Chapter 9

Random walks and the Metropolis
algorithm

Nel mezzo del cammin di nostra vita, mi ritrovai per una selsaura, ché la diritta via
era smarrita. (Divina Commedia, Inferno, Canto I, D&pte Alighieri

The way that can be spoken of is not the constant way. (Tao TegCBook I, 1.1} .ao
Tzu

9.1 Motivation

In the previous chapter we discussed technical aspects nfeMgarlo integration such as algorithms for
generating random numbers and integration of multidimmraiintegrals. The latter topic served to il-
lustrate two key topics in Monte Carlo simulations, namgby@per selection of variables and importance
sampling. An intelligent selection of variables, good sngptechnigues and guiding functions can be
crucial for the outcome of our Monte Carlo simulations. Expdes of this will be demonstrated in the
chapters on statistical and quantum physics applicatidese we make a detour from this main area of
applications. The focus is on diffusion and random walkse fdtionale for this is that the tricky part of
an actual Monte Carlo simulation resides in the appropsatection of random states, and thereby num-
bers, according to the probability distribution (PDF) ahtha With appropriate there is however much
more to the picture than meets the eye.

Suppose our PDF is given by the well-known normal distrimutiThink of for example the velocity
distribution of an ideal gas in a container. In our simulasiove could then accept or reject new moves
with a probability proportional to the normal distributiohis would parallel our example on the sixth
dimensional integral in the previous chapter. Howeverhia tase we would end up rejecting basically
all moves since the probabilities are exponentially snraliniost cases. The result would be that we
barely moved from the initial position. Our statistical eages would then be significantly biased and
most likely not very reliable.

Instead, all Monte Carlo schemes used are based on Markaegs®s in order to generate new
random states. A Markov process is a random walk with a salgmtobability for making a move. The
new move is independent of the previous history of the sysfEme Markov process is used repeatedly
in Monte Carlo simulations in order to generate new randatest The reason for choosing a Markov
process is that when it is run for a long enough time startiith & random state, we will eventually
reach the most likely state of the system. In thermodynantiiis means that after a certain number of

211

Random walks and the Metropolis algorithm

Markov processes we reach an equilibrium distribution.sThimicks the way a real system reaches its
most likely state at a given temperature of the surroundings

To reach this distribution, the Markov process needs to diveyimportant conditions, that of er-
godicity and detailed balance. These conditions imposstwaints on our algorithms for accepting or
rejecting new random states. The Metropolis algorithmudised here abides to both these constraints
and is discussed in more detail in Secfiod 9.5. The Metre@orithm is widely used in Monte Carlo
simulations of physical systems and the understanding wsifs within the interpretation of random
walks and Markov processes. However, before we do that veeisisthe intimate link between random
walks, Markov processes and the diffusion equation. InieefL3 we show that a Markov process is
nothing but the discretized version of the diffusion equatiDiffusion and random walks are discussed
from a more experimental point of view in the next sectionefBhwe show also a simple algorithm for
random walks and discuss eventual physical implications.ewd this chapter with a discussion of one
of the most used algorithms for generating new steps, natheliletropolis algorithm. This algorithm,
which is based on Markovian random walks satisfies both thedicity and detailed balance require-
ments and is widely in applications of Monte Carlo simulasion the natural sciences. The Metropolis
algorithm is used in our studies of phase transitions inssiizdl physics and the simulations of quantum
mechanical systems.

9.2 Diffusion equation and random walks

Physical systems subject to random influences from the armb#ve a long history, dating back to the
famous experiments by the British Botanist R. Brown on podiedifferent plants dispersed in water. This
lead to the famous concept of Brownian motion. In generaglisinactions of any system exhibit the same
behavior when exposed to random fluctuations of the mediultihodgh apparently non-deterministic,
the rules obeyed by such Brownian systems are laid out will@rframework of diffusion and Markov
chains. The fundamental works on Brownian motion were agaxl by A. Einstein at the turn of the last
century.

Diffusion and the diffusion equation are central topics @tfbPhysics and Mathematics, and their
ranges of applicability span from stellar dynamics to ttudion of particles governed by Schrédinger’s
equation. The latter is, for a free particle, nothing butdifiision equation in complex time!

Let us consider the one-dimensional diffusion equation. sStiely a large ensemble of particles
performing Brownian motion along the-axis. There is no interaction between the particles.

We definew(z, t)dx as the probability of finding a given number of particles inraterval of length
dxinz € [z, x+dz] atatimet. This quantity is our probability distribution functionfF). The quantum
physics equivalent ofv(z,t) is the wave function itself. This diffusion interpretatiof Schrodinger’s
equation forms the starting point for diffusion Monte Cadchniques in quantum physics.

Good overview texts are the books of Robert and Casella anakdés, see Refs. [46, 51].

9.2.1 Diffusion equation

From experiment there are strong indications that the flugaoficles;j(z,t), viz., the number of par-
ticles passinge at a timet is proportional to the gradient afi(x,¢). This proportionality is expressed
mathematically through

ow(z,t)

jast) = D=0, 9.1

212

9.2 — Diffusion equation and random walks

where D is the so-called diffusion constant, with dimensionaligndti? per time. If the number of
particles is conserved, we have the continuity equation

dj(z,t) _ Ow(x,?)

Oz ot ’

(9.2)

which leads to
ow(w,t) Dazw(aj, t)
ot ox?
which is the diffusion equation in one dimension.
With the probability distribution functiom (x, t)dz we can use the results from the previous chapter

to compute expectation values such as the mean distance

(9.3)

(x(t)) = /_OO zw(x,t)dx, 9.4)
or o
(2*(t)) :/_ z2w(z, t)dz, (9.5)

which allows for the computation of the variangg = (x2(t))— (z(t))2. Note well that these expectation
values are time-dependent. In a similar way we can also defipectation values of functionqz, t) as

(f(x,t)) = /_OO f(z, t)w(z, t)dz. (9.6)

Sincew(z,t) is now treated as a PDF, it needs to obey the same criterissagsdied in the previous
chapter. However, the normalization condition

/OO w(z,t)dx =1 (9.7)

imposes significant constraints arfx, t). These are

0"w(z,t)

w(z = £o0,t) =0 B |z=a00

=0, (9.8)

implying that when we study the time-derivatiggx(t)) /0t, we obtain after integration by parts and

using Eq.[[@B)
ox) [Ow(z,t), © Jw(x,t)
leading to
ox) . Ow(x,t) B * Jw(z,t)
BT = Dx gy lo=-too D/_OO g dx, (9.10)
implying that
ox) _
o 0. (9.112)

This means in turn thatr) is independent of time. If we choose the initial positioft = 0) = 0,
the average displacemefit) = 0. If we link this discussion to a random walk in one dimensiathw
equal probability of jumping to the left or right and with amitial positionxz = 0, then our probability

213

Random walks and the Metropolis algorithm

distribution remains centered aroufx} = 0 as function of time. However, the variance is not necessaril

0. Consider first)
O{x*) Zﬁw(t) OJw(zx,t)
T = Dz pe lo=too — 2D/ o ——~duz, (9.12)

where we have performed an integration by parts as we di@é—fer A further integration by parts results
in

a<$2> 00
5 = —Dzw(z,t)|z=t00 + 2D w(x,t)dr = 2D, (9.13)
leading to
(x*) = 2Dt, (9.14)
and the variance as
(z?) — () = 2Dt. (9.15)

The root mean square displacement after a tiisghen

V(x?) — ()2 = V2Dt. (9.16)

This should be contrasted to the displacement of a freecpaxtiith initial velocity vg. In that case the
distance from the initial position after a timés x(¢) = vt whereas for a diffusion process the root mean
square value i/ (z?) — o v/t. Since diffusion is strongly linked with random walks, weutthsay
that a random walker escapes much more slowly from the rsgigpidint than would a free particle. We
can vizualize the above in the following figure. In Hig.]9.1 khave assumed that our distribution is given
by a normal distribution with variancg? = 2Dt, centered at = 0. The distribution reads

x2

1
= exp (——
VAn Dt P 4Dt

Atatimet = 2s the new variance i8> = 4Ds, implying that the root mean square valug/igr?) — (z)? =
2v/D. At a further timet = 8 we have,/(z2) — (z)2 = 4v/D. While time has elapsed by a factor of
4, the root mean square has only changed by a factor of 2.[Higdémonstrates the spreadout of the
distribution as time elapses. A typical example can be tffasibn of gas molecules in a container or
the distribution of cream in a cup of coffee. In both cases areassume that the the initial distribution
is represented by a normal distribution.

w(zx, t)dx)dx. (9.17)

9.2.2 Random walks

Consider now a random walker in one dimension, with prolitgb®® of moving to the right and. for
moving to the left. Att = 0 we place the walker at = 0, as indicated in Fid.912. The walker can
then jump, with the above probabilities, either to the laftamthe right for each time step. Note that
in principle we could also have the possibility that the vealkemains in the same position. This is not
implemented in this example. Every step has len§jth= [. Time is discretized and we have a jump
either to the left or to the right at every time step. Let us m@sume that we have equal probabilities for
jumping to the left or to the right, i.el, = R = 1/2. The average displacement aftetime steps is

=> Az; =0 Az, = +l, (9.18)

214

9.2 — Diffusion equation and random walks

0.2
0.18 -
0.16 -
0.14 -
0.12 -
w(zx,t)dx0.1 -
0.08 -
0.06 -
0.04 -
0.02 -

-10 10

Figure 9.1: Time development of a normal distribution witirignces? = 2Dt and withD = 1m?/s.
The solid line represents the distributiontat 2s while the dotted line stands for= 8s.

-3l -2 —l z=0 l 2l 3l

Figure 9.2: One-dimensional walker which can jump eithethto left or to the right. Every step has
lengthAxz = 1.

215

Random walks and the Metropolis algorithm

since we have an equal probability of jumping either to ttiedeto right. The value ofz(n)?) is
(z(n)?) = (Z A;L"Z-) S Az | =) A+ AziAx; =1n. (9.19)
i J @ 7]

For many enough steps the non-diagonal contribution is

N
> AxiAx; =0,y (9.20)
i#j
sinceAx; ; = /. The variance is then
(x(n)?) — (z(n))? = I*n. (9.22)

It is also rather straightforward to compute the variancelfez R. The result is
(x(n)?) — (z(n))? = 4LRIn. (9.22)

In Eq. (3.21) the variable represents the number of time steps. If we define ¢/At, we can then
couple the variance result from a random walk in one dimensiih the variance from the diffusion
equation of Eq.[{3.15) by defining the diffusion constant as

l2

In the next section we show in detail that this is the case.

The program below demonstrates the simplicity of the omeedisional random walk algorithm. Itis
straightforward to extend this program to two or three disi@ms as well. The input is the number of time
steps, the probability for a move to the left or to the righd #me total number of Monte Carlo samples. It
computes the average displacement and the variance foandem walker for a given number of Monte
Carlo samples. Each sample is thus to be considered as oaegregpt with a given number of walks.
The interesting part of the algorithm is described in thecfiom mc_sampling The other functions read
or write the results from screen or file and are similar incdtice to programs discussed previously. The
main program reads the name of the output file from screenetsdip the arrays containing the walker’s
position after a given number of steps. The correspondingram for a two-dimensional random walk
(not listed in the main text) is found under programs/ch&apeogram?2.cpp

D (9.23)

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter09/cpp/programl . cpp

/%
1-dim random walk program.
A walker makes several trials steps with
a given number of walks per trial

*/

#include <iostream >

#include <fstream >

#include <iomanip>

#include "1ib.h"

using namespace std;

// Function to read in data from screen, note call by referenc

216

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter09/cpp/program1.cpp

9.2 — Diffusion equation and random walks

void initialise (int&, int&, double&) ;

[/l The Mc sampling for random walks

void mc_sampling(nt, int, double, int x, int x);

/I prints to screen the results of the calculations
void output(int, int, int x, int x);

int main()
{
int max_trials, number_walks;
double move_probability;
/I Read in data
initialise (max_trials , number_walks, move_probability;
int xwalk_cumulative =new int [number_walks+1];
int xwalk2_cumulative =new int [number_walks+1];
for (int walks = 1; walks <= number_walks; walks++){
walk_cumulative[walks] = walk2_cumulative[walks] = O0;
} // end initialization of vectors
/I Do the mc sampling
mc_sampling (max_trials , number_walks, move_ probalyiljt
walk_cumulative , walk2_cumulative);
/1l Print out results
output(max_trials , number_walks, walk_cumulative ,
walk2 cumulative);
delete [] walk_cumulative; // free memory
delete [] walk2_cumulative;
return O;
} // end main function

The input and output functions are

void initialise (int& max_trials, int& number_walks, double& move_ probability

)

cout << "Number of Monte Carlo trials =";
cin >> max_trials;
cout << "Number of attempted walks=",;
cin >> number_walks;
cout << "Move probability=";
cin >> move_probability;
} // end of function initialise

void output(int max_trials, int number_walks,
int xwalk_cumulative , int xwalk2_cumulative)
{

ofstream ofile ("testwalkers.dat");

for(int i = 1; i <= number_walks; i++){
double xaverage = walk_cumulative[i]/(double) max_trials);
double x2average = walk2_ cumulative[i]/(double) max_trials);
double variance = x2average xaveragexaverage;
ofile << setiosflags(ios::showpoint | ios::uppercase);
ofile << setw(6) << i;
ofile << setw(15) << setprecision (8) << xaverage;

217

Random walks and the Metropolis algorithm

ofile << setw(15) << setprecision(8) << variance << endl;

ofile.close ();
} // end of function output

The algorithm is in the functiomc_samplingand tests the probability of moving to the left or to the right
by generating a random number.

void mc_sampling (nt max_trials , int number_walks,
double move_probability , int xwalk_cumulative ,
int xwalk2_cumulative)
{
long idum;
idum=—1; // initialise random number generator
for (int trial=1; trial <= max_trials; trial++){
int position = 0;
for (int walks = 1; walks <= number_walks; walks++){
if (ran0(&idum) <= move_probability) {
position += 1;
}

else {
position —= 1;
}
walk _cumulative[walks] += position;
walk2 cumulative[walks] += positiorposition;
} /1 end of loop over walks
} // end of loop over trials
} /1 end mc_sampling function

Fig.[@.3 shows that the variance increases linearly asiimctf the number of time steps, as expected
from the analytic results. Similarly, the mean displacenieirig.[9.4 oscillates around zero.

9.3 Microscopic derivation of the diffusion equation

When solving partial differential equations such as thiudibn equation numerically, the derivatives are
always discretized. Recalling our discussions from Chdifiteve can rewrite the time derivative as

ow(z,t) w(i,n+1)—w(i,n)

ot At ’ (9.24)
whereas the gradient is approximated as
0w (z,t) w(i+1,n) +w(i — 1,n) — 2w(i,n)

D "~ =~ D : : : 9.25
Ox? (Az)? ’ (9-25)

resulting in the discretized diffusion equation

w(i,n+1)—w(,n) _wi@+1n)+w(i—1n)—2w(i,n)

A7 =D (An)? , (9.26)

wheren represents a given time step analstep in thes-direction. We will come back to the solution of
such equations in our chapter on partial differential eiguat see Chapt&€ril5. The aim here is to show

218

9.3 — Microscopic derivation of the diffusion equation

100 =

80 -

60 - _

E | | | |
0 20 40 60 80 100

Time steps ¢

Figure 9.3: Time development of for a random walker. 100000 Monte Carlo samples were usédd wit
the function ranl and a seed setio.

0.04 |
0.02 | |
(x(t)) Of B
-0.02 |
-0.04 |
| | | |
0 20 40 60 80 100

Time steps ¢

Figure 9.4: Time development @¢&(¢)) for a random walker. 100000 Monte Carlo samples were used
with the function ranl and a seed sett0.

219

Random walks and the Metropolis algorithm

that we can derive the discretized diffusion equation froifeakov process and thereby demonstrate the
close connection between the important physical procdfssidin and random walks. Random walks
allow for an intuitive way of picturing the process of diffas. In addition, as demonstrated in the
previous section, it is easy to simulate a random walk.

9.3.1 Discretized diffusion equation and Markov chains

A Markov process allows in principle for a microscopic dgstton of Brownian motion. As with the
random walk studied in the previous section, we considerticfiawhich moves along the-axis in the
form of a series of jumps with step lengthz = [. Time and space are discretized and the subsequent
moves are statistically indenpendent, i.e., the new moper#s only on the previous step and not on the
results from earlier trials. We start at a positien= jI = jAx and move to a new positian = iAx
during a stepAt = ¢, wherei > 0 andj > 0 are integers. The original probability distribution fuioct
(PDF) of the particles is given by;(t = 0) wherei refers to a specific position on the grid in HIg.19.2,
with ¢ = 0 representing: = 0. The functionw; (¢ = 0) is now the discretized version af(z, t). We can
regard the discretized PDF as a vector. For the Markov psogeshave a transition probability from a
positionz = jl to a positionz = il given by

i—jl=1

olse) (9.27)

1

W,-j(e) = W(Zl —jl,E) = { 8
wherelV;; is normally called the transition probability and we canresent it, see below, as a matrix.
Note that this matrix is not a stochastic matrix as long as & finite matrix. Our new PD;(t = €) is
now related to the PDF at= 0 through the relation

wi(t =€) = Z W(j — i)w;(t = 0). (9.28)

This equation represents the discretized time-developofean original PDF. It is a microscopic way of
representing the process shown in [Eig] 9.1. Since @othndw represent probabilities, they have to be
normalized, i.e., we require that at each time step we have

> wilt) =1, (9.29)

and
S w(—i)=1, (9.30)
J

which applies for allj-values. The further constraints a&te< W;; < 1 and0 < w; < 1. Note that
the probability for remaining at the same place is in geneoalnecessarily equal zero. In our Markov
process we allow only for jumps to the left or to the right.

The time development of our initial PDF can now be represktiteough the action of the transition
probability matrix appliedh times. At a timet,, = ne our initial distribution has developed into

wi(tn) = Z Wij(tn)wj(0)7 (9.31)
J

and defining
W (il — jl,ne) = (W"(€))i; (9.32)

220

9.3 — Microscopic derivation of the diffusion equation

we obtain
wi(ne) =Y (W"(€))iw;(0), (9.33)
J
or in matrix form
w(ne) = W (e)w(0). (9.34)

The matrix/¥ can be written in terms of two matrices
R 1 /.
W= (L n R) , (9.35)

whereL andR represent the transition probabilities for a jump to thedetthe right, respectively. For a
4 x 4 case we could write these matrices as

0 0 0O

R 1 000

R = 0100 | (9.36)
0010

and

01 00

- 0010

L= 00 0 1 (9.37)
0 00O

However, in principle these are infinite dimensional masisince the number of time steps are very
large or infinite. For the infinite case we can write these ite8rRR;; = 0; ;1) and L;; = (41,5,
implying that

LR=RL=1, (9.38)

which applies in the case of infinite matrices and
L =R (9.39)
To see thal.R = RL = 1, perform e.g., the matrix multiplication

LR=> LyRj = 6(is1)u0,(j+1) = it1,5+1 = 0ij, (9.40)
! p

and only the diagonal matrix elements are different fronozer
For the first time step we have thus

W= % (ﬁ n R) , (9.41)

and using the properties in EqE.(9.38) dnd (9.39) we haee @ib time steps

172 1 72 P2 238

W2(2e) = ; (L + R 2RL> , (9.42)
and similarly after three time steps

W3(3¢) = (133 + R+ 3RL? + 31%%) . (9.43)

|

221

Random walks and the Metropolis algorithm

Using the binomial formula

3 < Z) a" b r = (a +)", (9.44)
k=0
we have that the transition matrix afteitime steps can be written as
W) = =S (1) Rrinek 9.45
(ne) = 55 kZ_O k : (9.45)

or

W (ne)) = 2% zn: (Z) L2k = 2% f: (Z) R, (9.46)

k=0
and usingR;” = 6; (j1m) @ndL;y = d(;) ; We arrive at

* ! [i—jl<n
Wil — jl,ne) =< 2"\ i(n+i—j) =7 (9.47)
0 else

andn +i — j has to be an even number. We note that the transition matraNtarkov process has three
important properties:

— It depends only on the difference in space j, it is thus homogenous in space.
— Itis also isotropic in space since it is unchanged when wea@u {i, j) to (—i, —j).

— It is homogenous in time since it depends only the differeme®veen the initial time and final
time.

If we place the walker at = 0 att = 0 we can represent the initial PDF wiih;(0) = d; . Using
Eq. (83%4) we have

resulting in
)= { , " i] < (9.49)
wlnE—z—n %(n—kz) 1| < n. .
We can then use the recursion relation for the binomials
n+1 o n n
<%<n+1+z‘)>_<%(n+z‘+1>>+<%(nﬂ')—l) (5.50)

to obtain the discretized diffusion equation. In order thiaege this, we define = il, wherel and: are
integers, and = ne. We can then rewrite the probability distribution as

w(z,t) = w(il,ne) = w;(ne) = 2% < %(nn-|- i) li| < n, (9.51)

and rewrite Eq.[{3.80) as
1 1
w(z,t+e¢€) = §w($+l,t) + §w(:£—l,t). (9.52)

222

9.3 — Microscopic derivation of the diffusion equation

Adding and subtracting(z,) and multiplying both sides witf? /¢ we have

w(x,t+¢€) —w(x,t) _ ;jw(x +1,1) — QwEU;J) +w(z - lat). (9.53)
€ €

If we identify D = ?/2¢ andl = Az ande = At we see that this is nothing but the discretized version
of the diffusion equation. Taking the limitkz — 0 andAt¢ — 0 we recover
ow(w,t) Dazw(ac,t)
ot ox?

the diffusion equation.

An illustrative example

The following simple example may her in understanding theaning of the transition matrik’ and
the vectorw. Consider thé x 3 matrix W

1/4 1/8 2/3
W<3/4 5/8 0 |,
0 1/4 1/3

and we choose our initial state as

We note that both the vector and the matrix are properly nlizeth Summing the vector elements gives
one and summing over columns for the matrix results also @ &¥e act then om with W. The first
iteration is

resulting in

The next iteration results in

resulting in
5/32
w(t=2¢e) = 21/32
6/32
Note that the vectow is always normalized td. We find the steady state of the system by solving the
linear set of equations
w(t =00) = Ww(t = 00).

~—

This linear set of equations reads

anl(t = OO) + ngwg(t = OO) + W13w3(t = OO) = wl(t = OO)
Worwi (t = 00) + Wagwsa(t = 00) + Waszws(t = o00) = wg(t = 00)
Ws1wi (t = 00) + Wagws(t = 00) + Wazws(t = 00) = ’wg(t = 00)

(9.54)

223

Random walks and the Metropolis algorithm

Table 9.1: Convergence to the steady state as function obeuof iterations.

lteration w; wWo w3
1.00000 0.00000 0.00000
0.25000 0.75000 0.00000
0.15625 0.62625 0.18750
0.24609 0.52734 0.22656
0.27848 0.51416 0.20736
0.27213 0.53021 0.19766
0.26608 0.53548 0.19844
0.26575 0.53424 0.20002
0.26656 0.53321 0.20023
9 0.26678 0.53318 0.20005
10 0.26671 0.53332 0.19998
11 0.26666 0.53335 0.20000
12 0.26666 0.53334 0.20000
13 0.26667 0.53333 0.20000
w(t =o00) 0.26667 0.53333 0.20000

coO~NO O~ WNPEFO

with the constraint that

Zwi(t =o0) =1,

yielding as solution
4/15
w(t=00)= [8/15
3/15

Table[9.1 demonstrates the convergence as a function ofithber of iterations or time steps. We have
aftert¢-steps

Ww(t) = W (0),

with w(0) the distribution at = 0 andW representing the transition probability matrix. We canagiss
expandw (0) in terms of the right eigenvectofsof W as

W(O) = Z Oél'\A/Z',
7

resulting in
W(t) = Wiw(0) = W'D a9 =) Moy,

with \; thei*? eigenvalue corresponding to the eigenveétpr

If we assume thah is the largest eigenvector we see that in the limit> oo, W(t) becomes
proportional to the corresponding eigenvectgr This is our steady state or final distribution.

224

9.3 — Microscopic derivation of the diffusion equation

9.3.2 Continuous equations

Hitherto we have considered discretized versions of alagqns. Our initial probability distribution
function was then given by
w;(0) = 04,0,
and its time-development after a given time step= ¢ is
wit) =Y W(j — i)w;(t = 0).
J

The continuous analog to;(0) is
w(x) — §(x), (9.55)

where we now have generalized the one-dimensional posittona generic-dimensional vectar The
Kroeneckemn function is replaced by thédistribution functioni(x) at¢ = 0.
The transition from a statgto a state is now replaced by a transition to a state with posityjoinom
a state with positiorx. The discrete sum of transition probabilities can then Iptaed by an integral
and we obtain the new distribution at a time- At as
w(y,t+ At) = /W(y,x, At)w(x, t)dx, (9.56)
and aftemn time steps we have
w(y,t +mAt) = /W(y,x,mAt)w(x,t)dx. (9.57)
When equilibrium is reached we have

w(y) = /W(y,x,t)w(x)dx. (9.58)

We can solve the equation far(y,¢) by making a Fourier transform to momentum space. The PDF
w(x, t) is related to its Fourier transform(k, ¢) through

w(x,t) = /_OO dk exp (ikx)w(k,t), (9.59)

and using the definition of th&function

i(x) = i/ dk exp (ikx), (9.60)
2 J_
we see that
w(k,0) =1/27. (9.61)
We can then use the Fourier-transformed diffusion equation
ow(k,t) _ — DK%i(k, 1), (9.62)
ot
with the obvious solution
d(k,t) = ik, 0) exp [(D)) = 2i exp [~ (DI%1)). (9.63)
T

225

Random walks and the Metropolis algorithm

Using Eqg. [Q.5P) we obtain

0 1 1
= k kx| — —(DK*)] = —(x?/4D 9.64
wet) = [dicespilod - exp [(DI)] = ——exp [~(¢/4DD)]. (960
with the normalization condition -
w(x,t)dx = 1. (9.65)

It is rather easy to verify by insertion that EQ.(9.64) is luson of the diffusion equation. The solution
represents the probability of finding our random walker aifmn x at time¢ if the initial distribution
was placed ak = 0 att = 0.

There is another interesting feature worth observing. Tiberete transition probabilityl itself is
given by a binomial distribution, see ER.{9.47). The resfutim the central limit theorem, see Sé€ct. 8.2.2,
state that transition probability in the limit— oo converges to the normal distribution. Itis then possible
to show that

W (il — jl,ne) — W(y,x, At) = xp [~ ((y — x)?/ADAt)], (9.66)

1
— ¢
VAT DAt

and that it satisfies the normalization condition and idfissolution to the diffusion equation.

9.3.3 ESKC equation and the Fokker-Planck equation
In preparation for spring 2010.

9.3.4 Numerical simulation

In the two previous subsections we have given evidence tiharov process actually yields in the
limit of infinitely many steps the diffusion equation. It ks therefore in a physical intuitive way the
fundamental process of diffusion with random walks. It cbtlilerefore be of interest to visualize this
connection through a numerical experiment. We saw in théque subsection that one possible solution
to the diffusion equation is given by a normal distributiolm addition, the transition rate for a given
number of steps develops from a binomial distribution inftmamal distribution in the limit of infinitely
many steps. To achieve this we construct in addition a hiatogvhich contains the number of times the
walker was in a particular positian. This is given by the variablgrobability, which is normalized in
the output function. We have omitted the initialization dtion, since this identical to programl.cpp or
program?2.cpp of this chapter. The arrayobability extends from-number_walk$o +number_walks

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter09/cpp/program?. cpp

/%
1-dim random walk program.
A walker makes several trials steps with
a given number of walks per trial

*/

#include <iostream >

#include <fstream >

#include <iomanip>

#include "1ib.h"

using namespace std;

// Function to read in data from screen, note call by referenc

226

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter09/cpp/program2.cpp

9.3 — Microscopic derivation of the diffusion equation

void

void

void

int

{

}

int max_trials, number_walks;

double move_probability;

in data

initialise (max_trials , number_walks, move_probability;

int xwalk_cumulative =new int [number_walks+1];

int xwalk2_cumulative =new int [number_walks+1];

int xprobability =new int [2x(number_walks+1)];

for (int walks = 1; walks <= number_walks; walks++){
walk_cumulative[walks] = walk2_ cumulative[walks] = O0;

/!l Read

}

for (int walks = 0; walks <= 2number_walks; walks++){
probability [walks] = O;

initialization of vectors

/Il Do the mc sampling

mc_sampling (max_trials , number_walks, move_ probalyiljt

} 1/ end

/1l Print out results

output(max_trials , number_walks, walk_cumulative ,
walk2 cumulative , probability);

delete [] walk_cumulative; // free memory

delete [] walk2_ cumulative; delete [] probability;

main ()

return O;

/! end main function

initialise (int&, int&, double&) ;

[/l The Mc sampling for random walks

mc_sampling (nt , int, double, int x, int %, int x);
/I prints to screen the results of the calculations
output(int , int, int x, int %, int x);

walk _cumulative , walk2 cumulative, probability);

The output function contains now the normalization of thebability as well and writes this to its own
file.

void output(int max_trials , int number_walks,
int xwalk_cumulative , int xwalk2_cumulative ,int % probability)

{

ofstream ofile ("testwalkers.dat");
ofstream probfile (probability.dat");

for (int

double xaverage = walk_cumulative[i]/(double) max_trials);
double x2average = walk2_ cumulative[i]/(double) max_trials);
double variance = x2average xaveragexaverage;

ofile
ofile
ofile
ofile

}

ofile.close ();
/1 find norm of probability

<<
<<
<<
<<

double norm

for (int

= 1; i <= number_walks; i++){

setiosflags (ios::showpoint | ios::uppercase);
setw (6) << i;

setw (15) << setprecision(8) << xaverage;

setw (15) << setprecision(8) << variance << endl;

0.;
—number_walks; i <= number_walks; i++){

227

Random walks and the Metropolis algorithm

norm += (double) probability[i+number_walks];

}

/1l write probability

for(int i = —number_walks; i <= number_walks; i++){
double histogram = probability[i+number_walks]/norm;
probfile << setiosflags(ios::showpoint | ios::uppercase

probfile << setw(6) << i;
probfile << setw(15) << setprecision(8) << histogram << énd
}
probfile.close ();
} // end of function output

The sampling part is still done in the same function, but @amstnow the setup of a histogram containing
the number of times the walker visited a given position

void mc_sampling (nt max_trials , int number_walks,
double move_probability , int xwalk_cumulative ,
int xwalk2_cumulative , int xprobability)
{
long idum;
idum=—1; // initialise random number generator
for (int trial=1; trial <= max_trials; trial++){
int position = 0;
for (int walks = 1; walks <= number_walks; walks++){
if (ran0(&idum) <= move_probability) {
position += 1;
}

else {
position —= 1;
}
walk _cumulative[walks] += position;
walk2 cumulative[walks] += positiorposition;
probability[position+number_walks] += 1;
} // end of loop over walks
} // end of loop over trials
} /I end mc_sampling function

Fig.[83 shows the resulting probability distribution aftesteps In Figi-915 we have plotted the probabil-
ity distribution function after a given number of time step® you recognize the shape of the probabiliy
distributions?

9.4 Entropy and Equilibrium Features

We use this section to motivate, in a physically intuitivethe importance of the ergodic hypothesis via
a discussion of how a Markovian process reaches an equititsituation after a given number of random
walks. It serves then purpose of bridging the gap betweenradvan process and our discussion of the
Metropolis algorithm in the next section.

To achieve this, we will use the program from the previousisecsee programs/chapter9/program3.cpp
and introduce the concept of entropy We discuss the thermodynamical meaning of the entropy and
its link with the second law of thermodynamics in the nextptha Here it will suffice to state that the
entropy is a measure of the disorder of the system, thus amsystich is fully ordered and stays in its

228

9.4 — Entropy and Equilibrium Features

0.18 I I
10 steps

0.16 - _
0.14 - _

0.12 - -

-20 -15 -10 -5 0 5) 10 15 20

0.08 I I I

100 steps
0.07 - _
0.06 - _
0.05 - _

w(x,t)0.04 -
0.03 - _
0.02 - _

0.01 - -

0 ! ! !
-40 -20 0 20 40

0.025 I I
1000 steps

0.02
0.015
w(z,t)

0.01

0.005

-40 -20 0 20 40
steps x
229
Figure 9.5: Probability distribution for one walker afte, .00 and 1000 steps.

Random walks and the Metropolis algorithm

0 ! ! ! ! ! ! !
0 1 2 3 4 5 6 7 8

Time steps in units of 0’

Figure 9.6: Entropy5; as function of number of time stegdor a random walk in one dimension. Here
we have used 100 walkers on a lattice of length frbrs —50 to L = 50 employing periodic boundary
conditions meaning that if a walker reaches the ppiat L + 1 it is shifted toxr = —L and ifx = —L

it is shifted tox = L.

fundamental state (ground state) has zero entropy, whilsadired system has a large and nonzero
entropy.
The definition of the entropy (as a dimensionless quantity here) is

S==Y win(w), (9.67)

whereuw; is the probability of finding our system in a statd-or our one-dimensional random walk case
discussed in the previous sections it represents the piibpédr being at positioni = iAx after a given
number of time steps. In order to test this, we start with tfevipus program but assume now that we
haveN random walkers at= 0 andt = 0 and let these random walkers diffuse as function of times Thi
means simply an additional loop. We compute then, as in tx@quis program example, the probability
distribution for N walkers after a given number of stepalongx and time stepg. We can then compute
an entropyS; for a given number of time steps by summing over all probaddi;.. We show this in
Fig.[@.8. The code used to compute these results is in pragchapterd/program4.cpp. Here we have
used 100 walkers on a lattice of length fram= —50 to L = 50 employing periodic boundary conditions
meaning that if a walker reaches the point L it is shifted tox = —L and ifx = — L it is shifted to

x = L. We see from Fid. 916 that for small time steps, where alliglag N are in the same position or
close to the initial position, the entropy is very small, eefing the fact that we have an ordered state. As
time elapses, the random walkers spread out in space (hereidimension) and the entropy increases
as there are more states, that is positions accesible toyitens We say that the system shows an
increased degree of disorder. After several time stepseedhat the entropy reaches a constant value, a
situation called a steady state. This signals that the syktes reached its equilibrium situation and that
the random walkers spread out to occupy all possible avaiksthtes. At equilibrium it means thus that
all states are equally probable and this is not baked intadgingmical equations such as Newton’s law

230

9.5 — The Metropolis algorithm and detailed balance

of motion. It occurs because the system is allowed to ex@bngossibilities. An important hypothesis,
which has never been proven rigorously but for certain systas the ergodic hypothesis which states
that in equilibrium all available states of a closed systawehequal probability. This hypothesis states
also that if we are able to simulate long enough, then oneldhmiable to trace through all possible
paths in the space of available states to reach the equitibsituation. Our Markov process should be
able to reach any state of the system from any other state itiwéor long enough. Markov processes
fullfil the requirement of ergodicity since all new steps ardependent of the previous ones and the
random walkers can thus explore with equal probability aigible positions. In general however, we
know that physical processes are not independent of eael. otthe relation between ergodicity and
physical systems is an unsettled topic.

The Metropolis algorithm which we discuss in the next seci®based on a Markovian process and
fullfils the requirement of ergodicity. In addition, in thext section we impose the criterion of detailed
balance.

9.5 The Metropolis algorithm and detailed balance

Let us recapitulate some of our results about Markov chaidsandom walks.
— The time development of our PDKt), after one time-step froth= 0 is given by
wi(t =€) =W(j — i)w;(t =0).

This equation represents the discretized time-developofean original PDF. We can rewrite this
asa
wi(t = 6) = Wijwj(t == 0).

with the transition matri¥y” for a random walk given by

1 . .
Wij(e) = W(il — jl,e) = { 5 olse
We callW;; for the transition probability and we represent it as a rratri

— Both W andw represent probabilities and they have to be normalizedningdhat that at each
time step we have
7

and

Wi —i) =1
J
The further constraints ate< W;; < 1and0 < w; < 1.

— We can thus write the action & as

wit +1) =Y Wijw;(t), (9.68)
i

or as vector-matrix relation

-

W(t+ 1) = Ww(t), (9.69)

231

Random walks and the Metropolis algorithm

and if we have thaliw(t + 1) — w(t)|| — 0, we say that we have reached the most likely state of
the system, the so-called steady state or equilibrium.sfatether way of phrasing this is

w(t =00) = Ww(t = 00). (9.70)

An important condition we require that our Markov chain ddosatisfy is that of detailed balance. In
statistical physics this condition ensures that it is ghge, Boltzmann distribution which is generated
when equilibrium is reached.

To derive the conditions for equilibrium, we start from tlielled Master equation, which relates
the temporal dependence of a PRRt) to various transition rates. The equation is given as

dwi (t)
dt

= W = dw; = W(i — juwi], (9.71)
J

which simply states that the rate at which the systems maowees & statej to a final state (the first
term on the right-hand side of the last equation) is balafgethe rate at which the system undergoes
transitions from the stateto a statg (the second term). If we have reached the so-called steatdy gten
the temporal development is zero since we are now satistgmd3.%). This means that in equilibrium
we have

dwi(t)

dt

The definition for being in equilibrium is thus that the ratgsvhich a system makes a transition to or
from a given state have to be equal, that is

= 0. (9.72)

S W(G - dw; =Y Wi — jw. (9.73)
J J

We see that this is compatible with our definition of the neabability if we sum ovelj on the right-hand
side of the last equation and use the fact that our trangitiobability is normalized, that iEj Wi —
j) = 1, which yields

w; = ZW(] - i)wj.
J

However, the condition that the rates should equal eachr @tlire general not sufficient to guarantee that
we, after many simulations, generate the correct distahutWe may risk to end up with so-called cyclic
solutions. To avoid this we therefore introduce an additimondition, namely that of detailed balance

At equilibrium detailed balance gives thus

W —i) w;
-t 9.75
We introduce now the Boltzmann distribution
exp (—((E;))
= —— 9.76
Z (9.76)

232

9.5 — The Metropolis algorithm and detailed balance

which states that the probability of finding the system ireéestwith energyF; at an inverse temperature

B = 1/kpT is w; x exp(—B(E;)). The denominatotZ is a normalization constant which ensures
that the sum of all probabilities is normalized to one. It &ided as the sum of probabilities over all
microstateg of the system

7= exp(~(E)). 9.77)
J

From the partition function we can in principle generateirgtresting quantities for a given system in
equilibrium with its surroundings at a temperatdreThis is demonstrated in the next chapter.

With the probability distribution given by the Boltzmanrsttibution we are now in a position where
we can generate expectation values for a given variddlrough the definition

(A) =D Ajw; = 2 exg(_ﬂ(Ej)- (9.78)
j

In general, most systems have an infinity of microstates ngattiereby the computation &f practi-
cally impossible and a brute force Monte Carlo calculatiseraa given number of randomly selected
microstates may therefore not yield those microstatesiwéie important at equilibrium. To select the
most important contributions we need to use the conditiordétailed balance. Since this is just given
by the ratios of probabilities, we never need to evaluateptmtition functionZ. For the Boltzmann
distribution, detailed balance results in

wi
— = oxp (—B(Ei — Ej)). (9.79)
wj
Let us now specialize to a system whose energy is defined lyidation of single spins. Consider
the state, with given energyF; represented by the followingy spins

rt+r1 ... v LT T
123 ... k-1%kk+1 ... N-1 N

We are interested in the transition with one single spinflip hew statg with energyE;

rt+r1.... v 1 1 . 1T |
123 ... k-1%k k+1 ... N-1 N

This change from one microstatgor spin configuration) to another microstateés the configuration
space analogue to a random walk on a lattice. Instead of pgrfpom one place to another in space, we
‘jump’ from one microstate to another.

However, the selection of states has to generate a finalbdistm which is the Boltzmann distribu-
tion. This is again the same we saw for a random walker, fodiberete case we had always a binomial
distribution, whereas for the continuous case we had a dalistabution. The way we sample configu-
rations should result, when equilibrium is establishedh&Boltzmann distribution. Else, our algorithm
for selecting microstates has to be wrong.

Since we do not know the analytic form of the transition rate are free to model it as

Wi —j)=g(i — j)A@I — j), (9.80)

whereg is a selection probability whilel is the probability for accepting a move. It is also called the
acceptance ratio. The selection probability should be damell possible spin orientations, namely

(9.81)

. . 1
9(2—>J) = N

233

Random walks and the Metropolis algorithm

With detailed balance this gives

90 = DA(— 1)
g(i N])A(l N j) = €Xp (_ﬁ(Ez - EJ))> (982)
but since the selection ratio is the same for both transtiare have
—
T = e (65 -) (0.83)
In general, we are looking for those spin orientations wigigitespond to the average energy at equilib-
rium.
We are in this case interested in a new sfatavhose energy is lower thali;, viz., AE = F; - E; <
0. A simple test would then be to accept only those microstatesh lower the energy. Suppose we have
ten microstates with energfy < E1 < Fy < E3 < --- < Ey. Our desired energy i&y. At a given
temperaturd” we start our simulation by randomly choosing state Flipping spins we may then find
a path fromkEy — Egs — E7--- — E1 — Ey. This would however lead to biased statistical averages
since it would violate the ergodic hypothesis discussetiénprrevious section. This principle states that
it should be possible for any Markov process to reach evesgipte state of the system from any starting
point if the simulations is carried out for a long enough time
Any state in a Boltzmann distribution has a probability eliéint from zero and if such a state cannot
be reached from a given starting point, then the system ignmgoidic. This means that another possible
path toE, could beEy — E7 — Eg--- — E9 — E5 — Ejy and so forth. Even though such a path could
have a negligible probability it is still a possibility, aifdve simulate long enough it should be included
in our computation of an expectation value.
Thus, we require that our algorithm should satisfy the ppilecof detailed balance and be ergodic.
The problem with our ratio
N
T = e (-B(E: ~)
is that obviously do not know the acceptance probabilityis Blguation only specifies the ratio of pairs of
probabilities. Normally we want an algorithm which is as@éit as possible and maximizes the number
of accepted moves. One possibility is given by the so-cdliledropolis algorithm. Here we take into
account the fact that the largest value the acceptance ilibpaan take is one. We adjust thereafter the
other acceptance probability to this constraint.
To understand this better, assume that we have two enefgies\d I;, with E£; < E;. This means
that the largest acceptance value mustiy¢ — i) since we move to a state with lower energy. The trick
then is to fix this value to one. This means that the other aanep probability has to be

A(i — j) = exp (—B(E; — Ey)).
One possible way to encode this equation reads

exp (—ﬁ(EZ — E])) E; — Ej >0

A — i) = { 1 s (9.84)

This means that if we move to a state with a lower energy, waysvaccept this move with acceptance
probability A(j — ¢) = 1. If the energy is higher, we need to check this acceptandeapility with
the ratio between the probabilities from our PDF. From atrakpoint view, this ratio is compared with
a random number. If the ratio is smaller than a given randombar we accept the move to a higher
energy, else we stay in the same state.

234

9.5 — The Metropolis algorithm and detailed balance

This algorithm satisfies the condition for detailed balaand ergodicity. It is implemented as fol-
lows:

Establish an initial energy;

Do a random change of this initial state by e.g., flipping attiviidual spin. This new state has
energyE;. Compute thel\E = E; — E

— If AE < 0 accept the new configuration.

If AE > 0, computew = e~ (BAE),

— Comparew with a random number. If » < w accept, else keep the old configuration.
— Compute the terms in the surhs A ws.
— Repeat the above steps in order to have a large enough nufitharostates

— For a given number of MC cycles, compute then expectationegal
The application of this algorithm will be discussed in derathe next two chapters.

9.5.1 Brief summary

The Monte Carlo approach, combined with the theory for Mareains can be summarized as follows:
A Markov chain Monte Carlo method for the simulation of a disition w is any method producing an
ergodic Markov chain of events whose stationary distribution is. The Metropolis algorithm can be
phrased as

— Generate an initial valug(®.
— Generate a trial valug; with probability f (y;|z().

— Take a new value
RSV with probability = p(z¥, ;)
| 2® with probability = 1 — p(z@, ;)

— We have defined (y)f(z|y)
= min § DTV)
ple,y) = {w(x)f(ym)’l}

The distributionf is often called the instrumental (we will relate it to the joimg of a walker)
or proposal distribution (or acceptance) whiles the Metropolis-Hastings acceptance probability.
When f (y|x) is symmetric it is just called the Metropolis algorithm.

Using the Metropolis algorithm we can in turn set up the gaheailculational scheme as follows:
— Establish an initial state with some selected featuressto te

— Do arandom change of this initial state.
— Compute the Metropolis-Hastings acceptance probabhility

— Comparep with a random number. If » < p accept, else keep the old configuration.

Compute the terms needed to obtain expectations values.

Repeat the above steps in order to have as good statisticssible.

For a given number of MC cycles, compute then the final expiectaalues.

235

Random walks and the Metropolis algorithm

9.6 Exercises and projects

Exercise 9.1: Two dimensional randow walk

Extend the first program discussed in this chapter to a twwedsional random walk with probability
1/4 for a move to the right, left, up or down. Compute the variafareboth thex andy directions and
the total variance.

Exercise 9.1: Two dimensional randow walk

Use the second program to fit the computed probability distion with a normal distribution using your
calculated values af? and(z).

Project 9.1: simulation of the Boltzmann distribution

In this project the aim is to show that the Metropolis alduoritgenerates the Boltzmann distribution

P(g) =, (9.85)

with 6 = 1/kT being the inverse temperaturg, is the energy of the system ariflis the partition
function. The only functions you will need are those to gaterandom numbers.

We are going to study one single particle in equilibrium wighsurroundings, the latter modeled via
a large heat bath with temperatufe

The model used to describe this particle is that of an ideslmanedimension and with velocity-v
orv. We are interested in finding (v)dv, which expresses the probability for finding the system \aith
given velocityv € [v,v + dv]. The energy for this one-dimensional system is

1 1,
E= §kT =35v (9.86)

with massm = 1. In order to simulate the Boltzmann distribution, your paog should contain the
following ingredients:

— Reads in the temperatufg the number of Monte Carlo cycles, and the initial velocifgu should
also read in the change in velocidy used in every Monte Carlo step. Let the temperature have
dimension energy.

— Thereafter you choose a maximum velocity given by euga.. ~ 10v/7. Then you construct
a velocity interval defined by,,., and divided it in small intervals throughy,,q../ N, with N ~
100 — 1000. For each of these intervals your task is to find out how mangsia given velocity
during the Monte Carlo sampling appears in each specificvalte

— The number of times a given velocity appears in a specifievatés used to construct a histogram
representingP(v)dv. To achieve this you should construct a vecijtV] which contains the
number of times a given velocity appears in the subinteryaH dv.

In order to find the number of velocities appearing in eachrirgl we will employ the Metropolis
algorithm. A pseudocode for this is

for (montecarlo_cycles=1; Max_cycles; montecarlo_cycle} H{+

236

9.6 — Exercises and projects

/!l change speed as function of delta v

v_change = (2ranl(&idum) —1)x delta_v;

v_new = v_old+v_change;

/I energy change

delta_E = 0.5%(v_newv_new — v_old«v_old)

/!l Metropolis algorithm begins here

if (ranl(&idum) <= exp¢betaxdelta_E)) {

accept_step = accept_step + 1 ;
v_old = v_new ;

/I thereafter we must fill in P[N] as a function of
/I the new speed

P[?] =
/!l upgrade mean velocity , energy and variance

}

a) Make your own algorithm which sets up the histogrB(w)dv, find the mean velocity, the energy,
the energy variance and the number of accepted steps foea ggmperature. Study the change
of the number of accepted moves as a functioiwof Compare the final energy with the analytic
result E = kT'/2 for one dimension. Us& = 4 and set the intial velocity to zero, i.e;; = 0.
Try different values obwv. A possible start value i& = 4. Check the final result for the energy as
a function of the number of Monte Carlo cycles.

It can be useful to check your results against the analytigtisas. These can be obtained by
computing the partition function of the system of interéstour case it is given by

+o0o
Z- / B2y = /am 12

o0

From the partition function we can in turn compute the exgigan value of the mean velocity and
the variance. The mean velocity is given by

+o0 2
(v) = / ve P2y = 0

—00
The above expression holds as the integrand is an odd farmtia The mean energy and energy
variance can be easily calculated. The expression&dpando; assume the following form:

o0 2 2 102 1 1
_ Ve B?2q, - 292 _ 251 _ 2
(E) /_OO 2 ¢ ==z 3" =37
400 ,,4 2
2y _ U B2 :la_Z:§—2:§2
() /_Oo 1 =Zom =17~
and 1
UE:<E2>—(E>2:§T2

an expected results. It is useful to compare these resuhsthidse from your program.

b) Make thereafter a plot d»(P(v)) as function ofE’ and see if you get a straight line. Comment
the result.

237

Random walks and the Metropolis algorithm

Project 9.2: Random Walk in two dimensions

For this project you can build upon program programs/chifgeogram?2.cpp (or the f90 version). You
will need to compute the expectation valuesN)), (y(N)) and

(AR (N)) = (z*(N)) + (y*(N)) = (2(N))? — (y(N))?

whereN is the number of time steps.

a)

b)

C)

d)

238

Enumerate all random walks on a square latticeNfor= 2 and obtain exact results far(N)),
(y(N)) and(AR?(N)). Verify your results by comparing your Monte Carlo simusa with the
exact results. Assume that all four directions are equathpable.

Do a Monte Carlo simulation to estimat& 2?(V)) for N = 10, 40, 60 and100 using a reasonable
number of trials for eactV. Assume that we have the asymptotic behavior

(AR*(N)) ~ N*,

and estimate the exponenfrom a log-log plot of{ AR?(N)) versusN. If v ~ 1/2, estimate the
magnutide of the self-diffusion coefficief? given by

(AR%*(N)) ~ 2dDN,
with d the dimension of the system.

Compute now the quantiti€s (NV)), (y(N)), (AR?(N)) and
(RA(N)) = (2*(N) + (*(N)),

for the same values oW as in the previous case but now with the step probabilRigs 1/6,
1/6 and1/6 corresponding to right, left, up and down, respectivelyisTdhoice corresponds to
a biased random walk with a drift to the right. What is the fiptetation of(x(V)) in this case?
What is the dependence ch R?(N)) on N and doegR?(N)) depend simply onV?

Consider now a random walk that starts at a site that istartisy = h above a horisontal line
(ground). If the probability of a step down towards the gmbisbigger than the probability of a
step up, we expect that the walker will eventually reach asbatal line. This walk is a simple
model of the fall of a rain drop in the presence of a randomzgeAssume that the probabilities are
0.1, 0.6, 0,15 and0.15 corresponding to up, down, right and left, respectively. &donte Carlo
simulation to determine the mean timéor the walker to reach any site on the linerat 0. Find
the functional dependence ofon . Can you define a velocity in the vertical direction? Sinee th
walker does not always move vertically, it suffers a netldispmentAz in the horizontal direction.
Compute{Ax?) and find its dependence @nandr.

