Chapter 8

Outline of the Monte Carlo strategy

‘lacta Alea est’, the die is cast, is what Julius Caesar isnted by Suetonius to have
said on January 10, 49 BC as he led his army across the Rivécduim Northern Italy.
(Twelve Ceasar§aius Suetonius

8.1 Introduction

Monte Carlo methods are widely used in the Sciences, frormtbgration of multi-dimensional integrals
to solving ab initio problems in chemistry, physics, meakgibiology, or even Dow-Jones forecasting.
Computational finance is one of the novel fields where MontéoGaethods have found a new field of
applications, with financial engineering as an emergingl figkée for example Refs. [41, 42]. Emerging
fields like econophysics [43-45] are new examples of apjitica of Monte Carlo methods.

Numerical methods that are known as Monte Carlo methods edadsely described as statistical
simulation methods, where statistical simulation is defimequite general terms to be any method that
utilizes sequences of random numbers to perform the simnlafAs mentioned in the introduction to
this text, a central algorithm in Monte Carlo methods is thetfdpolis algorithm, ranked as one of the
top ten algorithms in the last century. We discuss this @lgorin the next chapter.

Statistical simulation methods may be contrasted to cdiomal numerical discretization methods,
which are typically applied to ordinary or partial diffetel equations that describe some underlying
physical or mathematical system. In many applications oftd&arlo, the physical process is simulated
directly, and there is no need to even write down the difféaéaquations that describe the behavior of the
system. The only requirement is that the physical (or magtieel) system be described by probability
distribution functions (PDF’s). Once the PDF'’s are knowre Monte Carlo simulation can proceed by
random sampling from the PDF’s. Many simulations are thefopmed (multiple “trials” or “histories”)
and the desired result is taken as an average over the nurbbservations (which may be a single
observation or perhaps millions of observations). In maraciical applications, one can predict the
statistical error (the “variance”) in this average resattig] hence an estimate of the number of Monte Carlo
trials that are needed to achieve a given error. If we asshatétte physical system can be described by a
given probability density function, then the Monte Carlmslation can proceed by sampling from these
PDF’s, which necessitates a fast and effective way to genemadom numbers uniformly distributed on
the interval [0,1]. The outcomes of these random sampliog$sials, must be accumulated or tallied
in an appropriate manner to produce the desired resulthbutgsential characteristic of Monte Carlo is
the use of random sampling techniques (and perhaps othedsralgp manipulate the outcomes) to arrive
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Outline of the Monte Carlo strategy

at a solution of the physical problem. In contrast, a coneeat numerical solution approach would
start with the mathematical model of the physical systestrdtizing the differential equations and then
solving a set of algebraic equations for the unknown stattefsystem. It should be kept in mind
that this general description of Monte Carlo methods maydirectly apply to some applications. It is
natural to think that Monte Carlo methods are used to simul@hdom, or stochastic, processes, since
these can be described by PDF’s. However, this couplingtigHy too restrictive because many Monte
Carlo applications have no apparent stochastic contecty, asithe evaluation of a definite integral or the
inversion of a system of linear equations. However, in thes®es and others, one can pose the desired
solution in terms of PDF’s, and while this transformationyrsaem artificial, this step allows the system
to be treated as a stochastic process for the purpose ofadiorubnd hence Monte Carlo methods can
be applied to simulate the system.

There are at least four ingredients which are crucial in otdainderstand the basic Monte-Carlo
strategy. These are

1. Random variables,

2. probability distribution functions (PDF),
3. moments of a PDF

4. and its pertinent varianee.

All these topics will be discussed at length below. We feekéner that a brief explanation may be
appropriate in order to convey the strategy behind a MortdeC:alculation. Let us first demystify the
somewhat obscure concept of a random variable. The exangthoose is the classic one, the tossing
of two dice, its outcome and the corresponding probabilityprinciple, we could imagine being able to
determine exactly the motion of the two dice, and with givatial conditions determine the outcome of
the tossing. Alas, we are not capable of pursuing this idgeme. However, it does not mean that we
do not have a certain knowledge of the outcome. This partiaikedge is given by the probablity of
obtaining a certain number when tossing the dice. To be mmaEige, the tossing of the dice yields the
following possible values
[2,3,4,5,6,7,8,9,10,11,12].

These values are called tdemain To this domain we have the correspondprgbabilities
[1/36,2/36/3/36,4/36,5/36,6/36,5/36,4/36,3/36,2/36,1/36].

The numbers in the domain are the outcomes of the physiceépsaossing the dic&Ve cannot tell be-
forehand whether the outcome is 3 or 5 or any other numberngdibmain. This defines the randomness
of the outcome, or unexpectedness or any other synonimadswtich encompasses the uncertitude of
the final outcomeThe only thing we can tell beforehand is that say the outcoimm&s2a certain probabil-
ity. If our favorite hobby is to spend an hour every eveningwing dice and registering the sequence of
outcomes, we will note that the numbers in the above domain

2,3,4,5,6,7,8,9,10,11,12],
appear in a random order. After 11 throws the results may likek
[10,8,6,3,6,9,11,8,12,4, 5].
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8.1 — Introduction

Eleven new attempts may results in a totally different saqaef numbers and so forth. Repeating this
exercise the next evening, will most likely never give yoa #ame sequences. Thus, we say that the
outcome of this hobby of ours is truly random.

Random variables are hence characterized by a domain whinkams all possible values that the
random value may take. This domain has a corresponding PDF.

To give you another example of possible random number spaeedctivities, consider the radioac-
tive decay of anv-particle from a certain nucleus. Assume that you have atgisposal a Geiger-counter
which registers every 10 ms whether@particle reaches the counter or not. If we record a hit asdl an
no observation as zero, and repeat this experiment for atiogg the outcome of the experiment is also
truly random. We cannot form a specific pattern from the almbs&ervations. The only possibility to
say something about the outcome is given by the PDF, whichisncase is the well-known exponential
function

Aexp —(Ax),
with X\ being proportional to the half-life of the given nucleus efhdecays.

Good texts on Monte Carlo methods are the monographs of RabdrCasella, Johnson and Fish-

man, see Refs. [46-48].

8.1.1 Definitions

Random numbers as we use them here are numerical apprams&tithe statistical concept of stochas-
tic variables, sometimes just called random variables. Adetstand the behavior of pseudo random
numbers we must first establish the theoretical framewost@thastic variables. Although this is typi-
cal textbook material, the nomenclature may differ from tmebook to another depending on the level
of difficulty of the book. We would therefore like to estalblia nomenclature suitable for our purpose,
one that we are going to use consequently throughout this tex

A stochastic variable can be either continuous or discréieany case, we will denote stochastic
variables by capital letterX, Y, ...

There are two main concepts associated with a stochastabler Thedomainis the seD = {x} of
all accessible values the variable can assume, sakthafD. An example of a discrete domain is the set
of six different numbers that we may get by throwing of a dice; {1, 2, 3, 4, 5, 6}.

The probability distribution function (PDF)s a functionp(z) on the domain which, in the discrete
case, gives us the probability or relative frequency witlclwhhese values ok occur:

p(z) = Prob(X = x)

In the continuous case, the PDF does not directly depict ¢cheabprobability. Instead we define the
probability for the stochastic variable to assume any valnen infinitesimal interval around to be
p(x)dx. The continuous functiop(x) then gives us thdensityof the probability rather than the proba-
bility itself. The probability for a stochastic variable &ssume any value on a non-infinitesimal interval
[a, b] is then just the integral:

b
Prob(a < X <b) = / p(z)dx

Quialitatively speaking, a stochastic variable represetsalues of numbers chosen as if by chance from
some specified PDF so that the selection of a large set of thesbers reproduces this PDF.

Also of interest to us is theumulative probability distribution function (CDFP(z), which is just
the probability for a stochastic variable to assume any value less than

P(x) =Prob(X <z) = /I p(a)dz'

— o0
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The relation between a CDF and its corresponding PDF is then:

_4d
- dx

P(x)

There are two properties that all PDFs must satisfy. Thedistis positivity:

p(x)

0<plx)<1

Naturally, it would be nonsensical for any of the values @& domain to occur with a probability greater
than1 or less thar). Also, the PDF must be normalized. That is, all the probtédimust add up to
unity. The probability “anything” to happen is always uniBor both discrete and continuous PDFs, this
condition is:

> pla) = 1

z, €D

/xem)p(ac)dx =1

For our present work with QMC techniques, we are only intexf continuous stochastic variables.
From this point on we will therefore restrict ourselves téyaontinuous ones. There are two continuous
PDFs that are especially important for our study of QMC. Tts fine is the most basic PDF; the uniform
distribution, denoted b¥/ (a, b):

1

= m@(m —a)f(b—x) (8.1)

p(z)

with:
0(x)=0 =<0
flz)=1 >0

The second one is the Gaussian Distribution, often calleshttimal distribution, denoted by (x4, 0):

1 _(e-p?
e 2052

p(x) = —

Let h(x) be an arbitrary function on the domain of the stochasticatdeiX whose PDF i®(z). We
define theexpectation valuef i with respect tg as follows:

(h)x = / h@)p(z) do (8.2)

Whenever the PDF is known implicitly, like in this case, wdldiop the indexX for clarity.
A particularly useful class of special expectation valuesthemoments The n-th moment of the
PDFp is defined as follows:

(™) = /w"p(x) dx

The zero-th momentl) is just the normalization condition @f. The first moment{z), is called the
meanof p and often denoted by the letter

@) =u= [apla)da
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8.1 — Introduction

Qualitatively it represents the centroid or the averageevalf the PDF and is therefore often simply
called the expectation value pﬂ A PDF can in principle be expanded in the set of its moment [49
For two PDFs to be equal, each of their moments must be equal.

A special version of the moments is the setehtral momentghe n-th central moment defined as:

The zero-th and first central moments are both trivial, eduald0, respectively. But the second central
moment, known as thearianceof p, is of particular interest. For the stochastic variakilethe variance
is denoted as?% or Var(X):

% = Var(X) = (& (2))?) = /<w—<x>>2p<w>dx

/(mQ —2z(z) + (2)?) p(z)dw
2y

= (2%) = 2(z)(z) + ()

= (2%) — (2)?

The square root of the variance,= +/((x — (z))?) is called thestandard deviatiorof p. It is clearly
just the RMS (root-mean-square) value of the deviation ef DF from its mean value, interpreted
qualitatively as the “spread” gf around its mean.

We will also be interested in finding the PDF ofumctionof a stochastic variable. Let the stochastic
variable X have the PDfp (x), and letY” = h(X) be a function ofX. What we want to find is the
PDF ofY, py-(y). We will have to restrict ourselves to the case whigf# ) is invertible, so that it has
to be strictly monotonous. First we construct the cumutatiistribution ofY’, considering only the case
whereh increases:

Py () = Prob(Y" < y) = Prob(h(X) < y) = Prob(X < h™'(y)) = Py (h™"(1))

whereh~! is the inverse function of, meaning that ify = h(z) thenz = h~!(y). This gives the PDF

of Y: J J
py(v) = 3-P (0) = 2-Px (')

Considering in a similar manner the other case of a decrgasive arrive at:

pr(y) = px (') d%h*(y)' ©.3)

This formula will become useful when transforming simpleyo random number generators to more
general ones.

All the PDFs above have been written as functions of only doehsstic variable. Such PDFs
are calledunivariate A PDF may well consist of any number of variables, in whicsecave call it
multivariate A general multivariate expectation value is defined siryilas for the univariate case, but
all stochastic variables are taken into account at oncePlet, ..., x,,) be the multivariate PDF for the

lwe should now formulate8.2 in a more rigorous manner. It ishemaatically more correct to speak bfas a function
transforming the stochastic variableto the stochastic variablg, Y = h(X). Letpx () be the known PDF oK, andpy (y)
be the unknown PDF df . It can then be shown [49] that the expectation vaIuE’oﬁamer Y = [ypy (y) dy, must equal
what we have defined as the expectation valuk(af) with respect tg x, namely(h) x = [h(z)px () dz.
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Outline of the Monte Carlo strategy

set{X;} of n stochastic variables and |&(x, ..., z,) be an arbitrary function over the joint domain
of all X;. The expectation value dff with respect taP is defined as follows:

<H>X1...X" :/-'-/H(xl,...,xn)P(acl,...,xn)dwl...dwn

If we want to find the expectation value of an arbitrary fuoeti(z;) on the domain of just one stochastic
variable X;, we must still use the joint PDP and remember to integrate over the total domain oXall

(h)x, .x, = / . '/h($i)P({L'1, ceoyTp)dxy .. day, (8.4)

We will now define the property of correlation, of great imfaorce for our study of random numbers.
Let us continue with the same setroftochastic variable§X; } as above. The variables aracorrelated
(or independent) i may be factorized in the following form:

P(z1,73,...,20) = [ [ pi(w:)
=1

wherep;(z;) is the univariate PDF ok;. Notice, that if allX; are uncorrelated, then the above equation
for the expectation value of the univariate functibneq. [B%) reduces, nicely to the familiar simple
univariate form of eq[{812).

To understand the definition of independence qualitativansider a process afsequential events
determined by the stochastic variablésv i € {1,2,...,n}. The PDFp;(x;) determines the probability
density that the-th event (governed by;) will have the outcome;;. If the individual events are to be
independent, then the joint probability density shouldiintely be just the product of the individual
densities. The events receive no information about eaatr.ofhhe probability to get some particular
outcome of an event is independent of whether other eveatsagpening at all or not.

8.1.2 Firstillustration of the use of Monte-Carlo methodsjde integration

With this definition of a random variable and its associaté@dRve attempt now a clarification of the
Monte-Carlo strategy by using the evaluation of an integsabur example.
In chaptef7 we discussed standard methods for evaluatingegral like

1 N
I= /0 fla)de ~ Y wif (2:),
=1
wherew; are the weights determined by the specific integration nieflikee Simpson’s or Taylor's meth-
ods) withz; the given mesh points. To give you a feeling of how we are tduawa the above integral
using Monte-Carlo, we employ here the crudest possiblecaghr: Later on we will present slightly more

refined approaches. This crude approach consists in sattwegights equal 1p; = 1. That corresponds
to the rectangle method presented in EQ(7.5), displayaihduggre

. N
= / fl@)dz ~h Y flaiq),
a i=1

wheref (x;_ 2) is the midpoint value of for a given valuer;_; s,. Settingh = (b—a)/N whereb = 1,
a = 0, we can then rewrite the above integral as

1 1 &
I = /0 f(w)dw ~ N ;f(wi_l/2)7
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8.1 — Introduction

wherez;_, ;, are the midpoint values af. Introducing the concept of the average of the functidor a
given PDFp(z) as

1 N

(f) = N Z f(zi)p(@i),
i=1
and identifyp(z) with the uniform distribution, viz(z) = 1 whenx € [0, 1] and zero for all other values
of z. The integral is is then the average fobver the interval: € [0, 1]

1
I= /O f(@)dz ~ (f).

In addition to the average valug’) the other important quantity in a Monte-Carlo calculatisnthe
variances? and the standard deviatien We define first the variance of the integral wjtffor a uniform
distribution in the intervak € [0, 1] to be

or
2 2 2
af = ((f*) = (7).
which is nothing but a measure of the extent to whjckeviates from its average over the region of
integration. The standard deviation is defined as the sqoatef the variance. If we consider the above
results for a fixed value aV as a measurement, we could recalculate the above averagaraantte for

a series of different measurements. If each such measunmoeiuces a set of averages for the integral
I denoted(f);, we have forM measurements that the integral is given by

1 M
(Dar =7 >
=1

We show in sectiof 83 that if we can consider the probabdftgorrelated events to be zero, we can
rewrite the variance of these series of measurements aatiegy/ = N)

2
A~ () - () =2 85)

We note that the standard deviation is proportional to thierse square root of the number of measure-

ments
1

ON \/N
The aim of Monte Carlo calculations is to hawg as small as possible afté¥ samples. The results
from one sample represents, since we are using conceptsstadistics, a ‘'measurement’.
The scaling in the previous equation is clearly unfavoraolmpared even with the trapezoidal rule.

In the previous chapter we saw that the trapezoidal ruléesaartruncation erra®(h?), with h the step
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length. In general, methods based on a Taylor expansionasutie trapezoidal rule or Simpson’s rule
have a truncation error which goes like O(h*), with £ > 1. Recalling that the step size is defined as
h = (b—a)/N, we have an error which goes like N —*.

However, Monte Carlo integration is more efficient in highd@nensions. To see this, let us assume
that our integration volume is a hypercube with sileand dimensiond. This cube contains hence
N = (L/h)? points and therefore the error in the result scalevas/< for the traditional methods.
The error in the Monte carlo integration is however indegamafd and scales as ~ 1/v/N, always!
Comparing this error with that of the traditional methodspws that Monte Carlo integration is more
efficient than an order-k algorithm wheh> 2k. In order to expose this, consider the definition of the
quantum mechanical energy of a system consisting of 10cestin three dimensions. The energy is the
expectation value of the Hamiltonidd and reads

p_ JdR1dRy .. RNV Ry Ry, RN)H(R1 Ry, ... Ry)¥(R1 Ra,... Ry)
[dR1dR;...dRyU*(Ry, Ry, ..., Ry)¥(Ry, Ry, ..., Ry) ’

whereV is the wave function of the system ailtl are the coordinates of each particle. If we want to
compute the above integral using for example Gaussian guadrand use for example ten mesh points
for the ten particles, we need to compute a ten-dimensioniagial with a total ofl03° mesh points.
As an amusing exercise, assume that you have access toddastgst computer with a theoretical peak
capacity of more than 100 Teraflops, thal @8 floating point operations per second. Assume also that
every mesh point corresponds to one floating operation meEmge Estimate then the time needed to
compute this integral with a traditional method like Gaarsjuadrature and compare this number with
the estimated lifetime of the universg,~ 4.7 x 10'”s. Do you have the patience to wait?

We end this first part with a discussion of a brute force Moraedprogram which integrates

1
4
/dm =,
0 1+$2

where the input is the desired number of Monte Carlo samplete that we transfer the variabléum in
order to initialize the random number generator from thefiom ran0. The variableédum gets changed
for every sampling. This variable is called tbeed

What we are doing is to employ a random number generator @irobumbersz; in the interval
[0, 1] through a call to one of the library function&n0, ranl, ran2 or ran3 which generate random
numbers in the intervat € [0, 1]. These functions will be discussed in the next section. Mersimply
employ these functions in order to generate a random variakll random number generators produce
pseudo-random numbers in the interf@ll] using the so-called uniform probability distributigriz)
defined as

1
p(z) = m@(ﬂﬁ —a)O(b—x),
with @ = 0 ogb = 1 and wherel heta is the standard Heaviside function or simply the step faomctif
we have a general interval, b], we can still use these random number generators throughreyetof
variables

z=a+ (b—a)z,

with z in the intervall0, 1].

The present approach to the above integral is often callediét or 'Brute-Force’ Monte-Carlo.
Later on in this chapter we will study refinements to this dergpproach. The reason for doing so is that
a random generator produces points that are distribute¢hé@megenous way in the intervgl, 1]. If our
function is peaked around certain valuesrpfve may end up sampling function values whéie) is
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small or near zero. Better schemes which reflect the pr@sesfithe function to be integrated are thence
needed.

The algorithm is as follows
— Choose the number of Monte Carlo samplés

— Perform aloop ovelN and for each step generate a a random numperthe interval[0, 1] trough
a call to a random number generator.

— Use this number to evaluaj ;).
— Evaluate the contributions to the mean value and the stdr#asiation for each loop.
— After N samples calculate the final mean value and the standardidavia

The following C/C++ prograﬁnmplements the above algorithm using the library functten0 to com-
puter. Note again the inclusion of théb.h file which has the random number generator functimD.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter08/cpp/programl . cpp
#include <iostream >
#include "lib.h"
using namespacestd;

/1 Here we define various functions called by the main progra
/1 this function defines the function to integrate

double func(double x);

/1 Main function begins here
int main ()
{ . .

int i, n;

long idum;

double crude_mc, x, sum_sigma, fx, variance;
cout << "Read in the number of Monte-Carlo samples" << endl;

cin >> n;
crude_mc = sum_sigma=0. ; idum% ;

/1l evaluate the integral with the a crude Mont€arlo method
for (i = 1; i <= n; i++){

x=ran0(&idum) ;

fx=func (x);

crude_mc += fx;

sum_sigma += fxfx;
}
crude_mc = crude_mc/(double) n );
sum_sigma = sum_sigma/@ouble) n );
variance=sum_sigmacrude_ma&crude_mc;

/1l final output
cout << " variance= " << variance <<" Integral = "

>The Fortran 90/95 programs are not listed in the main terty tire found under the corresponding chapter as program-
s/chapter8/progranif90.
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Table 8.1: Results fof = m = 4[01 dz/(1 + x?) as function of number of Monte Carlo sampl¥s

The exact answer %14159F + 00 for the integral and.13581F — 01 for the variance with six leading
digits.

N I ON

10 3.10263E+00 3.98802E-01
100 3.02933E+00 4.04822E-01
1000 3.13395E+00 4.22881E-01
10000 3.14195E+00 4.11195E-01
100000 3.14003E+00 4.14114E-01
1000000 3.14213E+00 4.13838E-01
10000000 3.14177E+00 4.13523E-01

10° 3.14162E+00 4.13581E-01

<< crude_mc <<" Exact= " << M_PI << endl;
} // end of main program
/1 this function defines the function to
double func(double x)

{

integrate

double value;
value = 4/(1.+x%x);
return value;
} /1 end of function to evaluate

We note that agv increases, the integral itself never reaches more thanraeragnt to the fourth or
fifth digit. The variance also oscillates around its exati@d.13581 F — 01. Note well that the variance
need not be zero but one can, with appropriate redefinitibtisecintegral be made smaller. A smaller
variance yields also a smaller standard deviation. Imprarés to this crude Monte Carlo approach will
be discussed in the coming sections.

As an alternative, we could have used the random numberaen@rovided by the C/C++ compiler
through the functionsrand andrand. In this case we initialise it via the functiomand. The random
number generator is called via the functiamd, which returns an integer from 0 to its maximum value,
defined by the variablBAND_MAX as demonstrated in the next few lines of code.

invers_period = 1./RAND MAX;
/I initialise the random number generator
srand (time (NULL) ) ;

/!l obtain a floating number x in [0,1]

X = double(rand () )xinvers_period;

8.1.3 Second illustration, particles in a box

We give here an example of how a system evolves towards a efelled! equilibrium state.

Consider a box divided into two equal halves separated byllastaghe beginning, timeg = 0, there
are N particles on the left side. A small hole in the wall is then mge and one particle can pass through
the hole per unit time.

After some time the system reaches its equilibrium stath @dually many particles in both halves,
N/2. Instead of determining complicated initial conditions gosystem ofN particles, we model the
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system by a simple statistical model. In order to simulaie sgstem, which may consist of > 1
particles, we assume that all particles in the left half hegreal probabilities of going to the right half.
We introduce the label; to denote the number of particles at every time on the le#, sddn, = N —n;
for those on the right side. The probability for a move to tightrduring a time step\¢ is n;/N. The
algorithm for simulating this problem may then look likeghi

— Choose the number of particl@s.

— Make a loop over time, where the maximum time (or maximum nemab steps) should be larger
than the number of particles.

— For every time step\¢ there is a probability,; /N for a move to the right. Compare this probability
with a random numbet.

— If x < n;/N, decrease the number of particles in the left half by onei;e= n; — 1. Else, move
a particle from the right half to the left, i.ey; = n; + 1.

— Increase the time by one unit (the external loop).

In this case, a Monte Carlo sample corresponds to one time\uni
The following simple C/C++-program illustrates this madel

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter08/cpp/program?. cpp

I/l Particles in a box
#include <iostream >
#include <fstream>
#include <iomanip>
#include "1ib.h"
using namespace std;

ofstream ofile;
int main(int argc, charx argv[])

{

char xoutfilename;
int initial_n_particles , max_time, time, random_n, nleft;
long idum;
/I Read in output file, abort if there are too few commaithe arguments
if ( argec <=1 ){

Cout << "Bad Usage: " << argv[0] <<

" read also output file on same line" << endl;

exit(1);
}
else{

outfilename=argv[1];
}

ofile .open(outfilename);

/I Read in data

cout << "Initial number of particles = " << endl| ;
cin >> initial_n_particles;

/Il setup of initial conditions

nleft = initial_n_particles;
max_time = 1@initial_n_particles;
idum = —1;
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/Il sampling over number of particles

for ( time=0; time <= max_time; time++){
random_n = ((nt) initial_n_particlescran0(&idum));
if ( random_n <= nleft){

nleft —= 1;
}
else{
nleft += 1;
}
ofile << setiosflags(ios::showpoint | ios::uppercase);

ofile << setw (15) << time;
ofile << setw(15) << nleft << endl;

}

return O;
} // end main function

The enclosed figure shows the development of this systemnatida of time steps. We note that
for N = 1000 after roughly2000 time steps, the system has reached the equilibrium statere dre
however noteworthy fluctuations around equilibrium.

If we denote(n;) as the number of particles in the left half as a time averater efjuilibrium is
reached we can define the standard deviation as

o=/ (n}) — (m)%. (8.6)

This problem has also an analytic solution to which we canpamm our numerical simulation. If
n;(t) is the number of particles in the left half aftemoves, the change im (¢) in the time intervalAt is

An = (N _J\;”(t) - ”3\(;)> At,

and assuming that; andt are continuous variables we arrive at

dr(t) _, _ 2m(t)
at N’

whose solution is N
n(t) = 5 <1 + e_zt/N> ,

with the initial conditionn; (¢t = 0) = N.

8.1.4 Radioactive decay

Radioactive decay is among one of the classical examples@wnfuMonte-Carlo simulations. Assume
that at the time = 0 we haveN (0) nuclei of typeX which can decay radioactively. At a time> 0 we

are left with NV (¢) nuclei. With a transition probability, which expresses the probability that the system
will make a transition to another state during a time stepnef second, we have the following first-order
differential equation

AN (t) = —wN(t)dt,

whose solution is
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Figure 8.1: Number of particles in the left half of the conti as function of the number of time steps.
The solution is compared with the analytic expressiyn= 1000.

where we have defined the mean lifetimef X as

If a nucleusX decays to a daugther nuclebswhich also can decay, we get the following coupled
equations
dNx (t)
dt

= —wxNx (t),
and
dNy (t)
dt

The program example in the next subsection illustrates hevean simulate such the decay process of
one type of nuclei through a Monte Carlo sampling procedure.

= —wy Ny (t) + wx Nx(t).

8.1.5 Program example for radioactive decay of one type ofeus

The program is split in four tasks, a main program with vasideclarations,

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter08/cpp/program3. cpp

/I Radioactive decay of nuclei
#include <iostream>

#include <fstream>

#include <iomanip>

#include "1ib.h"

using namespace std;

ofstream ofile;

/!l Function to read in data from screen
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void initialise (int&, int&, int&, double& ) ;
[/l The Mc sampling for nuclear decay
void mc_sampling(nt, int, int, double, intx);
/I prints to screen the results of the calculations
void output(int, int, int x);
int main(int argc, charx argv[])
{
char xoutfilename;
int initial_n_particles , max_time, number_cycles;
double decay_probability;
int xncumulative ;
/I Read in output file, abort if there are too few commatthe arguments
if ( argec <=1 ){

cout << "Bad Usage: " << argv[0] <<
" read also output file on same line" << endl;
exit(1);
}
else

outfilename=argv[1];

ofile .open(outfilename);

// Read in data

initialise (initial_n_particles , max_time, number_ced,
decay_probability) ;

ncumulative =new int [max_time+1];

/!l Do the mc sampling

mc_sampling (initial_n_particles , max_time, number_bys,
decay_probability , ncumulative);

/I Print out results

output(max_time, number_cycles, ncumulative);

delete [] ncumulative;

return O;

} // end of main function

followed by a part which performs the Monte Carlo sampling

void mc_sampling (nt initial_n_particles , int max_time,
int number_cycles,double decay_probability ,
int xncumulative)
{
int cycles, time, np, n_unstable, particle_limit;
long idum;

idum=-—1; // initialise random number generator
/!l loop over monte carlo cycles
/' One monte carlo loop is one sample
for (cycles = 1; cycles <= number_cycles; cycles++){
n_unstable = initial_n_particles;
/I accumulate the number of particles per time step per trial
ncumulative [0] += initial_n_particles;
/!l loop over each time step
for (time=1; time <= max_time; time++){
/Il for each time step, we check each particle
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particle _limit = n_unstable;
for ( np = 1; np <= particle_limit; np++) {
if ( ran0(&idum) <= decay_probability) {
n_unstable=n_unstablel;

} // end of loop over particles
ncumulative [time] += n_unstable;
} // end of loop over time steps
} /!l end of loop over MC trials
} /1 end mc_sampling function

and finally functions for reading input and writing outputalaT he latter are not listed here but contained
in teh full listing available at webpage. The input variabie the number of Monte Carlo cycles, the
maximum number of time steps, the initial number of particdd the decay probability. The output
consists of the number of remaining nuclei at each time step.

8.1.6 Brief summary
In essence the Monte Carlo method contains the followingeaignts
— A PDF which characterizes the system

— Random numbers which are generated so as to cover in an asmi@g possible way on the unity
interval [0,1].

— A sampling rule
— An error estimation
— Techniques for improving the errors

In the next section we discuss various PDF's which may bele¥aace here, thereafter we discuss
how to compute random numbers. Secfiod 8.4 discusses Mate Dtegration in general, how to
choose the correct weighting function and how to evalugtgnals with dimensiong > 1.

8.2 Probability distribution functions

Hitherto, we have tacitly used properties of probabilitgtdbution functions in our computation of ex-
pectation values. Here and there we have referred to theramiPDF. It is now time to present some
general features of PDFs which we may encounter when doiggigghand how we define various ex-
pectation values. In addition, we derive the central litnédrem and discuss its meaning in the light of
properties of various PDFs.

The following table collects properties of probability wiilsution functions. In our notation we re-
serve the labeb(x) for the probability of a certain event, while(x) is the cumulative probability.

With a PDF we can compute expectation values of selecteditjgarsuch as

k 1 & k
= L S e,
=1
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Table 8.2: Important properties of PDFs.

Discrete PDF Continuous PDF
Domain {z1,29,23,..., 2N} [a, b]
Probability p(zi) p(x)dx
Cumulative P =Y p(z) P(z) = [T p(t)dt
Positivity 0<p(z;) <1 p(x) >0
Positivity 0<P<1 0<P(x)<1
Monotonic P> Pjitx; >x;  Px;) > Plxj) if x; > x;
Normalization Py =1 Pb)=1

if we have a discrete PDF or ,
@)= [ o,

in the case of a continuous PDF. We have already defined the vaéze, and the variance?.
The expectation value of a quantifyx) is then given by for example

b
m:/fmmmm

We have already seen the use of the last equation when weapé crude Monte Carlo approach to

the evaluation of an integral.
There are at least three PDFs which one may encounter. Tretgea

1. uniform distribution )

:b—a

p(x) O(z — a)o(b - x),

yielding probabilities different from zero in the intenjal b]. The mean value and the variance for

this distribution are discussed in section 8.3.

2. The exponential distribution

p(r) = ae™ ",

yielding probabilities different from zero in the intenjal o) and with mean value

oo o0 1
w= / xp(x)dx = / rae” dr = —
0 0 @

and variance

2 2 2 1
= dr —p° = —.
o /0 xp(z)de — p 3

3. Finally, we have the so-called univariate normal distiim, or just the normal distribution

p(z) = b\/lﬁ exp <—%>

with probabilities different from zero in the intervé-oo, co). The integral[*°_exp (—(z?)dz
appears in many calculations, its value,i%, a result we will need when we compute the mean

value and the variance. The mean value is

[ee) 1 (o] (x_a)Z
M:/O xp(w)dw:bm/_ooxexp <— 552 >dx,
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which becomes with a suitable change of variables

p= b\/—/ bV2(a + bv2y) exp —y°dy = a.

Similarly, the variance becomes

o2 = ﬁ/_i(m—,uﬁexp( %)dm

and inserting the mean value and performing a variable ahamgobtain

2
b\/— b\f 2(bv/2y)? exp (—y°)dy = %bf y* exp (—y*)dy,

and performing a final integration by parts we obtain the dketwn resulto? = b2. It is useful
to introduce the standard normal distribution as well, @gfiby . = a = 0, viz. a distribution
centered around zero and with a varianée= 1, leading to

2
p(x) = \/12_7r exp (—%) (8.7)

The exponential and uniform distributions have simple clative functions, whereas the normal
distribution does not, being proportional to the so-ca#éewr functioner f (x), given by

P = [ (-5

which is difficult to evaluate in a quick way. Later in this gier we will present an algorithm by Box and
Mueller which allows us to compute the cumulative distriatusing random variables sampled from
the uniform distribution.

Some other PDFs which one encounters often in the natueriees are the binomial distribution

p(z) = ( " >y$(1—y)“—r 2=0,1,...,n,

x

wherey is the probability for a specific event, such as the tossirgadin or moving left or right in case
of a random walker. Note thatis a discrete stochastic variable.
The sequence of binomial trials is characterized by thewotig definitions

— Every experiment is thought to consistSfindependent trials.

— In every independent trial one registers if a specific sibmahappens or not, such as the jump to
the left or right of a random walker.

— The probability for every outcome in a single trial has theeaalue, for example the outcome of
tossing a coin is always/2.

In the next chapter we will show that the probability distitibn for a random walker approaches the
binomial distribution.
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In order to compute the mean and variance we need to recalldi&sbinomial formula
“ m
m __ nipm—n
(a+0b) —Z<n>ab ,
n=0
which can be used to show that
" n
Z( . >y$(1—y)”‘x=(y+1—y)"= 1,
=0

the PDF is normalized to one. The mean value is

n

= Z < > 1—y)" xzz_:xx!(nniiw)!y‘c(l—y)"‘x,

resulting in

(n—1)! _ (2
K= wa—l n—lz(x—l))!yx 1(1_y) ’

which we rewrite as
n—1 n—1-v __ n—1 _
—nyE ¥ (1 —vy) =ny(y+1-y)""" =ny.

The variance is slightly trickier to get, see the next exsasi It reads? = ny(1 — y).
Another important distribution with discrete stochastariablesz is the Poisson model, which re-
sembles the exponential distribution and reads

p(r)=—e " x=0,1,...,;A>0.

In this case both the mean value and the variance are easalctdate,

& )\:vl

— A o)
p=d wge =N gy

and the variance i8> = \. Example of applications of the Poisson distribution is toenting of
the number ofa-particles emitted from a radioactive source in a given tinterval. In the limit of
n — oo and for small probabilitieg;, the binomial distribution approaches the Poisson digtidbn.
SettingA = ny, with y the probability for an event in the binomial distribution w&n show that

im (") gt (1 —y)" ‘Ai—v -
Tm (M )yt -y e =S

see for example Refs. [46, 47] for a proof.
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8.2.1 Multivariable Expectation Values

Let us recapitulate some of the above concepts using a tise@F (which is what we end up doing
anyway on a computer). The mean value of a random vari&blégth rangex, zo,..., N is

1 N
() == ;xm(mi%

and the variance is

N 1 N

<02> - N Z(% - <x>)2p(xi) - N Z((% - Mz‘)2>-

i=1 i=1
Assume now that we have two independent sets of measuretigraiad X, with corresponding mean
and variancg:; andyus and(o?)x, and(a?)x,. It follows that if we define the new stochastic variable

Y:X1+X27

we have
My = p1 + [2,
and
(@®)y = (Y = py)?) = (X1 — 1)) + (X2 — p2)?) + 2((X1 — pua) (X2 — pi2))-
It is useful to define the so-called covariance, given by

(cov(X1, X)) = (X1 — p1) (X2 — p2))

where we consider the averagesand» as the outcome of two separate measurements. The covariance
measures thus the degree of correlation between variahkesan then rewrite the variance Yfas

2
(0)y =Y ((X; = pj)%) + 2cov(X1, X3),
j=1

which in our notation becomes
<0'2>Y = (02>X1 + <0'2>X2 + 2cov(X7, X3).

If X1 and X, are two independent variables we can show that the covarisnzero, but one cannot

deduce from a zero covariance whether the variables ar@endent or not. If our random variables
which we generate are truly random numbers, then the covarighould be zero. We will see tests of
standard random number generators in the next section. Aavaneasure the correlation between two
sets of stochastic variables is the so-called correlatioction p( X7, X2) defined as

(cov(X1, X2)) .
V(0% x,(0%)x,

Obviously, if the covariance is zero due to the fact that tugables are independent, then the correlation
is zero. This quantity is often called the correlation coéffit betweenX; and X,. We can extend this
analysis to a set of stochastic variablés= (X; + X3 + --- + Xx). We now assume that we hape
different measurements of the mean and variance of a givéablea Each measurement consists again
of N measurements, although we could have chosen the latterdiffeent from N. As an example,

p(X1, Xo) = (8.8)
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every evening forV days you measuré&’ throws of two dice. The mean and variance are defined as
above. The total mean value is defined as

(y) =) {a)- (8.9)
i=1
The total variance is however now defined as
N N
(@)y = (Y = py)?) =D (X5 —p)* =D (o®)x; + 22 (Xk — ), (8.10)
j=1 7=1 i<k
or
N N
= (0%)x, +2)_ cov(X;, Xp). (8.11)
j=1 j<k

If the variables are independent, the covariance is zerdrandariance is reduced to
N
= (o?)x;, (8.12)
j=1
and if we assume that all sets of measurements produce theevgaiance(o?), we end up with
(c%)y = N{(?). (8.13)

Another important quantity is the so called covariance,raawh of the above defined variance. Con-
sider again the sdtX; } of n stochastic variables (not necessarily uncorrelated) théhmultivariate PDF

P(x1,...,z,). Thecovarianceof two of the stochastic variableX; and X, is defined as follows:
Cov(Xi, Xj) = ((zi — {za)(x; — (27)))
= / (@i = (z)(zj — (z5) P(z1, ..., 2n) day ... dxy (8.14)
with

(:L"Z->:/---/xiP(ml,...,xn)dml...dajn

If we consider the above covariance as a maftix= Cov(X;, X;), then the diagonal elements are just
the familiar variancesy;; = Cov(X;, X;) = Var(X;). It turns out that all the off-diagonal elements are
zero if the stochastic variables are uncorrelated. Thiasy & show, keeping in mind the linearity of the
expectation value. Consider the stochastic variallleand X;, (i # j):

Cov(X;, Xj) = (2 — (z:))(2; — (x7)))
zizj — xi(x5) — ()2 + (@) (25))
i) — (@ilzj)) — ((@a)ay) + (@) (;))
ziws) — (wi)(x;) — (@) (x;) + (xi)(z;)
i) — (@i)(zj)

If X; andX; are independent, we gét;z;) = (x;)(x;), resulting inCov(X;, X;) =0 (i # j).

{
(ziz
(ziz
(ziz
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Also useful for us is the covariance of linear combinatiohstochastic variables. LétX;} and{Y;}
be two sets of stochastic variables. Let a{sg} and{b;} be two sets of scalars. Consider the linear

combination:
U=> aX;, V=) bY
i J

By the linearity of the expectation value, it can be shown [aat:

Cov(U,V) = ZaibjCov(Xi,Yj)
ij
Now, since the variance is justr(X;) = Cov(X;, X;), we get the variance of the linear combination
U= Zz a; X;:
Var(U) = > aja;Cov(X;, X;) (8.15)

.3
And in the special case when the stochastic variables areratated, the off-diagonal elements of the
covariance are as we know zero, resulting in:

Var(U) = ZG?COV(XZ',XZ‘) = Za?Var(Xi)

Var(z a; X;) = Z a?Var(X;)

which will become very useful in our study of the error in thean value of a set of measurements.

Now that we have constructed an idealized mathematicaldwaork, let us try to apply it to empirical
observation. Examples of relevant physical phenomena mapbtntaneous decays of nuclei, or a purely
mathematical set of numbers produced by some determimigt@hanism. It is the latter we will focus
on here, a pseudo random number generator (PRNG). Thdistdtjgroperties of a PRNG, described
through the mathematical framework presented here, wileran important impact on the limits of
validity of methods that utilize PRNGs.

A stochastic procesis a process that produces sequentially a chain of values:

{:L'l,:L'g,... l’k,}

We will call these values oumeasurementand the entire set as our measusagnple The action of
measuring all the elements of a sample we will call a stoahagperiment(since, operationally, they
are often associated with results of empirical observatiosome physical or mathematical phenomena;
precisely an experiment). We assume that these values sirdulied according to some PDFK, (),
whereX is just the formal symbol for the stochastic variable whoB&®s p (). Instead of trying to
determine the full distributiop we are often only interested in finding the few lowest momgdiits the
meanu y and the variance .

In practical situations a sample is always of finite size.that size be:. The expectation value of a
sample, thesample mearis then defined as follows:

I
;L'nE—E T
n

k=1

Thesample variancés:
1 n
V. =— — Zp)?
ar(x) - E (T — Tn)

k=1
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its square root being theandard deviation of the sampl&hesample covariances:

Cov(z) = %Z(xk — Zp) (2] — Tp)

kl

Note that the sample variance is the sample covariance wtithe cross terms. In a similar manner as
the covariance in Eq[{8.14) is a measure of the correlat&wéen two stochastic variables, the above
defined sample covariance is a measure of the sequentialat@mn between succeeding measurements
of a sample.

These quantities, being known experimental values, dfiignificantly from and must not be con-
fused with the similarly named quantities for stochastidaldes, mean.x, varianceVar(X) and co-
varianceCov(X,Y).

The law of large numbers (see for example [49]) states thiteesize of our sample grows to infinity,
the sample mean approaches the true meawof the chosen PDF:

lim Z, = pux
n—oo
The sample meaf,, works therefore as an estimate of the true mean

What we need to find out is how good an approximatigris to . . In any stochastic measurement,
an estimated mean is of no use to us without a measure of @s érquantity that tells us how well we
can reproduce it in another experiment. We are therefoeedsted in the PDF of the sample mean itself.
Its standard deviation will be a measure of the spread of Eampans, and we will simply call it the
error of the sample mean, or just sample error, and denote détby. In practice, we will only be able
to produce arestimateof the sample error since the exact value would require tigvigdge of the true
PDFs behind, which we usually do not have.

The straight forward brute force way of estimating the sangptor is simply by producing a number
of samples, and treating the mean of each as a measuremerdtafidard deviation of these means will
then be an estimate of the original sample error. If we ardlen® produce more than one sample, we
can split it up sequentially into smaller ones, treatingheiacthe same way as above. This procedure
is known asblockingand will be given more attention shortly. At this point it i®ith while exploring
more indirect methods of estimation that will help us untierd some important underlying principles
of correlational effects.

Let us first take a look at what happens to the sample erroreasitle of the sample grows. In
a sample, each of the measurementan be associated with its own stochastic variallle The
stochastic variablé,, for the sample mean,, is then just a linear combination, already familiar to us:

1 n
Xn=- d X
i=1

All the coefficients are just equal/n. The PDF ofX,,, denoted by (z) is the desired PDF of the
sample means. The probability density of obtaining a saimmglanz,, is the product of probabilities of

obtaining arbitrary values;, z», . .., ,, with the constraint that the mean of the $et} is z,,:
r1t+ax2+ -+
pyn(ﬂc) = /pX(l'l)"‘/pX(l’n) 5(:13— ! 2 - ") dx,, - - dx;

And in particular we are interested in its variaiéer (X ,).
It is generally not possible to expreps, (x) in a closed form given an arbitrary PO, and a
numbern. But for the limitn — oo it is possible to make an approximation. The very importasuit
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is calledthe central limit theorem It tells us that as: goes to infinity,ps (z) approaches a Gaussian
distribution whose mean and variance equal the true meawaiahce,. ,, ando%, respectively:

. n 1/2 _n(;v zn)2
A% 0= \grvary) ¢ T (©19

For a proof of the central limit theorem, see the next subm®ctn practice, even for small values of
we get a nice correspondence between numerical experirmedthe central limit theorem.

Recall now Eq.[[85) for the variance of a linear combimatib stochastic variables. The desired
varianceVar (X, ), that is the sample error squared?., is by that given by:

etk = Var(X,,) = % Z Cov(X;, X;) (8.17)
)

We see now that in order to calculate the exact error of thgpkawith the above expression, we would
need the true means, of the stochastic variable¥;. To calculate these requires that we know the true
multivariate PDF of all theX;. But this PDF is unknown to us, we have only got the measur&sman
one sample. The best we can do is to let the sample itself betemate of the PDF of each of th§;,
estimating all properties oX; through the measurements of the sample.

Our estimate Oﬁxi is then the sample meatitself, in accordance with the the central limit theorem:

Cov(Xy, Xj) = ((zi — () (2 — (23))) = (@i — 7)(2; — 7))

~ %Z (% D (k= &)1 - m) = %% (w — Zn) (21 — Tn)
l k kl
= %Cov(w)

By the same procedure we can use the sample variance as matestif the variance of any of the
stochastic variableX;:

Var(X;) = (@i — (zi)) = (x; — Tn)
% Z(*'Ek — )
k=1

= Var(z) (8.18)

Q

Now we can calculate an estimate of the ernary of the sample mean,:

ark = ZCOV (Xi, X5)
91
~ n2z —Cov(zx —n ECOV( x)
_ %Cov(a:) (8.19)
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which is nothing but the sample covariance divided by thelmemof measurements in the sample.

In the special case that the measurements of the sample @aalated (equivalently the stochastic
variablesX; are uncorrelated) we have that the off-diagonal elementseotovariance are zero. This
gives the following estimate of the sample error:

aryk = 2 ZCOV Xi, X;) =3 Z\/ar

2 Z Var(z

= EVar(m) (8.20)

Q

where in the second step we have used EQ.18.18). The errtvea§ample is then just its standard
deviation divided by the square root of the number of measargs the sample contains. This is a very
useful formula which is easy to compute. It acts as a first@ppration to the error, but in numerical
experiments, we cannot overlook the always present ctioeta

For computational purposes one usually splits up the emimf&rr%{, given by Eq.[819), into two
parts:

err¥y = l\/'ar(a:) + l(COV(:U) — Var(z))
N o2
k<l

The first term is the same as the error in the uncorrelated egs€8.2D). This means that the second
term accounts for the error correction due to correlatiofwben the measurements. For uncorrelated
measurements this second term is zero.

Computationally the uncorrelated first term is much easi¢rdat efficiently than the second.

1 n
Var(x) = — xk—wn = x ’2
=13 n = (1302 -
We just accumulate separately the valuésindz for every measurementwe receive. The correlation
term, though, has to be calculated at the end of the expetisiece we need all the measurements to
calculate the cross terms. Therefore, all measuremenéstbde stored throughout the experiment.

Let us analyze the problem by splitting up the correlatiomtato partial sums of the form:

1 n—d

fa= D (k= %) (@rsa — Zn)

k=1
The correlation term of the error can now be rewritten in eohf,;:

n—1
2 S g~ E) ) =23 1
d=1

k<l

The value off; reflects the correlation between measurements separathd Histancel in the samples.
Notice that ford = 0, f is just the sample varianc®ar(z). If we divide f, by Var(x), we arrive at the
so calledautocorrelation function

Jd

Var(x)

Rqg =
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which gives us a useful measure of the correlation pair tairos starting always at for d = 0.
The sample error (see EQ. (8 21)) can now be written in teffrtteecautocorrelation function:

-1

Var(z) + % - Var(x) Z Ja

1
n — Var(z)
n—1
= (1 +2 /<;d> —Var(x
d=1
-
n

3

ark =

QU

- Var(z) (8.22)

and we see thatrry can be expressed in terms the uncorrelated sample variemee & correction
factor = which accounts for the correlation between measurements.calV this correction factor the
autocorrelation time

T=1+42) kg (8.23)

For a correlation free experiment,equals 1. From the point of view of Eq.{8]22) we can interpret
a sequential correlation as an effective reduction of thaber of measurements by a factar The
effective number of measurements becomes:

n
Neff = —
-

To neglect the autocorrelation timewill always cause our simple uncorrelated estimateamﬁ ~
Var(z)/n to be less than the true sample error. The estimate of the wilidoe too “good”. On the
other hand, the calculation of the full autocorrelationdiposes an efficiency problem if the set of
measurements is very large.

In the next subsection we combine these results with thealdimit theorem in order to obtain the
classical expression for the standard deviation.

8.2.2 The central limit theorem

Suppose we have a PD¥x) from which we generate a seridsof averagesgz;). Each mean valuér;)
is viewed as the average of a specific measurement, e.gwitigralice 100 times and then taking the
average value, or producing a certain amount of random nignber notational ease, we set) = z;
in the discussion which follows.
If we compute the meanof N such mean values;

_Tr+ 224+ TN
= N ,

the question we pose is which is the PDF of the new variable

The probability of obtaining an average valués the product of the probabilities of obtaining arbi-
trary individual mean values;, but with the constraint that the average idMe can express this through
the following expression

:/dxlp(xl)/dm2p($2)---/dep($N)5(Z— Tt 22 ";[""HﬂN)’
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where thed-function enbodies the constraint that the mean.isAll measurements that lead to each
individual x; are expected to be independent, which in turn means that wexgaess as the product
of individual p(z;).

If we use the integral expression for théunction

d(z I ) = o dge ,

—00

_w1+$2+”'+(£1\7 1 /OO (Zq(z_ww

and inserting:**4—%4 wherey is the mean value we arrive at

00 00 N
2) = - / dqelia—) [ / dmp(x)e(iq(u—x)/N)] ,

T or oo
with the integral over resulting in

[e.e]

/OO dzp(x) exp (ig(p — ) /N) = /

—00 — 00

) —T 2(u—x)?
dxp(x) [1+ Q('uN )_q(g]\ﬂ) —i—}

The second term on the rhs disappears since this is just the ar& employing the definition of we
have

o] 2 .2
(ig(n—2)/N) _ 1 _ L9
/ dxp(z)e 1 e +...,

— o0

resulting in

{/_(:dxp(w)exp(iq(u—x)/N)}N% [1—%+...]N,

and in the limitN — oo we obtain

D(z —71 ex —7(7:_'“)2
) = V) o 2<o—/m2>’

which is the normal distribution with variane&, = o/, whereo is the variance of the PD{z) and
w is also the mean of the PDKx).

Thus, the central limit theorem states that the HIDF) of the average ofV random values corre-
sponding to a PDp(z) is a normal distribution whose mean is the mean value of thE p2) and
whose variance is the variance of the PR{E) divided by N, the number of values used to compute

The theorem is satisfied by a large class of PDFs. Note hovileaefor a finiteV, it is not always
possible to find a closed expression fgr). The central limit theorem leads then to the well-known
expression for the standard deviation, given by

g

ON = ——.
N \/N

The latter is true only if the average value is known exacElyis is obtained in the limiftV.— oo only.
Because the mean and the variance are measured quantitiddairethe familiar expression in statistics

g

N-—-1

ON ~
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8.3 — Random numbers

8.3 Random numbers

Uniform deviates are just random numbers that lie withinecdjed range (typically 0 to 1), with any one
number in the range just as likely as any other. They are hiaratords, what you probably think random
numbers are. However, we want to distinguish uniform degiétom other sorts of random numbers, for
example numbers drawn from a normal (Gaussian) distribuifepecified mean and standard deviation.
These other sorts of deviates are almost always generatpdriyrming appropriate operations on one
or more uniform deviates, as we will see in subsequent sexti®o, a reliable source of random uniform
deviates, the subject of this section, is an essential ingildlock for any sort of stochastic modeling
or Monte Carlo computer work. A disclaimer is however appiadp. It should be fairly obvious that
something as deterministic as a computer cannot generegly pandom numbers.

Numbers generated by any of the standard algorithms aralityreseudo random numbers, hope-
fully abiding to the following criteria:

1. they produce a uniform distribution in the interval [0,1]
2. correlations between random numbers are negligible

3. the period before the same sequence of random numbenseatee is as large as possible and
finally

4. the algorithm should be fast.

That correlations, see below for more details, should berasl @s possible resides in the fact that
every event should be independent of the other ones. As anpdgaa particular simple system that
exhibits a seemingly random behavior can be obtained freniténative process

Tip1 = cxi(1 — z;),

which is often used as an example of a chaotic systasconstant and for certain values«dndz, the
system can settle down quickly into a regular periodic sege®f valuescy, x2, z3,.... Forzg = 0.1
andc = 3.2 we obtain a periodic pattern as shown in [Eigl 8.2. Changittyc = 3.98 yields a sequence
which does not converge to any specific pattern. The valuas s€éem purely random. Although the
latter choice ofc yields a seemingly random sequence of values, the varidues/afz harbor subtle
correlations that a truly random number sequence would osggss.

The most common random number generators are based onlet-calear congruential relations
of the type

N; = (aN;—1 + ¢)MOD(M),

which yield a number in the interval [0,1] through
€T, = NZ/M

The numbeV/ is called the period and it should be as large as possiblévgriglthe starting value, or
seed. The functiodlOD means the remainder, that is if we were to evalyagMOD(9), the outcome
is the remainder of the divisiot/9, namely4.

The problem with such generators is that their outputs atiegie; they will start to repeat themselves
with a period that is at mos¥/. If however the parametersandc are badly chosen, the period may be

even shorter.

191



Outline of the Monte Carlo strategy

12 | | |
11k L5
1_ , , , —
|| I [ v

0.94,!,15!&”*,‘.“‘ |
0.8H | |
= 07H
0.6 {11!
0.5l
0.4H} |
03! |
0.2

Figure 8.2: Plot of the logistic mapping;, = cz;(1 — z;) for zo = 0.1 andc = 3.2 andc = 3.98.

Consider the following example
N; = (6N;—1 + 7)MOD(5),

with a seedVy = 2. This generator produces the sequefice 3,0,2,4,1,3,0,2,......,i.e.,a sequence
with period5. However, increasing/ may not guarantee a larger period as the following exammesh

N; = (27N;_; + 11)MOD(54),

which still, with Ny = 2, results inl1, 38,11, 38,11, 38, ..., a period of jus®.

Typical periods for the random generators provided in tloggam library are of the order ef 10°
or larger. Other random number generators which have beacwreasingly popular are so-called shift-
register generators. Inthese generators each successi®ndepends on many preceding values (rather
than the last values as in the linear congruential gengradtor example, you could make a shift register
generator whosé#h number is the sum of the— ith andl — jth values with moduldl/,

Ny = (CLNI_Z‘ + CNl_j)MOD(M).

Such a generator again produces a sequence of pseudoranddrars but this time with a period much
larger thanM. It is also possible to construct more elaborate algorithyngcluding more than two past
terms in the sum of each iteration. One example is the gemwepatMarsaglia and Zaman [50] which
consists of two congruential relations

N; = (N;_3 — N;_1)MOD(23! — 69), (8.24)

followed by
N; = (69069N;_;1 + 1013904243)MOD (23?), (8.25)

which according to the authors has a period larger fan
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8.3 — Random numbers

Moreover, rather than using modular addition, we could hsebitwise exclusive-ORK) operation
so that

Ny = (Ni—i) ® (N1—5)

where the bitwise action ab means that ifV;_; = N;_; the result is0 whereas ifN;_; # N;_; the
result is1. As an example, consider the case whafe; = 6 andN;_; = 11. The first one has a bit
representation (using 4 bits only) which re@d40 whereas the second number s 1. Employing the
@ operator yieldd 101, or 23 4 22 + 20 = 13.

In Fortran90, the bitwise> operation is coded through the intrinsic functiitiOR,(m, n) wherem
andn are the input numbers, while i@' it is given bym A n. The program below (from Numerical
Recipes, chapter 7.1) shows the functiam0 implements

However, since: and N;_; are integers and their multiplication could become grethan the standard
32 bit integer, there is a trick via Schrage’s algorithm vkhapproximates the multiplication of large
integers through the factorization

M =aq—+r,
where we have defined
q = [M/al,
and
r =M MOD a.

where the brackets denote integer division. In the codewb#éte numbers; andr are chosen so that
r < q. To see how this works we note first that

(aN;—1)MOD(M) = (aN;—1 — [N;—1/q|M)MOD(M), (8.26)

since we can add or subtract any integer multiplé@ofrom aN;_,. The last termiN;_; /¢ MMOD (M)
is zero since the integer divisidiV; _; /¢] just yields a constant which is multiplied wiflf. We can now

rewrite Eq. [8.2b) as

(aN;—1)MOD(M) = (aN;—1 — [Ni—1/q](ag + r))MOD (M), (8.27)
which results in
(aN;—1)MOD(M) = (a(Ni-1 — [Ni-1/qlq) — [Ni-1/q]r)) MOD(M), (8.28)
yielding
(aN;—1)MOD(M) = (a(N;—1MOD(q)) — [N;—1/q|r)) MOD(M). (8.29)

The term[N;_ /¢|r is always smaller or equaV;_;(r/q) and withr < ¢ we obtain always a number
smaller thanV;_1, which is smaller thard/. And since the numbeW;_;MOD(q) is between zero and
q — 1 thena(N,_1MOD(q)) < aq. Combined with our definition of = [A/a] ensures that this term
is also smaller thal/ meaning that both terms fit into a 32-bit signed integer. Naofrthese two terms
can be negative, but their difference could. The algorittelow adds)/ if their difference is negative.
Note that the program uses the bitwiseoperator to generate the starting point for each generafian
random number. The period 8fin0 is ~ 2.1 x 10°. A special feature of this algorithm is that is should
never be called with the initial seed setito
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[ x
xx The function
ok rano ()

xx 1S an "Minimal" random number generator of Park and Miller

xx (see Numerical recipe page 279). Set or reset the input value
xx idum to any integer value (except the unlikely value MASK)

xx to initialize the sequence; idum must not be altered between
xx calls for sucessive deviates in a sequence.

xx The function returns a uniform deviate between 0.0 and 1.0.
*/

double ranO(long &idum)

{
const int a 16807, m = 2147483647, q = 127773,
const int r 2836, MASK = 123459876;
const double am = 1./m;

long K;
double ans;
idum ~= MASK;

k = (xidum)/q;
idum = ax(idum — kxq) — rxk;
/I add m if negative difference
if (idum < 0) idum += m;
ans=amx(idum) ;
idum "= MASK;
return ans;
} /1 End: function ranO()

The other random number generatoas 1, ran2 andran3 are described in detail in Ref. [36]. Here we
limit ourselves to study selected properties of these gdoes.

8.3.1 Properties of selected random number generators

As mentioned previously, the underlying PDF for the genenabf random numbers is the uniform
distribution, meaning that the probability for finding a nbenz in the interval [0,1] igp(z) = 1.

A random number generator should produce numbers whiclomanly distributed in this interval.
Table[83B shows the distribution df = 10000 random numbers generated by the functions in the
program library. We note in this table that the number of t®in the various interval§.0 — 0.1,

0.1 — 0.2 etc are fairly close ta000, with some minor deviations.
Two additional measures are the standard deviatiand the meap = (x).
For the uniform distribution withV points we have that the average®) is

k 1 & k
(x%) = N Z%p(lﬂz’),
=1

and taking the limitv=— oo we have

1 1
1
(%) :/0 dzp(x)z” :/0 daa® = T

sincep(x) = 1. The mean valug is then
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8.3 — Random numbers

while the standard deviation is

o=+/(x?) —p?= = (.2886.

[\)

The various random number generators produce results velgieke rather well with these limiting
values.

Table 8.3: Number af-values for various intervals generated by 4 random numbeegtors, their cor-
responding mean values and standard deviations. All alonk have been initialized with the variable
idum = —1.

x-bin ran0 ranl ran2 ran3
0.0-0.1 1013 991 938 1047
0.1-0.2 1002 1009 1040 1030
0.2-0.3 989 999 1030 993
0.3-0.4 939 960 1023 937
0.4-0.5 1038 1001 1002 992
0.5-0.6 1037 1047 1009 1009
0.6-0.7 1005 989 1003 989
0.7-0.8 986 962 985 954
0.8-0.9 1000 1027 1009 1023
0.9-1.0 991 1015 961 1026
1 0.4997 0.5018 0.4992 0.4990

o 0.2882 0.2892 0.2861 0.2915

There are many other tests which can be performed. Oftentargiof the numbers generated may
reveal possible patterns.

Since our random numbers, which are typically generatedalinear congruential algorithm, are
never fully independent, we can then define an importantwitbath measures the degree of correlation,
namely the so-called auto-correlation functiop

(Tippxi) — <95i>2
(@7) — (x)? 7

with Cy = 1. Recall thatr? = (2?) — (x;)2. The non-vanishing of’; for k& # 0 means that the random
numbers are not independent. The independence of the randorbers is crucial in the evaluation of
other expectation values. If they are not independent, ssuraption for approximating in Eq. (85)
is no longer valid.

The expectation values which enter the definitiorpfare given by

Cy, =

1 Nk
(Tivrai) = N —k Z TiLitk-
i=1

Fig.[8:3 compares the auto-correlation function calcdldtem ran0 andranl. As can be seen, the
correlations are non-zero, but small. The fact that catiorla are present is expected, since all random
numbers do depend in some way on the previous numbers.
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Figure 8.3: Plot of the auto-correlation functiof for variousk-values forN = 10000 using the random
number generatorszn0 andranl.

8.4 Improved Monte Carlo integration

In section 8l we presented a simple brute force approaaftegration with the Monte Carlo method.
There we sampled over a given number of points distributédrmly in the interval|0, 1]

N
1= [ 16 dm~2wzfxzzﬁz =) = (f),

with the weightsy; = 1.

Here we introduce two important topics which in most casgzave upon the above simple brute
force approach with the uniform distributigiz) = 1 for x € [0, 1]. With improvements we think of a
smaller variance and the need for fewer Monte Carlo samplégugh each new Monte Carlo sample
will most likely be more times consuming than correspondings of the brute force method.

— The first topic deals with change of variables, and is linkethe cumulative functiorP(x) of a
PDFp(z). Obviously, not all integration limits go from = 0 to « = 1, rather, in physics we are
often confronted with integration domains likec [0, c0) or z € (—o0, c0) etc. Since all random
number generators give numbers in the interval [0, 1], we need a mapping from this integration
interval to the explicit one under consideration.

— The next topic deals with the shape of the integrand itsedft us for the sake of simplicity just
assume that the integration domain is again from 0 to z = 1. If the function to be integrated
f(x) has sharp peaks and is zero or small for many values®f0, 1], most samples of (x) give
contributions to the integrdl which are negligible. As a consequence we need méassgmples to
have a sufficient accuracy in the region whé¢fe) is peaked. What do we do then? We try to find
anew PDFp(x) chosen so as to matgh{z) in order to render the integrand smooth. The new PDF
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8.4 — Improved Monte Carlo integration

p(z) has in turn anc domain which most likely has to be mapped from the domain efuthiform
distribution.

Why care at all and not be content with just a change of vae@abi cases where that is needed?
Below we show several examples of how to improve a Monte Gatégration through smarter choices
of PDFs which render the integrand smoother. However orssicl&xample from quantum mechanics
illustrates the need for a good sampling function.

In quantum mechanics, the probability distribution fuaotis given byp(z) = ¥(x)*¥(x), where
U(z) is the eigenfunction arising from the solution of e.g., tineetindependent Schrédinger equation.
If U(z) is an eigenfunction, the corresponding energy eigenvalgé/en by

H(2)¥(z) = E¥(x),

where H(z) is the hamiltonian under consideration. The expectatidnevaf H, assuming that the
quantum mechanical PDF is normalized, is given by

(H) = / Ao (2)" H (2) U (z).

We could insert¥ (z) /W (x) right to the left ofH and rewrite the last equation as

(H) = /dxw(x)*\p(x)gg)) U(z), (8.30)

or

(i) = / dap(x) (),

which is on the form of an expectation value with

The crucial point to note is that i (z) is the exact eigenfunction itself with eigenvalBethenH ()
reduces just to the constahtand we have

() = [ dpla)E = E.

sincep(x) is normalized.

However,in most cases of interest we do not have the e¥fadBut if we have made a clever choice
for W(z), the expressiorH () exhibits a smooth behavior in the neighbourhood of the esalcttion.
The above example encompasses the main essence of the Motdgkilosophy. It is a trial approach,
where intelligent guesses lead to hopefully better results

8.4.1 Change of variables

The starting point is always the uniform distribution

dr 0<z<1
p(m)dw—{ 0 else
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with p(z) = 1 and satisfying

/_Zp(ac)dw = 1.

All random number generators provided in the program lipgenerate numbers in this domain.
When we attempt a transformation to a new variable y we have to conserve the probability

p(y)dy = p(z)dx,

which for the uniform distribution implies

p(y)dy = dz.

Let us assume thaty) is a PDF different from the uniform PDKx) = 1 with z € [0, 1]. If we integrate
the last expression we arrive at

x(y) = /0 yp(y’)dy’,

which is nothing but the cumulative distribution ofy), i.e.,

z(y) = P(y) = /pr(y’)dy’-

This is an important result which has consequences for eakmhprovements over the brute force
Monte Carlo.

To illustrate this approach, let us look at some examples.

Transformed uniform distribution
Suppose we have the general uniform distribution

dy

2y <y <b
duy = b—a 2=Y=
py)dy { sy

If we wish to relate this distribution to the one in the in@rv € [0, 1] we have

and integrating we obtain the cumulative function
Yy dy/
x(y) - /a b - CL’

y=a+ (b—a)z,

yielding

a well-known result!
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Exponential distribution

Assume that
ply) =€,
which is the exponential distribution, important for theabsis of e.g., radioactive decay. Agapx)
is given by the uniform distribution with: € [0, 1], and with the assumption that the probability is

conserved we have
p(y)dy = e Ydy = dz,

which yields after integration

z(y) = P(y) = /Oy exp (—y')dy’ =1 —exp (—y),

or
y(z) = —In(1 — z).

This gives us the new random variabjein the domainy € [0,0c0) determined through the random
variablex € [0, 1] generated by functions likezn0.
This means that if we can factor oatp (—y) from an integrand we may have

- /0 " Fly)dy = /0 " exp (~y)Gy)dy

which we rewrite as
o) 1 1 N
|| e s = [ Gt = 36

wherezx; is a random number in the interval [0,1]. We have changedrtggration limits in the second
integral, since we have performed a change of variablesceSire have used the uniform distribution
defined forz € [0, 1], the integration limits change tand1. The variabley is now a function ofx.
Note also that in practical implementations, our random lmemgenerators for the uniform distribution
never return exactly 0 or 1, but we we may come very close. Waldhhus in principle set € (0, 1).

The algorithm for the last example is rather simple. In thecfion which sets up the integral, we
simply need to call one of the random number generatorsrlife), ranl, ran2 or ran3 in order to
obtain numbers in the interval [0,1]. We obtajrby the taking the logarithm ofl — z). Our calling
function which sets up the new random variaplaay then include statements like

idum=-1;
x=ran0(&idum) ;
y=-log(l.-x);

Another example

Another function which provides an example for a PDF is

dy

p(y)dy = m>
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with n > 1. It is normalizable, positive definite, analytically intagle and the integral is invertible,
allowing thereby the expression of a new variable in termth@fold one. The integral

/OO dy B 1
o (a+by)™  (n—1)ba"t’

gives
(n —1)ba"!
dy = dy,
p(y)dy @by Y
which in turn gives the cumulative function
Y (n—1)ba™?
= P — S d I __
z(y) = P(y) /O PETSA
resulting in
1
-1
() (14+b/ay)m1’
or

Yy = % ((1 — )Y 1> .

With the random variable: € [0, 1] generated by functions likean0, we have again the appropriate
random variabley for a new PDF.

Normal distribution

For the normal distribution, expressed here as

9(z,y) = exp (—(2* + y*) /2)dzdy.

it is rather difficult to find an inverse since the cumulativistidbution is given by the error function

erf(z).

If we however switch to polar coordinates, we haved@ndy

1/2 0= tan‘lz,

— (22 + 42
r= (2" +y°) )

resulting in
g(r,0) = rexp (—r?/2)drds,

where the anglé could be given by a uniform distribution in the regi@n 2x]. Following example 1
above, this implies simply multiplying random numberse [0, 1] by 27. The variabler, defined for

r € [0,00) needs to be related to to random numhers [0,1]. To achieve that, we introduce a new
variable

and define a PDF
exp (—u)du,

with v € [0, 00). Using the results from example 2, we have that
u=—In(l—21'),
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wherez’ is a random number generated f6re [0, 1]. With
x = rcos(0) = V2ucos(6),

and
y = rsin(6) = v2usin(6),

we can obtain new random numbaetg, through

x =+/=2In(1 — x')cos(H),

and
y =+/—2In(1 — z')sin(0),
with 2’ € [0, 1] andf € 270, 1].
A function which yields such random numbers for the normatritiution would include statements
like

idum=-1;
radius=sqrt(-2*1n(1.-ran0(idum)));
theta=2*pi*ran0(idum) ;
x=radius*cos(theta);
y=radius*sin(theta);

8.4.2 Importance sampling

With the aid of the above variable transformations we addresv one of the most widely used ap-
proaches to Monte Carlo integration, namely importancepiam

Let us assume that(y) is a PDF whose behavior resembles that of a funciatefined in a certain
interval[a, b]. The normalization condition is

/abp(y)dy =1

We can rewrite our integral as
b b
F(y)
I:/FydyZ/py dy
a ) a ( )p(y)

This integral resembles our discussion on the evaluatictheoénergy for a quantum mechanical system
in Eq. [830).

Since random numbers are generated for the uniform diswibw(x) with = € [0, 1], we need to
perform a change of variablas— y through

2(y) = / o)y,

where we used
p(z)dx = dz = p(y)dy.
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If we can invertz(y), we findy(z) as well.
With this change of variables we can express the integrabof{4.2) as

PPy, [P Fy)
= /a P(y) p(y) dy = i py(z))

meaning that a Monte Carlo evalutaion of the above integvalsg

PPly(x) 1 s Fly()
L “—N;mmm

p(y(x))

Note the well the change in integration limits framrandb to @ andb. The advantage of such a change
of variables in casg(y) follows closelyF is that the integrand becomes smooth and we can sample over
relevant values for the integrand. It is however not tritéafind such a functiomw. The conditions omp
which allow us to perform these transformations are

1. pis normalizable and positive definite,
2. itis analytically integrable and
3. the integral is invertible, allowing us thereby to exggramew variable in terms of the old one.

The variance is now with the definition

given by

The algorithm for this procedure is

— Use the uniform distribution to find the random variablén the interval [0,1]. p(x) is a user
provided PDF.

— Evaluate thereafter

by rewriting

b F() P F(a(y))
p(x dx =
[ P05~ [ S
dy
dx
— Perform then a Monte Carlo sampling for

/E’F(:Uy Nii z(y
& Y N - .fL'

p(z(y))

since

= p(x).

with y; € [0, 1],

— and evaluate the variance as well according to [EqQ.(8.4.2).
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8.4.3 Acceptance-Rejection method

This is rather simple and appealing method after von Neumassume that we are looking at an interval
x € [a,b], this being the domain of the POKz). Suppose also that the largest value our distribution
function takes in this interval i87, that is

px) <M x € [a,b].

Then we generate a random numberom the uniform distribution for: € [a, b] and a corresponding
numbers for the uniform distribution betweej, M. If

p(x) > s,

we accept the new value of else we generate again two new random numbpensds and perform the
test in the latter equation again.
As an example, consider the evaluation of the integral

3
I:/ exp (x)dx.
0

Obviously to derive it analytically is much easier, howether integrand could pose some more difficult
challenges. The aim here is simply to show how to implent tweptance-rejection algorithm. The
integral is the area below the curygz) = exp (z). If we uniformly fill the rectangle spanned by
z € [0,3] andy € [0,exp (3)], the fraction below the curve obtained from a uniform disttion, and
multiplied by the area of the rectangle, should approxinthee chosen integral. It is rather easy to
implement this numerically, as shown in the following code.

Acceptance-Rejection algorithm

/1 Loop over Monte Carlo trials n
integral =0.;
for (int i = 1; i <= n; i++){
/1l Finds a random value for x in the interval [0,3]
X = 3xran0(&idum);
/1 Finds y-value between [0,exp(3)]
y = exp(3.0)}xran0(&idum);
/1 if the value of y at exp(x) is below the curve, we accept
if (y < exp(x)) s = s+ 1.0;
/1 The integral is area enclosed below the line f(x)=exp(x)
}
/I Then we multiply with the area of the rectangle and dividg bhe number
of cycles
Integral = 3xexp(3.)xs/n

8.5 Monte Carlo integration of multidimensional integrals

When we deal with multidimensional integrals of the form

1 1 1
I:/ dxl/ dl’g.../ drgg(x,...,xq),
0 0 0
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with z; defined in the intervdk;, b;] we would typically need a transformation of variables of fibren
x; = a; + (b — a;)t;,
if we were to use the uniform distribution on the inter{@ll1]. In this case, we need a Jacobi determinant

d
H(bl - ai)>
i=1

and to convert the functiog(z1, ..., z4) to

g(x1,...,xq) = glar + (b1 —ar)t1,...,aq + (bg — aq)tq).

As an example, consider the following six-dimensional gnaé

/ dxdyg(x,y),

— o0

where
g(x,y) =exp (—x> —y* — (x —y)?/2),

with d = 6.

We can solve this integral by employing our brute force saheon using importance sampling and
random variables distributed according to a gaussian P&HRhE latter, if we set the mean valpe= 0
and the standard deviatian= 1/1/2, we have

1
—= €Xp (—1'2)7

N3

and using this normal distribution we rewrite our integral a

e /ﬁl (% exp (-ﬁ)) exp (—(x — y)2/2)dar. ... dae,

which is rewritten in a more compact form as

6
/f(l'l»"' 7$d)F($17"' 7$d)Hd$i7
i=1

wheref is the above normal distribution and
F(l‘l,... 7176) = F(va) = eXp_(X_y2/2>

Below we list two codes, one for the brute force integratio $he other employing importance
sampling with a gaussian distribution.
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8.5.1 Brute force integration

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter08/cpp/program4 . cpp

#include <iostream >
#include <fstream >
#include <iomanip>
#include "1ib.h"
using namespacestd;

double brute_force_MC(@ouble x);

/1 Main function begins here
int main ()
{

int n;

double x[6], vy, fx;

double int_mc = 0.; double variance = 0.;

double sum_sigma= 0. ;long idum=1 ;

double length=5.; // we fix the max size of the box to L=5
double volume=pow((2length) ,6);

cout << "Read in the number of Monte-Carlo samples" << endl;

cin >> n;
/1 evaluate the integral with importance sampling
for (int i = 1; i <= n; i++){

/1 x[] contains the random numbers for all dimensions
for (int j = 0; j< 6; j++) {
x[jl=—length+Zlengthxran0(&idum) ;
}

fx=brute_force_MC(x);
int._ mc += fx;
sum_sigma += fxfx;
}
int_ mc = int_mc/((double) n );
sum_sigma = sum_sigma/@ouble) n );
variance=sum_sigmaint_mcxint_mc;
/1l final output

cout << setiosflags(ios::showpoint | ios::uppercase);

cout << " Monte carlo result= " << setw(10) << setprecision(8) <<
volumexint_mc;

cout << " Sigma= " << setw (10) << setprecision(8) << volumsqrt(
variance /((double) n )) << endl;

return O;

} // end of main program
/I this function defines the integrand to integrate

double brute_force_MCg@ouble xx)
{
double a = 1.; double b = 0.5;
/Il evaluate the different terms of the exponential
double xx=x[0]*xx[O]+x[1]*«x[1]+x[2]*x[2];
double yy=x[3]xx[3]+x[4]*x[4]+x[5]*x[5];
double xy=pow ((x[0]—-x[3]) ,2)+pow ((x[1]-x[4]) ,2)+pow ((x[2]-x[5]) ,2);
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return exp(—axxx—axyy—bxxy);
} /I end function for the integrand

8.5.2 Importance sampling

This code includes a call to the functiotwormal_random, which produces random numbers from a
gaussian distribution.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter08/cpp/programb. cpp

/!l importance sampling with gaussian deviates
#include <iostream >

#include <fstream >

#include <iomanip>

#include "1lib.h"

using namespacestd;

double gaussian_MCg@ouble x);
double gaussian_deviatdféng x);

/1l Main function begins here
int main()
{

int n;

double x[6], vy, fx;
cout << "Read in the number of Monte-Carlo samples" << endl;

cin >> n;
double int_mc = 0.; double variance = 0.;
double sum_sigma= 0. ;long idum=1 ;

double length=5.; // we fix the max size of the box to L=5
double volume=pow(acos€{1.),3.);
double sqrt2 = 1./sqrt(2.);
/1l evaluate the integral with importance sampling
for (int i = 1; i <= n; i++){
/1 x[] contains the random numbers for all dimensions
for (int j = 0; j < 6; j++) {
x[j] = gaussian_deviate(&idumysqrt2;
}

fx=gaussian_MC(x);
int._ mc += fx;
sum_sigma += fxfx;
}
int_ mc = int_mc/((double) n );
sum_sigma = sum_sigma/@double) n );
variance=sum_sigmaint_mcx«int_mc;
/1l final output

cout << setiosflags(ios::showpoint | ios::uppercase);

cout << " Monte carlo result= " << setw(10) << setprecision(8) <<
volumexint_mc;

cout << " Sigma= " << setw(1l0) << setprecision(8) << volumeqrt(
variance /((double) n )) << endl;

return O;

} // end of main program
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/1 this function defines the integrand to integrate

double gaussian_MC(@ouble xx)

{
double a = 0.5;

/I evaluate the different terms of the exponential
double xy=pow ((x[0]-x[3]) ,2)+pow ((x[1]-x[4]) ,2)+pow ((x[2]-x[5]) ,2);
return exp(—axxy);

} /1 end function for the integrand

/!l random numbers with gaussian distribution
double gaussian_deviatdéng = idum)

{
static int iset = 0;
static double gset;
double fac, rsq, vl, v2;
if ( idum < 0) iset =0;
if (iset == 0) {
do {
vl = 2.xran0(idum) —1.0;
v2 = 2xran0(idum) —1.0;
rsq = vlxvl+v2xv2;
} while (rsq >= 1.0 || rsq == 0.);
fac = sqrt(—-2.xlog(rsq)/rsq);
gset = vikfac;
iset = 1;
return v2xfac;
} else {
iset =0;
return gset;
}

} // end function for gaussian deviates

The following table lists the results from the above two pamgs as function of the number of Monte
Carlo samples. The suffer stands for the brute force approach whitestands for the use of a Gaussian
distribution function. One sees clearly that the approdither Gaussian distribution function yields a
much improved numerical result, with fewer samples.

Table 8.4: Results as function of number of Monte Carlo sasyl. The exact answer i5 ~ 10.9626
for the integral. The suffixr stands for the brute force approach whitestands for the use of a Gaussian
distribution function. All calculations use ran0 as functito generate the uniform distribution.
N I, Igd
10000 1.15247E+01 1.09128E+01
100000 1.29650E+01 1.09522E+01
1000000 1.18226E+01 1.09673E+01
10000000 1.04925E+01 1.09612E+01
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8.6 Exercises and projects

Exercise 8.1: Cumulative functions

Calculate the cumulative functiori3(z) for the binomial and the Poisson distributions and theii-var
ances.

Exercise 8.2: Random number algorithm

Make a program which computes random numbers accordingetalgjorithm of Marsaglia and Zaman,
Egs. [824) and[(8:25). Compute the correlation functignand compare with the auto-correlation
function from the functionran0.

Exercise 8.3: Normal distribution and random numbers

Make a functionnormal_random which computes random numbers for the normal distributiaseh
on random numbers generated from the functienO.

Exercise 8.4: Exponential distribution and random numbers

Make a functiorexp_random which computes random numbers for the exponential digtabyw(y) =
e~ based on random numbers generated from the functiof.

Exercise 8.5: Monte Carlo integration

(a) Calculate the integral

1 2
I:/ e ¥ dx,
0

using brute force Monte Carlo with(z) = 1 and importance sampling with(x) = ae~* where
a is a constant.

(b) Calculate the integral

|, 7o
= —_— w’
o T2+ cos?(x)

with p(z) = ae™* wherea is a constant. Determine the valuecofvhich minimizes the variance.

Project 8.1: Decay of'°Bi and?'°Po

In this project we are going to simulate the radioactive gemfathese nuclei using sampling through
random numbers. We assume that at 0 we haveNx(0) nuclei of the typeX which can decay
radioactively. At a given time we are left withNx (¢) nuclei. With a transition raterx, which is the
probability that the system will make a transition to anothimte during a time step of one second, we
get the following differential equation

dNx (t) = —wxNx (t)dt,

whose solution is
Nx(t) = Nx(0)e ",
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and where the mean lifetime of the nucleXigs
1

T=—.
wx

If the nucleusX decays tdr’, which can also decay, we get the following coupled equation
dNx (t)

and
dNy (t)
dt
We assume that @t = 0 we haveNy (0) = 0. In the beginning we will have an increase &f
nuclei, however, they will decay thereafter. In this projee let the nucleud'Bi representX. It decays
through 3-decay to?*'°Po, which is theY” nucleus in our case. The latter decays through emision of an
a-particle t02°Pb, which is a stable nucleu$!’Bi has a mean lifetime of 7.2 days whit¢’Po has a

mean lifetime of 200 days.

= —wy Ny (t) + wx Nx(t).

a) Find analytic solutions for the above equations assucongjnuous variables and setting the num-
ber of?19Po nuclei equal zero at= 0.

b) Make a program which solves the above equations. Whataasonable choice of timestex?
You could use the program on radioactive decay from the vage pf the course as an example
and make your own for the decay of two nuclei. Compare thdteeBom your program with the
exact answer as function ofx (0) = 10, 100 and1000. Make plots of your results.

c) When?'°Po decays it produces arparticle. At what time does the production@particles reach
its maximum? Compare your results with the analytic ones\Mg(0) = 10, 100 and1000.

Project 8.2: Numerical integration of the correlation eggrof the helium atom

The task of this project is to integrate in a brute force maargx-dimensional integral which is used to
determine the ground state correlation energy between lzetrens in a helium atom. We will employ
both Gauss-Legendre quadrature and Monte-Carlo integtaiurthermore, you will need to parallelize
your code for the Monte-Carlo integration.

We assume that the wave function of each electron can be taddide the single-particle wave
function of an electron in the hydrogen atom. The singldigarwave function for an electrohin the
1s state is given in terms of a dimensionless variable (the vi@vetion is not properly normalized)

r, =€, + Yi€y + z;€e,,

as
P1s(r) = €7,

T = \/m?—l—yiz—l—ziz.

We will fix o = 2, which should correspond to the charge of the helium atosm 2.
The ansatz for the wave function for two electrons is theremitsy the product of twds wave
functions as

whereq is a parameter and

U(ry,rp) = e NH7),
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Note that it is not possible to find an analytic solution to i ®dmnger’s equation for two interacting
electrons in the helium atom.

The integral we need to solve is the quantum mechanical &doat value of the correlation energy
between two electrons, namely

1 & 1

— )= / ST S ) p—— (8.31)
r1 — o _oo 1 — 12

Note that our wave function is not normalized. There is a radiation factor missing, but for this project

we don’t need to worry about that.

a) Use Gauss-Legendre quadrature and compute the intggirgtelgrating for each variable;, v,
21, T2, Y2, 22 from —oo t0 co. How many mesh points do you need before the results corwetge
the level of the fourth leading digit? Hint: the single-peld wave functiore™*" is more or less
zero atr; ~ 10 — 15. You can therefore replace the integration limitso and oo with —10 and
10, respectively. You need to check that this approximaticsatssfactory.

b) Compute the same integral but now with brute force MontddCand compare your results with
those from the previous point. Discuss the differencesh\itice force we mean that you should
use the uniform distribution.

¢) Improve your brute force Monte Carlo calculation by usimgportance sampling. Hint: use the
exponential distribution. Does the variance decrease beeCPU time used compared with the
brute force Monte Carlo decrease in order to achieve the sameacy? Comment your results.

d) Parallelize your code from the previous point and compiaeeCPU time needed with that from
point [c)]. Do you achieve a good speedup?

e) The integral of EqL{8.:31) has an analytical expressi@n you find it?
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