l o c i t y , energy and v a r i a n c e
. . .

}

a) Make your own algorithm which sets up the histogramP (v)dv, find the mean velocity, the energy,
the energy variance and the number of accepted steps for a given temperature. Study the change
of the number of accepted moves as a function ofδv. Compare the final energy with the analytic
resultE = kT/2 for one dimension. UseT = 4 and set the intial velocity to zero, i.e.,v0 = 0.
Try different values ofδv. A possible start value isδv = 4. Check the final result for the energy as
a function of the number of Monte Carlo cycles.

It can be useful to check your results against the analytic solutions. These can be obtained by
computing the partition function of the system of interest.In our case it is given by

Z =

∫ +∞

−∞
e−βv2/2dv =

√
2πβ−1/2

From the partition function we can in turn compute the expectation value of the mean velocity and
the variance. The mean velocity is given by

〈v〉 =

∫ +∞

−∞
ve−βv2/2dv = 0

The above expression holds as the integrand is an odd function of v. The mean energy and energy
variance can be easily calculated. The expressions for〈E〉 andσE assume the following form:

〈E〉 =

∫ +∞

−∞

v2

2
e−βv2/2dv = − 1

Z

∂Z

∂β
=

1

2
β−1 =

1

2
T

〈E2〉 =

∫ +∞

−∞

v4

4
e−βv2/2dv =

1

Z

∂2Z

∂β2
=

3

4
β−2 =

3

4
T 2

and

σE = 〈E2〉 − 〈E〉2 =
1

2
T 2

an expected results. It is useful to compare these results with those from your program.

b) Make thereafter a plot ofln(P (v)) as function ofE and see if you get a straight line. Comment
the result.

237

Random walks and the Metropolis algorithm

Project 9.2: Random Walk in two dimensions

For this project you can build upon program programs/chapter9/program2.cpp (or the f90 version). You
will need to compute the expectation values〈x(N)〉, 〈y(N)〉 and

〈∆R2(N)〉 = 〈x2(N)〉 + 〈y2(N)〉 − 〈x(N)〉2 − 〈y(N)〉2

whereN is the number of time steps.

a) Enumerate all random walks on a square lattice forN = 2 and obtain exact results for〈x(N)〉,
〈y(N)〉 and〈∆R2(N)〉. Verify your results by comparing your Monte Carlo simulations with the
exact results. Assume that all four directions are equally probable.

b) Do a Monte Carlo simulation to estimate〈∆R2(N)〉 forN = 10, 40, 60 and100 using a reasonable
number of trials for eachN . Assume that we have the asymptotic behavior

〈∆R2(N)〉 ∼ N2ν ,

and estimate the exponentν from a log-log plot of〈∆R2(N)〉 versusN . If ν ≈ 1/2, estimate the
magnutide of the self-diffusion coefficientD given by

〈∆R2(N)〉 ∼ 2dDN,

with d the dimension of the system.

c) Compute now the quantities〈x(N)〉, 〈y(N)〉, 〈∆R2(N)〉 and

〈R2(N)〉 = 〈x2(N)〉 + 〈y2(N)〉,

for the same values ofN as in the previous case but now with the step probabilities2/3, 1/6,
1/6 and1/6 corresponding to right, left, up and down, respectively. This choice corresponds to
a biased random walk with a drift to the right. What is the interpretation of〈x(N)〉 in this case?
What is the dependence of〈∆R2(N)〉 onN and does〈R2(N)〉 depend simply onN?

d) Consider now a random walk that starts at a site that is a distancey = h above a horisontal line
(ground). If the probability of a step down towards the ground is bigger than the probability of a
step up, we expect that the walker will eventually reach a horisontal line. This walk is a simple
model of the fall of a rain drop in the presence of a random breeze. Assume that the probabilities are
0.1, 0.6, 0, 15 and0.15 corresponding to up, down, right and left, respectively. Doa Monte Carlo
simulation to determine the mean timeτ for the walker to reach any site on the line atx = 0. Find
the functional dependence ofτ onh. Can you define a velocity in the vertical direction? Since the
walker does not always move vertically, it suffers a net displacement∆x in the horizontal direction.
Compute〈∆x2〉 and find its dependence onh andτ .

238

