
Chapter 8

Outline of the Monte Carlo strategy

’Iacta Alea est’, the die is cast, is what Julius Caesar is reported by Suetonius to have
said on January 10, 49 BC as he led his army across the River Rubicon in Northern Italy.
(Twelve Ceasars)Gaius Suetonius

8.1 Introduction

Monte Carlo methods are widely used in the Sciences, from theintegration of multi-dimensional integrals
to solving ab initio problems in chemistry, physics, medicine, biology, or even Dow-Jones forecasting.
Computational finance is one of the novel fields where Monte Carlo methods have found a new field of
applications, with financial engineering as an emerging field, see for example Refs. [41, 42]. Emerging
fields like econophysics [43–45] are new examples of applications of Monte Carlo methods.

Numerical methods that are known as Monte Carlo methods can be loosely described as statistical
simulation methods, where statistical simulation is defined in quite general terms to be any method that
utilizes sequences of random numbers to perform the simulation. As mentioned in the introduction to
this text, a central algorithm in Monte Carlo methods is the Metropolis algorithm, ranked as one of the
top ten algorithms in the last century. We discuss this algorithm in the next chapter.

Statistical simulation methods may be contrasted to conventional numerical discretization methods,
which are typically applied to ordinary or partial differential equations that describe some underlying
physical or mathematical system. In many applications of Monte Carlo, the physical process is simulated
directly, and there is no need to even write down the differential equations that describe the behavior of the
system. The only requirement is that the physical (or mathematical) system be described by probability
distribution functions (PDF’s). Once the PDF’s are known, the Monte Carlo simulation can proceed by
random sampling from the PDF’s. Many simulations are then performed (multiple “trials” or “histories”)
and the desired result is taken as an average over the number of observations (which may be a single
observation or perhaps millions of observations). In many practical applications, one can predict the
statistical error (the “variance”) in this average result,and hence an estimate of the number of Monte Carlo
trials that are needed to achieve a given error. If we assume that the physical system can be described by a
given probability density function, then the Monte Carlo simulation can proceed by sampling from these
PDF’s, which necessitates a fast and effective way to generate random numbers uniformly distributed on
the interval [0,1]. The outcomes of these random samplings,or trials, must be accumulated or tallied
in an appropriate manner to produce the desired result, but the essential characteristic of Monte Carlo is
the use of random sampling techniques (and perhaps other algebra to manipulate the outcomes) to arrive

165

Outline of the Monte Carlo strategy

at a solution of the physical problem. In contrast, a conventional numerical solution approach would
start with the mathematical model of the physical system, discretizing the differential equations and then
solving a set of algebraic equations for the unknown state ofthe system. It should be kept in mind
that this general description of Monte Carlo methods may notdirectly apply to some applications. It is
natural to think that Monte Carlo methods are used to simulate random, or stochastic, processes, since
these can be described by PDF’s. However, this coupling is actually too restrictive because many Monte
Carlo applications have no apparent stochastic content, such as the evaluation of a definite integral or the
inversion of a system of linear equations. However, in thesecases and others, one can pose the desired
solution in terms of PDF’s, and while this transformation may seem artificial, this step allows the system
to be treated as a stochastic process for the purpose of simulation and hence Monte Carlo methods can
be applied to simulate the system.

There are at least four ingredients which are crucial in order to understand the basic Monte-Carlo
strategy. These are

1. Random variables,

2. probability distribution functions (PDF),

3. moments of a PDF

4. and its pertinent varianceσ2.

All these topics will be discussed at length below. We feel however that a brief explanation may be
appropriate in order to convey the strategy behind a Monte-Carlo calculation. Let us first demystify the
somewhat obscure concept of a random variable. The example we choose is the classic one, the tossing
of two dice, its outcome and the corresponding probability.In principle, we could imagine being able to
determine exactly the motion of the two dice, and with given initial conditions determine the outcome of
the tossing. Alas, we are not capable of pursuing this ideal scheme. However, it does not mean that we
do not have a certain knowledge of the outcome. This partial knowledge is given by the probablity of
obtaining a certain number when tossing the dice. To be more precise, the tossing of the dice yields the
following possible values

[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

These values are called thedomain. To this domain we have the correspondingprobabilities

[1/36, 2/36/3/36, 4/36, 5/36, 6/36, 5/36, 4/36, 3/36, 2/36, 1/36].

The numbers in the domain are the outcomes of the physical process tossing the dice.We cannot tell be-
forehand whether the outcome is 3 or 5 or any other number in this domain. This defines the randomness
of the outcome, or unexpectedness or any other synonimous word which encompasses the uncertitude of
the final outcome.The only thing we can tell beforehand is that say the outcome 2has a certain probabil-
ity. If our favorite hobby is to spend an hour every evening throwing dice and registering the sequence of
outcomes, we will note that the numbers in the above domain

[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],

appear in a random order. After 11 throws the results may looklike

[10, 8, 6, 3, 6, 9, 11, 8, 12, 4, 5].

166

8.1 – Introduction

Eleven new attempts may results in a totally different sequence of numbers and so forth. Repeating this
exercise the next evening, will most likely never give you the same sequences. Thus, we say that the
outcome of this hobby of ours is truly random.

Random variables are hence characterized by a domain which contains all possible values that the
random value may take. This domain has a corresponding PDF.

To give you another example of possible random number spare time activities, consider the radioac-
tive decay of anα-particle from a certain nucleus. Assume that you have at your disposal a Geiger-counter
which registers every 10 ms whether anα-particle reaches the counter or not. If we record a hit as 1 and
no observation as zero, and repeat this experiment for a longtime, the outcome of the experiment is also
truly random. We cannot form a specific pattern from the aboveobservations. The only possibility to
say something about the outcome is given by the PDF, which in this case is the well-known exponential
function

λ exp−(λx),

with λ being proportional to the half-life of the given nucleus which decays.
Good texts on Monte Carlo methods are the monographs of Robert and Casella, Johnson and Fish-

man, see Refs. [46–48].

8.1.1 Definitions

Random numbers as we use them here are numerical approximations to the statistical concept of stochas-
tic variables, sometimes just called random variables. To understand the behavior of pseudo random
numbers we must first establish the theoretical framework ofstochastic variables. Although this is typi-
cal textbook material, the nomenclature may differ from onetextbook to another depending on the level
of difficulty of the book. We would therefore like to establish a nomenclature suitable for our purpose,
one that we are going to use consequently throughout this text.

A stochastic variable can be either continuous or discrete.In any case, we will denote stochastic
variables by capital lettersX,Y, . . .

There are two main concepts associated with a stochastic variable. Thedomainis the setD = {x} of
all accessible values the variable can assume, so thatX ∈ D. An example of a discrete domain is the set
of six different numbers that we may get by throwing of a dice,x ∈ {1, 2, 3, 4, 5, 6}.

Theprobability distribution function (PDF)is a functionp(x) on the domain which, in the discrete
case, gives us the probability or relative frequency with which these values ofX occur:

p(x) = Prob(X = x)

In the continuous case, the PDF does not directly depict the actual probability. Instead we define the
probability for the stochastic variable to assume any valueon an infinitesimal interval aroundx to be
p(x)dx. The continuous functionp(x) then gives us thedensityof the probability rather than the proba-
bility itself. The probability for a stochastic variable toassume any value on a non-infinitesimal interval
[a, b] is then just the integral:

Prob(a ≤ X ≤ b) =

∫ b

a
p(x)dx

Qualitatively speaking, a stochastic variable representsthe values of numbers chosen as if by chance from
some specified PDF so that the selection of a large set of thesenumbers reproduces this PDF.

Also of interest to us is thecumulative probability distribution function (CDF), P (x), which is just
the probability for a stochastic variableX to assume any value less thanx:

P (x) = Prob(X ≤ x) =

∫ x

−∞
p(x′)dx′

167

Outline of the Monte Carlo strategy

The relation between a CDF and its corresponding PDF is then:

p(x) =
d

dx
P (x)

There are two properties that all PDFs must satisfy. The firstone is positivity:

0 ≤ p(x) ≤ 1

Naturally, it would be nonsensical for any of the values of the domain to occur with a probability greater
than1 or less than0. Also, the PDF must be normalized. That is, all the probabilities must add up to
unity. The probability “anything” to happen is always unity. For both discrete and continuous PDFs, this
condition is:

∑

xi∈D

p(xi) = 1

∫

x∈D

p(x) dx = 1

For our present work with QMC techniques, we are only interested in continuous stochastic variables.
From this point on we will therefore restrict ourselves to only continuous ones. There are two continuous
PDFs that are especially important for our study of QMC. The first one is the most basic PDF; the uniform
distribution, denoted byU(a, b):

p(x) =
1

b− aθ(x− a)θ(b− x) (8.1)

with:
θ(x) = 0 x < 0
θ(x) = 1 x ≥ 0

The second one is the Gaussian Distribution, often called the normal distribution, denoted byN(µ, σ):

p(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2

Let h(x) be an arbitrary function on the domain of the stochastic variableX whose PDF isp(x). We
define theexpectation valueof h with respect top as follows:

〈h〉X ≡
∫
h(x)p(x) dx (8.2)

Whenever the PDF is known implicitly, like in this case, we will drop the indexX for clarity.
A particularly useful class of special expectation values are themoments. Then-th moment of the

PDFp is defined as follows:

〈xn〉 ≡
∫
xnp(x) dx

The zero-th moment〈1〉 is just the normalization condition ofp. The first moment,〈x〉, is called the
meanof p and often denoted by the letterµ:

〈x〉 = µ ≡
∫
xp(x) dx

168

8.1 – Introduction

Qualitatively it represents the centroid or the average value of the PDF and is therefore often simply
called the expectation value ofp.1 A PDF can in principle be expanded in the set of its moments [49].
For two PDFs to be equal, each of their moments must be equal.

A special version of the moments is the set ofcentral moments, the n-th central moment defined as:

〈(x− 〈x〉)n〉 ≡
∫

(x− 〈x〉)np(x) dx

The zero-th and first central moments are both trivial, equal1 and0, respectively. But the second central
moment, known as thevarianceof p, is of particular interest. For the stochastic variableX, the variance
is denoted asσ2

X or Var(X):

σ2
X = Var(X) = 〈(x− 〈x〉)2〉 =

∫
(x− 〈x〉)2p(x) dx

=

∫ (
x2 − 2x〈x〉 + 〈x〉2

)
p(x) dx

= 〈x2〉 − 2〈x〉〈x〉 + 〈x〉2

= 〈x2〉 − 〈x〉2

The square root of the variance,σ =
√
〈(x− 〈x〉)2〉 is called thestandard deviationof p. It is clearly

just the RMS (root-mean-square) value of the deviation of the PDF from its mean value, interpreted
qualitatively as the “spread” ofp around its mean.

We will also be interested in finding the PDF of afunctionof a stochastic variable. Let the stochastic
variableX have the PDFpX(x), and letY = h(X) be a function ofX. What we want to find is the
PDF ofY , pY (y). We will have to restrict ourselves to the case whereh(X) is invertible, so that it has
to be strictly monotonous. First we construct the cumulative distribution ofY , considering only the case
whereh increases:

PY (y) = Prob(Y ≤ y) = Prob(h(X) ≤ y) = Prob(X ≤ h−1(y)) = PX (h−1(y))

whereh−1 is the inverse function ofh, meaning that ify = h(x) thenx = h−1(y). This gives the PDF
of Y :

pY (y) =
d

dy
PY (y) =

d

dy
PX (h−1(y))

Considering in a similar manner the other case of a decreasing h we arrive at:

pY (y) = pX(h−1(y))

∣∣∣∣
d

dy
h−1(y)

∣∣∣∣ (8.3)

This formula will become useful when transforming simple pseudo random number generators to more
general ones.

All the PDFs above have been written as functions of only one stochastic variable. Such PDFs
are calledunivariate. A PDF may well consist of any number of variables, in which case we call it
multivariate. A general multivariate expectation value is defined similarly as for the univariate case, but
all stochastic variables are taken into account at once. LetP (x1, . . . , xn) be the multivariate PDF for the

1We should now formulate 8.2 in a more rigorous manner. It is mathematically more correct to speak ofh as a function
transforming the stochastic variableX to the stochastic variableY , Y = h(X). LetpX(x) be the known PDF ofX, andpY (y)
be the unknown PDF ofY . It can then be shown [49] that the expectation value ofY , namely〈y〉Y =

R

ypY (y) dy, must equal
what we have defined as the expectation value ofh(x) with respect topX , namely〈h〉X =

R

h(x)pX(x) dx.

169

Outline of the Monte Carlo strategy

set{Xi} of n stochastic variables and letH(x1, . . . , xn) be an arbitrary function over the joint domain
of all Xi. The expectation value ofH with respect toP is defined as follows:

〈H〉X1...Xn =

∫
· · ·
∫
H(x1, . . . , xn)P (x1, . . . , xn) dx1 . . . dxn

If we want to find the expectation value of an arbitrary functionh(xi) on the domain of just one stochastic
variableXi, we must still use the joint PDFP and remember to integrate over the total domain of allXi:

〈h〉X1...Xn =

∫
· · ·
∫
h(xi)P (x1, . . . , xn) dx1 . . . dxn (8.4)

We will now define the property of correlation, of great importance for our study of random numbers.
Let us continue with the same set ofn stochastic variables{Xi} as above. The variables areuncorrelated
(or independent) ifP may be factorized in the following form:

P (x1, x2, . . . , xn) =
n∏

i=1

pi(xi)

wherepi(xi) is the univariate PDF ofXi. Notice, that if allXi are uncorrelated, then the above equation
for the expectation value of the univariate functionh, eq. (8.4) reduces, nicely to the familiar simple
univariate form of eq. (8.2).

To understand the definition of independence qualitatively, consider a process ofn sequential events
determined by the stochastic variablesXi ∀ i ∈ {1, 2, . . . , n}. The PDFpi(xi) determines the probability
density that thei-th event (governed byXi) will have the outcomexi. If the individual events are to be
independent, then the joint probability density should intuitively be just the product of the individual
densities. The events receive no information about each other. The probability to get some particular
outcome of an event is independent of whether other events are happening at all or not.

8.1.2 First illustration of the use of Monte-Carlo methods,crude integration

With this definition of a random variable and its associated PDF, we attempt now a clarification of the
Monte-Carlo strategy by using the evaluation of an integralas our example.

In chapter 7 we discussed standard methods for evaluating anintegral like

I =

∫ 1

0
f(x)dx ≈

N∑

i=1

ωif(xi),

whereωi are the weights determined by the specific integration method (like Simpson’s or Taylor’s meth-
ods) withxi the given mesh points. To give you a feeling of how we are to evaluate the above integral
using Monte-Carlo, we employ here the crudest possible approach. Later on we will present slightly more
refined approaches. This crude approach consists in settingall weights equal 1,ωi = 1. That corresponds
to the rectangle method presented in Eq. (7.5), displayed again here

I =

∫ b

a
f(x)dx ≈ h

N∑

i=1

f(xi−1/2),

wheref(xi−1/2) is the midpoint value off for a given valuexi−1/2. Settingh = (b−a)/N whereb = 1,
a = 0, we can then rewrite the above integral as

I =

∫ 1

0
f(x)dx ≈ 1

N

N∑

i=1

f(xi−1/2),

170

8.1 – Introduction

wherexi−1/2 are the midpoint values ofx. Introducing the concept of the average of the functionf for a
given PDFp(x) as

〈f〉 = 1

N

N∑

i=1

f(xi)p(xi),

and identifyp(x) with the uniform distribution, vizp(x) = 1 whenx ∈ [0, 1] and zero for all other values
of x. The integral is is then the average off over the intervalx ∈ [0, 1]

I =

∫ 1

0
f(x)dx ≈ 〈f〉.

In addition to the average value〈f〉 the other important quantity in a Monte-Carlo calculation is the
varianceσ2 and the standard deviationσ. We define first the variance of the integral withf for a uniform
distribution in the intervalx ∈ [0, 1] to be

σ2
f =

1

N

N∑

i=1

(f(xi)− 〈f〉)2p(xi),

and inserting the uniform distribution this yields

σ2
f =

1

N

N∑

i=1

f(xi)
2 −

(
1

N

N∑

i=1

f(xi)

)2

,

or
σ2

f =
(
〈f2〉 − 〈f〉2

)
.

which is nothing but a measure of the extent to whichf deviates from its average over the region of
integration. The standard deviation is defined as the squareroot of the variance. If we consider the above
results for a fixed value ofN as a measurement, we could recalculate the above average andvariance for
a series of different measurements. If each such measumerent produces a set of averages for the integral
I denoted〈f〉l, we have forM measurements that the integral is given by

〈I〉M =
1

M

M∑

l=1

〈f〉l.

We show in section 8.3 that if we can consider the probabilityof correlated events to be zero, we can
rewrite the variance of these series of measurements as (equatingM = N)

σ2
N ≈

1

N

(
〈f2〉 − 〈f〉2

)
=
σ2

f

N
. (8.5)

We note that the standard deviation is proportional to the inverse square root of the number of measure-
ments

σN ∼
1√
N
.

The aim of Monte Carlo calculations is to haveσN as small as possible afterN samples. The results
from one sample represents, since we are using concepts fromstatistics, a ’measurement’.

The scaling in the previous equation is clearly unfavorablecompared even with the trapezoidal rule.
In the previous chapter we saw that the trapezoidal rule carries a truncation errorO(h2), with h the step

171

Outline of the Monte Carlo strategy

length. In general, methods based on a Taylor expansion suchas the trapezoidal rule or Simpson’s rule
have a truncation error which goes like∼ O(hk), with k ≥ 1. Recalling that the step size is defined as
h = (b− a)/N , we have an error which goes like∼ N−k.

However, Monte Carlo integration is more efficient in higherdimensions. To see this, let us assume
that our integration volume is a hypercube with sideL and dimensiond. This cube contains hence
N = (L/h)d points and therefore the error in the result scales asN−k/d for the traditional methods.
The error in the Monte carlo integration is however independent ofd and scales asσ ∼ 1/

√
N , always!

Comparing this error with that of the traditional methods, shows that Monte Carlo integration is more
efficient than an order-k algorithm whend > 2k. In order to expose this, consider the definition of the
quantum mechanical energy of a system consisting of 10 particles in three dimensions. The energy is the
expectation value of the HamiltonianH and reads

E =

∫
dR1dR2 . . . dRNΨ∗(R1,R2, . . . ,RN)H(R1,R2, . . . ,RN)Ψ(R1,R2, . . . ,RN)∫

dR1dR2 . . . dRNΨ∗(R1,R2, . . . ,RN)Ψ(R1,R2, . . . ,RN)
,

whereΨ is the wave function of the system andRi are the coordinates of each particle. If we want to
compute the above integral using for example Gaussian quadrature and use for example ten mesh points
for the ten particles, we need to compute a ten-dimensional integral with a total of1030 mesh points.
As an amusing exercise, assume that you have access to today’s fastest computer with a theoretical peak
capacity of more than 100 Teraflops, that is1014 floating point operations per second. Assume also that
every mesh point corresponds to one floating operation per second. Estimate then the time needed to
compute this integral with a traditional method like Gaussian quadrature and compare this number with
the estimated lifetime of the universe,T ≈ 4.7× 1017s. Do you have the patience to wait?

We end this first part with a discussion of a brute force Monte Carlo program which integrates

∫ 1

0
dx

4

1 + x2
= π,

where the input is the desired number of Monte Carlo samples.Note that we transfer the variableidum in
order to initialize the random number generator from the function ran0. The variableidum gets changed
for every sampling. This variable is called theseed.

What we are doing is to employ a random number generator to obtain numbersxi in the interval
[0, 1] through a call to one of the library functionsran0, ran1, ran2 or ran3 which generate random
numbers in the intervalx ∈ [0, 1]. These functions will be discussed in the next section. Herewe simply
employ these functions in order to generate a random variable. All random number generators produce
pseudo-random numbers in the interval[0, 1] using the so-called uniform probability distributionp(x)
defined as

p(x) =
1

b− aΘ(x− a)Θ(b− x),

with a = 0 og b = 1 and whereTheta is the standard Heaviside function or simply the step function. If
we have a general interval[a, b], we can still use these random number generators through a change of
variables

z = a+ (b− a)x,
with x in the interval[0, 1].

The present approach to the above integral is often called ’crude’ or ’Brute-Force’ Monte-Carlo.
Later on in this chapter we will study refinements to this simple approach. The reason for doing so is that
a random generator produces points that are distributed in ahomogenous way in the interval[0, 1]. If our
function is peaked around certain values ofx, we may end up sampling function values wheref(x) is

172

8.1 – Introduction

small or near zero. Better schemes which reflect the properties of the function to be integrated are thence
needed.

The algorithm is as follows

– Choose the number of Monte Carlo samplesN .

– Perform a loop overN and for each step generate a a random numberxi in the interval[0, 1] trough
a call to a random number generator.

– Use this number to evaluatef(xi).

– Evaluate the contributions to the mean value and the standard deviation for each loop.

– After N samples calculate the final mean value and the standard deviation.

The following C/C++ program2 implements the above algorithm using the library functionran0 to com-
puteπ. Note again the inclusion of thelib.h file which has the random number generator functionran0.http://www.fys.uio.no/
ompphys/
p/programs/FYS3150/
hapter08/
pp/program1.
pp
inc lude < ios t ream >
inc lude "lib.h"
us ing namespace s t d ;

/ / Here we d e f i n e v a r i o u s f u n c t i o n s c a l l e d by t h e main program
/ / t h i s f u n c t i o n d e f i n e s t h e f u n c t i o n t o i n t e g r a t e

double func (double x) ;

/ / Main f u n c t i o n b e g i n s here
i n t main ()
{

i n t i , n ;
long idum ;
double crude_mc , x , sum_sigma , fx , v a r i a n c e ;
cou t << "Read in the number of Monte-Carlo samples" << end l ;
c i n >> n ;
crude_mc = sum_sigma =0. ; idum=−1 ;

/ / e v a l u a t e t h e i n t e g r a l w i th t h e a crude Monte−Carlo method
f o r (i = 1 ; i <= n ; i ++) {

x= ran0 (&idum) ;
fx= func (x) ;
crude_mc += fx ;
sum_sigma += fx∗ f x ;

}
crude_mc = crude_mc / ((double) n) ;
sum_sigma = sum_sigma / ((double) n) ;
v a r i a n c e =sum_sigma−crude_mc∗crude_mc ;

/ / f i n a l o u t p u t
cou t << " varian
e= " << v a r i a n c e << " Integral = "

2The Fortran 90/95 programs are not listed in the main text, they are found under the corresponding chapter as program-
s/chapter8/programn.f90.

173

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter08/cpp/program1.cpp

Outline of the Monte Carlo strategy

Table 8.1: Results forI = π = 4
∫ 1
0 dx/(1 + x2) as function of number of Monte Carlo samplesN .

The exact answer is3.14159E + 00 for the integral and4.13581E − 01 for the variance with six leading
digits.

N I σN

10 3.10263E+00 3.98802E-01
100 3.02933E+00 4.04822E-01

1000 3.13395E+00 4.22881E-01
10000 3.14195E+00 4.11195E-01

100000 3.14003E+00 4.14114E-01
1000000 3.14213E+00 4.13838E-01

10000000 3.14177E+00 4.13523E-01
109 3.14162E+00 4.13581E-01

<< crude_mc <<" Exa
t= " << M_PI << end l ;
} / / end o f main program
/ / t h i s f u n c t i o n d e f i n e s t h e f u n c t i o n t o i n t e g r a t e
double func (double x)
{

double v a l u e ;
v a l u e = 4 / (1 . + x∗x) ;
re turn v a l u e ;

} / / end o f f u n c t i o n t o e v a l u a t e

We note that asN increases, the integral itself never reaches more than an agreement to the fourth or
fifth digit. The variance also oscillates around its exact value4.13581E − 01. Note well that the variance
need not be zero but one can, with appropriate redefinitions of the integral be made smaller. A smaller
variance yields also a smaller standard deviation. Improvements to this crude Monte Carlo approach will
be discussed in the coming sections.

As an alternative, we could have used the random number generator provided by the C/C++ compiler
through the functionssrand andrand. In this case we initialise it via the functionsrand. The random
number generator is called via the functionrand, which returns an integer from 0 to its maximum value,
defined by the variableRAND_MAX as demonstrated in the next few lines of code.

i n v e r s _ p e r i o d = 1 . /RAND_MAX;
/ / i n i t i a l i s e t h e random number g e n e r a t o r
s r a n d (t ime (NULL)) ;
/ / o b t a i n a f l o a t i n g number x i n [0 , 1]

x = double (rand ())∗ i n v e r s _ p e r i o d ;

8.1.3 Second illustration, particles in a box

We give here an example of how a system evolves towards a well defined equilibrium state.
Consider a box divided into two equal halves separated by a wall. At the beginning, timet = 0, there

areN particles on the left side. A small hole in the wall is then opened and one particle can pass through
the hole per unit time.

After some time the system reaches its equilibrium state with equally many particles in both halves,
N/2. Instead of determining complicated initial conditions for a system ofN particles, we model the

174

8.1 – Introduction

system by a simple statistical model. In order to simulate this system, which may consist ofN ≫ 1
particles, we assume that all particles in the left half haveequal probabilities of going to the right half.
We introduce the labelnl to denote the number of particles at every time on the left side, andnr = N−nl

for those on the right side. The probability for a move to the right during a time step∆t is nl/N . The
algorithm for simulating this problem may then look like this:

– Choose the number of particlesN .

– Make a loop over time, where the maximum time (or maximum number of steps) should be larger
than the number of particlesN .

– For every time step∆t there is a probabilitynl/N for a move to the right. Compare this probability
with a random numberx.

– If x ≤ nl/N , decrease the number of particles in the left half by one, i.e., nl = nl − 1. Else, move
a particle from the right half to the left, i.e.,nl = nl + 1.

– Increase the time by one unit (the external loop).

In this case, a Monte Carlo sample corresponds to one time unit ∆t.
The following simple C/C++-program illustrates this model.http://www.fys.uio.no/
ompphys/
p/programs/FYS3150/
hapter08/
pp/program2.
pp

/ / P a r t i c l e s i n a box
inc lude < ios t ream >
inc lude < fs t r eam >
inc lude < iomanip >
inc lude "lib.h"
us ing namespace s t d ;

o f s t r e a m o f i l e ;
i n t main (i n t argc , char∗ argv [])
{

char ∗ o u t f i l e n a m e ;
i n t i n i t i a l _ n _ p a r t i c l e s , max_time , t ime , random_n , n l e f t ;
long idum ;
/ / Read i n o u t p u t f i l e , a b o r t i f t h e r e are too few command− l i n e arguments
i f (a rgc <= 1) {

cou t << "Bad Usage: " << argv [0] <<" read also output file on same line" << end l ;
e x i t (1) ;

}
e l s e{

o u t f i l e n a m e=argv [1] ;
}
o f i l e . open (o u t f i l e n a m e) ;
/ / Read i n da ta
cou t << "Initial number of parti
les = " << end l ;
c i n >> i n i t i a l _ n _ p a r t i c l e s ;
/ / s e t u p o f i n i t i a l c o n d i t i o n s
n l e f t = i n i t i a l _ n _ p a r t i c l e s ;
max_time = 10∗ i n i t i a l _ n _ p a r t i c l e s ;
idum = −1;

175

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter08/cpp/program2.cpp

Outline of the Monte Carlo strategy

/ / samp l ing over number o f p a r t i c l e s
f o r (t ime =0 ; t ime <= max_time ; t ime ++) {

random_n = ((i n t) i n i t i a l _ n _ p a r t i c l e s∗ ran0 (&idum)) ;
i f (random_n <= n l e f t) {

n l e f t −= 1 ;
}
e l s e{

n l e f t += 1 ;
}
o f i l e << s e t i o s f l a g s (i o s : : showpo in t | i o s : : u p p e r c a s e) ;
o f i l e << setw (1 5) << t ime ;
o f i l e << setw (1 5) << n l e f t << end l ;

}
re turn 0 ;

} / / end main f u n c t i o n

The enclosed figure shows the development of this system as function of time steps. We note that
for N = 1000 after roughly2000 time steps, the system has reached the equilibrium state. There are
however noteworthy fluctuations around equilibrium.

If we denote〈nl〉 as the number of particles in the left half as a time average after equilibrium is
reached, we can define the standard deviation as

σ =
√
〈n2

l 〉 − 〈nl〉2. (8.6)

This problem has also an analytic solution to which we can compare our numerical simulation. If
nl(t) is the number of particles in the left half aftert moves, the change innl(t) in the time interval∆t is

∆n =

(
N − nl(t)

N
− nl(t)

N

)
∆t,

and assuming thatnl andt are continuous variables we arrive at

dnl(t)

dt
= 1− 2nl(t)

N
,

whose solution is

nl(t) =
N

2

(
1 + e−2t/N

)
,

with the initial conditionnl(t = 0) = N .

8.1.4 Radioactive decay

Radioactive decay is among one of the classical examples on use of Monte-Carlo simulations. Assume
that at the timet = 0 we haveN(0) nuclei of typeX which can decay radioactively. At a timet > 0 we
are left withN(t) nuclei. With a transition probabilityω, which expresses the probability that the system
will make a transition to another state during a time step of one second, we have the following first-order
differential equation

dN(t) = −ωN(t)dt,

whose solution is
N(t) = N(0)e−ωt,

176

8.1 – Introduction

300

400

500

600

700

800

900

1000

0 500 1000 1500 2000 2500 3000 3500 4000

nl(∆t)

∆t

MC simulation with N=1000
Exact result

Figure 8.1: Number of particles in the left half of the container as function of the number of time steps.
The solution is compared with the analytic expression.N = 1000.

where we have defined the mean lifetimeτ of X as

τ =
1

ω
.

If a nucleusX decays to a daugther nucleusY which also can decay, we get the following coupled
equations

dNX(t)

dt
= −ωXNX(t),

and
dNY (t)

dt
= −ωYNY (t) + ωXNX(t).

The program example in the next subsection illustrates how we can simulate such the decay process of
one type of nuclei through a Monte Carlo sampling procedure.

8.1.5 Program example for radioactive decay of one type of nucleus

The program is split in four tasks, a main program with various declarations,http://www.fys.uio.no/
ompphys/
p/programs/FYS3150/
hapter08/
pp/program3.
pp
/ / R a d i o a c t i v e decay o f n u c l e i
inc lude < ios t ream >
inc lude < fs t r eam >
inc lude < iomanip >
inc lude "lib.h"
us ing namespace s t d ;
o f s t r e a m o f i l e ;
/ / Func t i on t o read i n da ta from s c r e e n

177

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter08/cpp/program3.cpp

Outline of the Monte Carlo strategy

vo id i n i t i a l i s e (i n t &, i n t &, i n t &, double&) ;
/ / The Mc sampl ing f o r n u c l e a r decay
vo id mc_sampling (i n t , i n t , i n t , double , i n t ∗) ;
/ / p r i n t s t o s c r e e n t h e r e s u l t s o f t h e c a l c u l a t i o n s
vo id o u t p u t (i n t , i n t , i n t ∗) ;
i n t main (i n t argc , char∗ argv [])
{

char ∗ o u t f i l e n a m e ;
i n t i n i t i a l _ n _ p a r t i c l e s , max_time , number_cyc les ;
double d e c a y _ p r o b a b i l i t y ;
i n t ∗ ncumu la t i ve ;
/ / Read i n o u t p u t f i l e , a b o r t i f t h e r e are too few command− l i n e arguments
i f (a rgc <= 1) {

cou t << "Bad Usage: " << argv [0] <<" read also output file on same line" << end l ;
e x i t (1) ;

}
e l s e{

o u t f i l e n a m e=argv [1] ;
}
o f i l e . open (o u t f i l e n a m e) ;
/ / Read i n da ta
i n i t i a l i s e (i n i t i a l _ n _ p a r t i c l e s , max_time , number_cyc les ,

d e c a y _ p r o b a b i l i t y) ;
ncumu la t i ve = new i n t [max_time + 1] ;
/ / Do t h e mc sampl ing
mc_sampling (i n i t i a l _ n _ p a r t i c l e s , max_time , number_cycles ,

d e c a y _ p r o b a b i l i t y , ncumu la t i ve) ;
/ / P r i n t ou t r e s u l t s
o u t p u t (max_time , number_cyc les , ncumu la t i ve) ;
d e l e t e [] n cumu la t i ve ;
re turn 0 ;

} / / end o f main f u n c t i o n

followed by a part which performs the Monte Carlo sampling

vo id mc_sampling (i n t i n i t i a l _ n _ p a r t i c l e s , i n t max_time ,
i n t number_cyc les , double d e c a y _ p r o b a b i l i t y ,
i n t ∗ ncumu la t i ve)

{
i n t cyc les , t ime , np , n _ u n s t a b l e , p a r t i c l e _ l i m i t ;
long idum ;

idum=−1; / / i n i t i a l i s e random number g e n e r a t o r
/ / loop over monte c a r l o c y c l e s
/ / One monte c a r l o loop i s one sample
f o r (c y c l e s = 1 ; c y c l e s <= number_cyc les ; c y c l e s ++) {

n _ u n s t a b l e = i n i t i a l _ n _ p a r t i c l e s ;
/ / accumu la te t h e number o f p a r t i c l e s per t ime s t e p per t r i a l
ncumu la t i ve [0] += i n i t i a l _ n _ p a r t i c l e s ;
/ / loop over each t ime s t e p
f o r (t ime =1 ; t ime <= max_time ; t ime ++) {

/ / f o r each t ime s tep , we check each p a r t i c l e

178

8.2 – Probability distribution functions

p a r t i c l e _ l i m i t = n _ u n s t a b l e ;
f o r (np = 1 ; np <= p a r t i c l e _ l i m i t ; np ++) {

i f (ran0 (&idum) <= d e c a y _ p r o b a b i l i t y) {
n _ u n s t a b l e= n _ u n s t a b le−1;

}
} / / end o f loop over p a r t i c l e s
ncumu la t i ve [t ime] += n _ u n s t a b l e ;

} / / end o f loop over t ime s t e p s
} / / end o f loop over MC t r i a l s

} / / end mc_sampl ing f u n c t i o n

and finally functions for reading input and writing output data. The latter are not listed here but contained
in teh full listing available at webpage. The input variables are the number of Monte Carlo cycles, the
maximum number of time steps, the initial number of particles and the decay probability. The output
consists of the number of remaining nuclei at each time step.

8.1.6 Brief summary

In essence the Monte Carlo method contains the following ingredients

– A PDF which characterizes the system

– Random numbers which are generated so as to cover in an as uniform as possible way on the unity
interval [0,1].

– A sampling rule

– An error estimation

– Techniques for improving the errors

In the next section we discuss various PDF’s which may be of relevance here, thereafter we discuss
how to compute random numbers. Section 8.4 discusses Monte Carlo integration in general, how to
choose the correct weighting function and how to evaluate integrals with dimensionsd > 1.

8.2 Probability distribution functions

Hitherto, we have tacitly used properties of probability distribution functions in our computation of ex-
pectation values. Here and there we have referred to the uniform PDF. It is now time to present some
general features of PDFs which we may encounter when doing physics and how we define various ex-
pectation values. In addition, we derive the central limit theorem and discuss its meaning in the light of
properties of various PDFs.

The following table collects properties of probability distribution functions. In our notation we re-
serve the labelp(x) for the probability of a certain event, whileP (x) is the cumulative probability.

With a PDF we can compute expectation values of selected quantities such as

〈xk〉 = 1

N

N∑

i=1

xk
i p(xi),

179

Outline of the Monte Carlo strategy

Table 8.2: Important properties of PDFs.
Discrete PDF Continuous PDF

Domain {x1, x2, x3, . . . , xN} [a, b]
Probability p(xi) p(x)dx

Cumulative Pi =
∑i

l=1 p(xl) P (x) =
∫ x
a p(t)dt

Positivity 0 ≤ p(xi) ≤ 1 p(x) ≥ 0
Positivity 0 ≤ Pi ≤ 1 0 ≤ P (x) ≤ 1
Monotonic Pi ≥ Pj if xi ≥ xj P (xi) ≥ P (xj) if xi ≥ xj

Normalization PN = 1 P (b) = 1

if we have a discrete PDF or

〈xk〉 =

∫ b

a
xkp(x)dx,

in the case of a continuous PDF. We have already defined the mean valueµ and the varianceσ2.
The expectation value of a quantityf(x) is then given by for example

〈f〉 =

∫ b

a
f(x)p(x)dx.

We have already seen the use of the last equation when we applied the crude Monte Carlo approach to
the evaluation of an integral.

There are at least three PDFs which one may encounter. These are the

1. uniform distribution

p(x) =
1

b− aΘ(x− a)Θ(b− x),

yielding probabilities different from zero in the interval[a, b]. The mean value and the variance for
this distribution are discussed in section 8.3.

2. The exponential distribution
p(x) = αe−αx,

yielding probabilities different from zero in the interval[0,∞) and with mean value

µ =

∫ ∞

0
xp(x)dx =

∫ ∞

0
xαe−αxdx =

1

α

and variance

σ2 =

∫ ∞

0
x2p(x)dx− µ2 =

1

α2
.

3. Finally, we have the so-called univariate normal distribution, or just the normal distribution

p(x) =
1

b
√

2π
exp

(
−(x− a)2

2b2

)

with probabilities different from zero in the interval(−∞,∞). The integral
∫∞
−∞ exp

(
−(x2

)
dx

appears in many calculations, its value is
√
π, a result we will need when we compute the mean

value and the variance. The mean value is

µ =

∫ ∞

0
xp(x)dx =

1

b
√

2π

∫ ∞

−∞
x exp

(
−(x− a)2

2b2

)
dx,

180

8.2 – Probability distribution functions

which becomes with a suitable change of variables

µ =
1

b
√

2π

∫ ∞

−∞
b
√

2(a+ b
√

2y) exp−y2dy = a.

Similarly, the variance becomes

σ2 =
1

b
√

2π

∫ ∞

−∞
(x− µ)2 exp

(
−(x− a)2

2b2

)
dx,

and inserting the mean value and performing a variable change we obtain

σ2 =
1

b
√

2π

∫ ∞

−∞
b
√

2(b
√

2y)2 exp
(
−y2

)
dy =

2b2√
π

∫ ∞

−∞
y2 exp

(
−y2

)
dy,

and performing a final integration by parts we obtain the well-known resultσ2 = b2. It is useful
to introduce the standard normal distribution as well, defined byµ = a = 0, viz. a distribution
centered around zero and with a varianceσ2 = 1, leading to

p(x) =
1√
2π

exp

(
−x

2

2

)
. (8.7)

The exponential and uniform distributions have simple cumulative functions, whereas the normal
distribution does not, being proportional to the so-callederror functionerf(x), given by

P (x) =
1√
2π

∫ x

−∞
exp

(
− t

2

2

)
dt,

which is difficult to evaluate in a quick way. Later in this chapter we will present an algorithm by Box and
Mueller which allows us to compute the cumulative distribution using random variables sampled from
the uniform distribution.

Some other PDFs which one encounters often in the natural sciences are the binomial distribution

p(x) =

(
n
x

)
yx(1− y)n−x x = 0, 1, . . . , n,

wherey is the probability for a specific event, such as the tossing ofa coin or moving left or right in case
of a random walker. Note thatx is a discrete stochastic variable.

The sequence of binomial trials is characterized by the following definitions

– Every experiment is thought to consist ofN independent trials.

– In every independent trial one registers if a specific situation happens or not, such as the jump to
the left or right of a random walker.

– The probability for every outcome in a single trial has the same value, for example the outcome of
tossing a coin is always1/2.

In the next chapter we will show that the probability distribution for a random walker approaches the
binomial distribution.

181

Outline of the Monte Carlo strategy

In order to compute the mean and variance we need to recall Newton’s binomial formula

(a+ b)m =
m∑

n=0

(
m
n

)
anbm−n,

which can be used to show that

n∑

x=0

(
n
x

)
yx(1− y)n−x = (y + 1− y)n = 1,

the PDF is normalized to one. The mean value is

µ =
n∑

x=0

x

(
n
x

)
yx(1− y)n−x =

n∑

x=0

x
n!

x!(n − x)!y
x(1− y)n−x,

resulting in

µ =

n∑

x=0

x
(n− 1)!

(x− 1)!(n − 1− (x− 1))!
yx−1(1− y)n−1−(x−1),

which we rewrite as

µ = ny

n∑

ν=0

(
n− 1
ν

)
yν(1− y)n−1−ν = ny(y + 1− y)n−1 = ny.

The variance is slightly trickier to get, see the next exercises. It readsσ2 = ny(1− y).
Another important distribution with discrete stochastic variablesx is the Poisson model, which re-

sembles the exponential distribution and reads

p(x) =
λx

x!
e−λ x = 0, 1, . . . , ;λ > 0.

In this case both the mean value and the variance are easier tocalculate,

µ =

∞∑

x=0

x
λx

x!
e−λ = λe−λ

∞∑

x=1

λx−1

(x− 1)!
= λ,

and the variance isσ2 = λ. Example of applications of the Poisson distribution is thecounting of
the number ofα-particles emitted from a radioactive source in a given timeinterval. In the limit of
n → ∞ and for small probabilitiesy, the binomial distribution approaches the Poisson distribution.
Settingλ = ny, with y the probability for an event in the binomial distribution wecan show that

lim
n→∞

(
n
x

)
yx(1 − y)n−xe−λ

∞∑

x=1

=
λx

x!
e−λ,

see for example Refs. [46, 47] for a proof.

182

8.2 – Probability distribution functions

8.2.1 Multivariable Expectation Values

Let us recapitulate some of the above concepts using a discrete PDF (which is what we end up doing
anyway on a computer). The mean value of a random variableX with rangex1, x2, . . . , N is

〈x〉 = µ =
1

N

N∑

i=1

xip(xi),

and the variance is

〈σ2〉 = 1

N

N∑

i=1

(xi − 〈x〉)2p(xi) =
1

N

N∑

i=1

〈(xi − µi)
2〉.

Assume now that we have two independent sets of measurementsX1 andX2 with corresponding mean
and varianceµ1 andµ2 and〈σ2〉X1 and〈σ2〉X2 . It follows that if we define the new stochastic variable

Y = X1 +X2,

we have
µY = µ1 + µ2,

and
〈σ2〉Y = 〈(Y − µY)2〉 = 〈(X1 − µ1)

2〉+ 〈(X2 − µ2)
2〉+ 2〈(X1 − µ1)(X2 − µ2)〉.

It is useful to define the so-called covariance, given by

〈cov(X1,X2)〉 = 〈(X1 − µ1)(X2 − µ2)〉

where we consider the averagesµ1 andµ2 as the outcome of two separate measurements. The covariance
measures thus the degree of correlation between variables.We can then rewrite the variance ofY as

〈σ2〉Y =
2∑

j=1

〈(Xj − µj)
2〉+ 2cov(X1,X2),

which in our notation becomes

〈σ2〉Y = 〈σ2〉X1 + 〈σ2〉X2 + 2cov(X1,X2).

If X1 andX2 are two independent variables we can show that the covariance is zero, but one cannot
deduce from a zero covariance whether the variables are independent or not. If our random variables
which we generate are truly random numbers, then the covariance should be zero. We will see tests of
standard random number generators in the next section. A wayto measure the correlation between two
sets of stochastic variables is the so-called correlation functionρ(X1,X2) defined as

ρ(X1,X2) =
〈cov(X1,X2)〉√
〈σ2〉X1〈σ2〉X2

. (8.8)

Obviously, if the covariance is zero due to the fact that the variables are independent, then the correlation
is zero. This quantity is often called the correlation coefficient betweenX1 andX2. We can extend this
analysis to a set of stochastic variablesY = (X1 +X2 + · · · +XN). We now assume that we haveN
different measurements of the mean and variance of a given variable. Each measurement consists again
of N measurements, although we could have chosen the latter to bedifferent fromN . As an example,

183

Outline of the Monte Carlo strategy

every evening forN days you measureN throws of two dice. The mean and variance are defined as
above. The total mean value is defined as

〈µY 〉 =
N∑

i=1

〈µi〉. (8.9)

The total variance is however now defined as

〈σ2〉Y = 〈(Y − µY)2〉 =

N∑

j=1

〈(Xj − µj)〉2 =

N∑

j=1

〈σ2〉Xj + 2

N∑

j<k

〈(Xj − µj)〉〈(Xk − µk)〉, (8.10)

or

〈σ2〉Y =

N∑

j=1

〈σ2〉Xj + 2

N∑

j<k

cov(Xj ,Xk). (8.11)

If the variables are independent, the covariance is zero andthe variance is reduced to

〈σ2〉Y =

N∑

j=1

〈σ2〉Xj , (8.12)

and if we assume that all sets of measurements produce the same variance〈σ2〉, we end up with

〈σ2〉Y = N〈σ2〉. (8.13)

Another important quantity is the so called covariance, a variant of the above defined variance. Con-
sider again the set{Xi} of n stochastic variables (not necessarily uncorrelated) withthe multivariate PDF
P (x1, . . . , xn). Thecovarianceof two of the stochastic variables,Xi andXj, is defined as follows:

Cov(Xi, Xj) ≡
〈
(xi − 〈xi〉)(xj − 〈xj〉)

〉

=

∫
· · ·
∫

(xi − 〈xi〉)(xj − 〈xj〉)P (x1, . . . , xn) dx1 . . . dxn (8.14)

with

〈xi〉 =

∫
· · ·
∫
xi P (x1, . . . , xn) dx1 . . . dxn

If we consider the above covariance as a matrixCij = Cov(Xi, Xj), then the diagonal elements are just
the familiar variances,Cii = Cov(Xi, Xi) = Var(Xi). It turns out that all the off-diagonal elements are
zero if the stochastic variables are uncorrelated. This is easy to show, keeping in mind the linearity of the
expectation value. Consider the stochastic variablesXi andXj , (i 6= j):

Cov(Xi, Xj) =
〈
(xi − 〈xi〉)(xj − 〈xj〉)

〉

= 〈xixj − xi〈xj〉 − 〈xi〉xj + 〈xi〉〈xj〉〉
= 〈xixj〉 − 〈xi〈xj〉〉 − 〈〈xi〉xj〉+ 〈〈xi〉〈xj〉〉
= 〈xixj〉 − 〈xi〉〈xj〉 − 〈xi〉〈xj〉+ 〈xi〉〈xj〉
= 〈xixj〉 − 〈xi〉〈xj〉

If Xi andXj are independent, we get〈xixj〉 = 〈xi〉〈xj〉, resulting inCov(Xi,Xj) = 0 (i 6= j).

184

8.2 – Probability distribution functions

Also useful for us is the covariance of linear combinations of stochastic variables. Let{Xi} and{Yi}
be two sets of stochastic variables. Let also{ai} and{bi} be two sets of scalars. Consider the linear
combination:

U =
∑

i

aiXi V =
∑

j

bjYj

By the linearity of the expectation value, it can be shown [49] that:

Cov(U, V) =
∑

i,j

aibjCov(Xi, Yj)

Now, since the variance is justVar(Xi) = Cov(Xi,Xi), we get the variance of the linear combination
U =

∑
i aiXi:

Var(U) =
∑

i,j

aiajCov(Xi,Xj) (8.15)

And in the special case when the stochastic variables are uncorrelated, the off-diagonal elements of the
covariance are as we know zero, resulting in:

Var(U) =
∑

i

a2
i Cov(Xi,Xi) =

∑

i

a2
i Var(Xi)

Var(
∑

i

aiXi) =
∑

i

a2
i Var(Xi)

which will become very useful in our study of the error in the mean value of a set of measurements.
Now that we have constructed an idealized mathematical framework, let us try to apply it to empirical

observation. Examples of relevant physical phenomena may be spontaneous decays of nuclei, or a purely
mathematical set of numbers produced by some deterministicmechanism. It is the latter we will focus
on here, a pseudo random number generator (PRNG). The statistical properties of a PRNG, described
through the mathematical framework presented here, will have an important impact on the limits of
validity of methods that utilize PRNGs.

A stochastic processis a process that produces sequentially a chain of values:

{x1, x2, . . . xk, . . . }.

We will call these values ourmeasurementsand the entire set as our measuredsample. The action of
measuring all the elements of a sample we will call a stochastic experiment(since, operationally, they
are often associated with results of empirical observationof some physical or mathematical phenomena;
precisely an experiment). We assume that these values are distributed according to some PDFpX(x),
whereX is just the formal symbol for the stochastic variable whose PDF is pX(x). Instead of trying to
determine the full distributionp we are often only interested in finding the few lowest moments, like the
meanµX and the varianceσX .

In practical situations a sample is always of finite size. Letthat size ben. The expectation value of a
sample, thesample mean, is then defined as follows:

x̄n ≡
1

n

n∑

k=1

xk

Thesample varianceis:

Var(x) ≡ 1

n

n∑

k=1

(xk − x̄n)2

185

Outline of the Monte Carlo strategy

its square root being thestandard deviation of the sample. Thesample covarianceis:

Cov(x) ≡ 1

n

∑

kl

(xk − x̄n)(xl − x̄n)

Note that the sample variance is the sample covariance without the cross terms. In a similar manner as
the covariance in Eq. (8.14) is a measure of the correlation between two stochastic variables, the above
defined sample covariance is a measure of the sequential correlation between succeeding measurements
of a sample.

These quantities, being known experimental values, differsignificantly from and must not be con-
fused with the similarly named quantities for stochastic variables, meanµX , varianceVar(X) and co-
varianceCov(X,Y).

The law of large numbers (see for example [49]) states that asthe size of our sample grows to infinity,
the sample mean approaches the true meanµX of the chosen PDF:

lim
n→∞

x̄n = µX

The sample mean̄xn works therefore as an estimate of the true meanµX .
What we need to find out is how good an approximationx̄n is toµX . In any stochastic measurement,

an estimated mean is of no use to us without a measure of its error. A quantity that tells us how well we
can reproduce it in another experiment. We are therefore interested in the PDF of the sample mean itself.
Its standard deviation will be a measure of the spread of sample means, and we will simply call it the
error of the sample mean, or just sample error, and denote it byerrX . In practice, we will only be able
to produce anestimateof the sample error since the exact value would require the knowledge of the true
PDFs behind, which we usually do not have.

The straight forward brute force way of estimating the sample error is simply by producing a number
of samples, and treating the mean of each as a measurement. The standard deviation of these means will
then be an estimate of the original sample error. If we are unable to produce more than one sample, we
can split it up sequentially into smaller ones, treating each in the same way as above. This procedure
is known asblockingand will be given more attention shortly. At this point it is worth while exploring
more indirect methods of estimation that will help us understand some important underlying principles
of correlational effects.

Let us first take a look at what happens to the sample error as the size of the sample grows. In
a sample, each of the measurementsxi can be associated with its own stochastic variableXi. The
stochastic variableXn for the sample mean̄xn is then just a linear combination, already familiar to us:

Xn =
1

n

n∑

i=1

Xi

All the coefficients are just equal1/n. The PDF ofXn, denoted bypXn
(x) is the desired PDF of the

sample means. The probability density of obtaining a samplemeanx̄n is the product of probabilities of
obtaining arbitrary valuesx1, x2, . . . , xn with the constraint that the mean of the set{xi} is x̄n:

pXn
(x) =

∫
pX(x1) · · ·

∫
pX(xn) δ

(
x− x1 + x2 + · · ·+ xn

n

)
dxn · · · dx1

And in particular we are interested in its varianceVar(Xn).
It is generally not possible to expresspXn

(x) in a closed form given an arbitrary PDFpX and a
numbern. But for the limitn → ∞ it is possible to make an approximation. The very important result

186

8.2 – Probability distribution functions

is calledthe central limit theorem. It tells us that asn goes to infinity,pXn
(x) approaches a Gaussian

distribution whose mean and variance equal the true mean andvariance,µX andσ2
X , respectively:

lim
n→∞

pXn
(x) =

(
n

2πVar(X)

)1/2

e
−n(x−x̄n)2

2Var(X) (8.16)

For a proof of the central limit theorem, see the next subsection. In practice, even for small values ofn
we get a nice correspondence between numerical experimentsand the central limit theorem.

Recall now Eq. (8.15) for the variance of a linear combination of stochastic variables. The desired
varianceVar(Xn), that is the sample error squarederr2X , is by that given by:

err2X = Var(Xn) =
1

n2

∑

ij

Cov(Xi,Xj) (8.17)

We see now that in order to calculate the exact error of the sample with the above expression, we would
need the true meansµXi

of the stochastic variablesXi. To calculate these requires that we know the true
multivariate PDF of all theXi. But this PDF is unknown to us, we have only got the measurements of
one sample. The best we can do is to let the sample itself be an estimate of the PDF of each of theXi,
estimating all properties ofXi through the measurements of the sample.

Our estimate ofµXi
is then the sample mean̄x itself, in accordance with the the central limit theorem:

µXi
= 〈xi〉 ≈

1

n

n∑

k=1

xk = x̄

Using x̄ in place ofµXi
we can give anestimateof the covariance in Eq. (8.17):

Cov(Xi,Xj) = 〈(xi − 〈xi〉)(xj − 〈xj〉)〉 ≈ 〈(xi − x̄)(xj − x̄)〉

≈ 1

n

n∑

l

(
1

n

n∑

k

(xk − x̄n)(xl − x̄n)

)

=
1

n

1

n

∑

kl

(xk − x̄n)(xl − x̄n)

=
1

n
Cov(x)

By the same procedure we can use the sample variance as an estimate of the variance of any of the
stochastic variablesXi:

Var(Xi) = 〈xi − 〈xi〉〉 ≈ 〈xi − x̄n〉

≈ 1

n

n∑

k=1

(xk − x̄n)

= Var(x) (8.18)

Now we can calculate an estimate of the errorerrX of the sample mean̄xn:

err2X =
1

n2

∑

ij

Cov(Xi,Xj)

≈ 1

n2

∑

ij

1

n
Cov(x) =

1

n2
n2 1

n
Cov(x)

=
1

n
Cov(x) (8.19)

187

Outline of the Monte Carlo strategy

which is nothing but the sample covariance divided by the number of measurements in the sample.
In the special case that the measurements of the sample are uncorrelated (equivalently the stochastic

variablesXi are uncorrelated) we have that the off-diagonal elements ofthe covariance are zero. This
gives the following estimate of the sample error:

err2X =
1

n2

∑

ij

Cov(Xi,Xj) =
1

n2

∑

i

Var(Xi)

≈ 1

n2

∑

i

Var(x)

=
1

n
Var(x) (8.20)

where in the second step we have used Eq. (8.18). The error of the sample is then just its standard
deviation divided by the square root of the number of measurements the sample contains. This is a very
useful formula which is easy to compute. It acts as a first approximation to the error, but in numerical
experiments, we cannot overlook the always present correlations.

For computational purposes one usually splits up the estimate of err2X , given by Eq. (8.19), into two
parts:

err2X =
1

n
Var(x) +

1

n
(Cov(x)−Var(x))

=
1

n2

n∑

k=1

(xk − x̄n)2 +
2

n2

∑

k<l

(xk − x̄n)(xl − x̄n) (8.21)

The first term is the same as the error in the uncorrelated case, eq. (8.20). This means that the second
term accounts for the error correction due to correlation between the measurements. For uncorrelated
measurements this second term is zero.

Computationally the uncorrelated first term is much easier to treat efficiently than the second.

Var(x) =
1

n

n∑

k=1

(xk − x̄n)2 =

(
1

n

n∑

k=1

x2
k

)
− x̄2

n

We just accumulate separately the valuesx2 andx for every measurementx we receive. The correlation
term, though, has to be calculated at the end of the experiment since we need all the measurements to
calculate the cross terms. Therefore, all measurements have to be stored throughout the experiment.

Let us analyze the problem by splitting up the correlation term into partial sums of the form:

fd =
1

n

n−d∑

k=1

(xk − x̄n)(xk+d − x̄n)

The correlation term of the error can now be rewritten in terms offd:

2

n

∑

k<l

(xk − x̄n)(xl − x̄n) = 2

n−1∑

d=1

fd

The value offd reflects the correlation between measurements separated bythe distanced in the samples.
Notice that ford = 0, f is just the sample variance,Var(x). If we dividefd by Var(x), we arrive at the
so calledautocorrelation function:

κd =
fd

Var(x)

188

8.2 – Probability distribution functions

which gives us a useful measure of the correlation pair correlation starting always at1 for d = 0.
The sample error (see Eq. (8.21)) can now be written in terms of the autocorrelation function:

err2X =
1

n
Var(x) +

2

n
·Var(x)

n−1∑

d=1

fd

Var(x)

=

(
1 + 2

n−1∑

d=1

κd

)
1

n
Var(x)

=
τ

n
·Var(x) (8.22)

and we see thaterrX can be expressed in terms the uncorrelated sample variance times a correction
factor τ which accounts for the correlation between measurements. We call this correction factor the
autocorrelation time:

τ = 1 + 2

n−1∑

d=1

κd (8.23)

For a correlation free experiment,τ equals 1. From the point of view of Eq. (8.22) we can interpret
a sequential correlation as an effective reduction of the number of measurements by a factorτ . The
effective number of measurements becomes:

neff =
n

τ

To neglect the autocorrelation timeτ will always cause our simple uncorrelated estimate oferr2X ≈
Var(x)/n to be less than the true sample error. The estimate of the error will be too “good”. On the
other hand, the calculation of the full autocorrelation time poses an efficiency problem if the set of
measurements is very large.

In the next subsection we combine these results with the central limit theorem in order to obtain the
classical expression for the standard deviation.

8.2.2 The central limit theorem

Suppose we have a PDFp(x) from which we generate a seriesN of averages〈xi〉. Each mean value〈xi〉
is viewed as the average of a specific measurement, e.g., throwing dice 100 times and then taking the
average value, or producing a certain amount of random numbers. For notational ease, we set〈xi〉 = xi

in the discussion which follows.
If we compute the meanz of N such mean valuesxi

z =
x1 + x2 + · · ·+ xN

N
,

the question we pose is which is the PDF of the new variablez.
The probability of obtaining an average valuez is the product of the probabilities of obtaining arbi-

trary individual mean valuesxi, but with the constraint that the average isz. We can express this through
the following expression

p̃(z) =

∫
dx1p(x1)

∫
dx2p(x2) . . .

∫
dxNp(xN)δ(z − x1 + x2 + · · ·+ xN

N
),

189

Outline of the Monte Carlo strategy

where theδ-function enbodies the constraint that the mean isz. All measurements that lead to each
individual xi are expected to be independent, which in turn means that we can express̃p as the product
of individual p(xi).

If we use the integral expression for theδ-function

δ(z − x1 + x2 + · · · + xN

N
) =

1

2π

∫ ∞

−∞
dqe

“

iq(z−x1+x2+···+xN
N

)
”

,

and insertingeiµq−iµq whereµ is the mean value we arrive at

p̃(z) =
1

2π

∫ ∞

−∞
dqe(iq(z−µ))

[∫ ∞

−∞
dxp(x)e(iq(µ−x)/N)

]N

,

with the integral overx resulting in

∫ ∞

−∞
dxp(x) exp (iq(µ− x)/N) =

∫ ∞

−∞
dxp(x)

[
1 +

iq(µ− x)
N

− q2(µ− x)2
2N2

+ . . .

]
.

The second term on the rhs disappears since this is just the mean and employing the definition ofσ2 we
have ∫ ∞

−∞
dxp(x)e(iq(µ−x)/N) = 1− q2σ2

2N2
+ . . . ,

resulting in
[∫ ∞

−∞
dxp(x) exp (iq(µ− x)/N)

]N

≈
[
1− q2σ2

2N2
+ . . .

]N

,

and in the limitN →∞ we obtain

p̃(z) =
1√

2π(σ/
√
N)

exp

(
− (z − µ)2

2(σ/
√
N)2

)
,

which is the normal distribution with varianceσ2
N = σ2/N , whereσ is the variance of the PDFp(x) and

µ is also the mean of the PDFp(x).
Thus, the central limit theorem states that the PDFp̃(z) of the average ofN random values corre-

sponding to a PDFp(x) is a normal distribution whose mean is the mean value of the PDF p(x) and
whose variance is the variance of the PDFp(x) divided byN , the number of values used to computez.

The theorem is satisfied by a large class of PDFs. Note howeverthat for a finiteN , it is not always
possible to find a closed expression forp̃(x). The central limit theorem leads then to the well-known
expression for the standard deviation, given by

σN =
σ√
N
.

The latter is true only if the average value is known exactly.This is obtained in the limitN → ∞ only.
Because the mean and the variance are measured quantities weobtain the familiar expression in statistics

σN ≈
σ√
N − 1

.

190

8.3 – Random numbers

8.3 Random numbers

Uniform deviates are just random numbers that lie within a specified range (typically 0 to 1), with any one
number in the range just as likely as any other. They are, in other words, what you probably think random
numbers are. However, we want to distinguish uniform deviates from other sorts of random numbers, for
example numbers drawn from a normal (Gaussian) distribution of specified mean and standard deviation.
These other sorts of deviates are almost always generated byperforming appropriate operations on one
or more uniform deviates, as we will see in subsequent sections. So, a reliable source of random uniform
deviates, the subject of this section, is an essential building block for any sort of stochastic modeling
or Monte Carlo computer work. A disclaimer is however appropriate. It should be fairly obvious that
something as deterministic as a computer cannot generate purely random numbers.

Numbers generated by any of the standard algorithms are in reality pseudo random numbers, hope-
fully abiding to the following criteria:

1. they produce a uniform distribution in the interval [0,1].

2. correlations between random numbers are negligible

3. the period before the same sequence of random numbers is repeated is as large as possible and
finally

4. the algorithm should be fast.

That correlations, see below for more details, should be as small as possible resides in the fact that
every event should be independent of the other ones. As an example, a particular simple system that
exhibits a seemingly random behavior can be obtained from the iterative process

xi+1 = cxi(1− xi),

which is often used as an example of a chaotic system.c is constant and for certain values ofc andx0 the
system can settle down quickly into a regular periodic sequence of valuesx1, x2, x3, Forx0 = 0.1
andc = 3.2 we obtain a periodic pattern as shown in Fig. 8.2. Changingc to c = 3.98 yields a sequence
which does not converge to any specific pattern. The values ofxi seem purely random. Although the
latter choice ofc yields a seemingly random sequence of values, the various values ofx harbor subtle
correlations that a truly random number sequence would not possess.

The most common random number generators are based on so-called Linear congruential relations
of the type

Ni = (aNi−1 + c)MOD(M),

which yield a number in the interval [0,1] through

xi = Ni/M

The numberM is called the period and it should be as large as possible andN0 is the starting value, or
seed. The functionMOD means the remainder, that is if we were to evaluate(13)MOD(9), the outcome
is the remainder of the division13/9, namely4.

The problem with such generators is that their outputs are periodic; they will start to repeat themselves
with a period that is at mostM . If however the parametersa andc are badly chosen, the period may be
even shorter.

191

Outline of the Monte Carlo strategy

c = 3.98
c = 3.2

i

x

100806040200

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Figure 8.2: Plot of the logistic mappingxi+1 = cxi(1− xi) for x0 = 0.1 andc = 3.2 andc = 3.98.

Consider the following example

Ni = (6Ni−1 + 7)MOD(5),

with a seedN0 = 2. This generator produces the sequence4, 1, 3, 0, 2, 4, 1, 3, 0, 2, , i.e., a sequence
with period5. However, increasingM may not guarantee a larger period as the following example shows

Ni = (27Ni−1 + 11)MOD(54),

which still, withN0 = 2, results in11, 38, 11, 38, 11, 38, . . . , a period of just2.
Typical periods for the random generators provided in the program library are of the order of∼ 109

or larger. Other random number generators which have becomeincreasingly popular are so-called shift-
register generators. In these generators each successive number depends on many preceding values (rather
than the last values as in the linear congruential generator). For example, you could make a shift register
generator whoselth number is the sum of thel − ith andl − jth values with moduloM ,

Nl = (aNl−i + cNl−j)MOD(M).

Such a generator again produces a sequence of pseudorandom numbers but this time with a period much
larger thanM . It is also possible to construct more elaborate algorithmsby including more than two past
terms in the sum of each iteration. One example is the generator of Marsaglia and Zaman [50] which
consists of two congruential relations

Nl = (Nl−3 −Nl−1)MOD(231 − 69), (8.24)

followed by
Nl = (69069Nl−1 + 1013904243)MOD(232), (8.25)

which according to the authors has a period larger than294.

192

8.3 – Random numbers

Moreover, rather than using modular addition, we could use the bitwise exclusive-OR (⊕) operation
so that

Nl = (Nl−i)⊕ (Nl−j)

where the bitwise action of⊕ means that ifNl−i = Nl−j the result is0 whereas ifNl−i 6= Nl−j the
result is1. As an example, consider the case whereNl−i = 6 andNl−j = 11. The first one has a bit
representation (using 4 bits only) which reads0110 whereas the second number is1011. Employing the
⊕ operator yields1101, or 23 + 22 + 20 = 13.

In Fortran90, the bitwise⊕ operation is coded through the intrinsic functionIEOR(m,n) wherem
andn are the input numbers, while inC it is given bym ∧ n. The program below (from Numerical
Recipes, chapter 7.1) shows the functionran0 implements

Ni = (aNi−1)MOD(M).

However, sincea andNi−1 are integers and their multiplication could become greaterthan the standard
32 bit integer, there is a trick via Schrage’s algorithm which approximates the multiplication of large
integers through the factorization

M = aq + r,

where we have defined
q = [M/a],

and
r = M MOD a.

where the brackets denote integer division. In the code below the numbersq andr are chosen so that
r < q. To see how this works we note first that

(aNi−1)MOD(M) = (aNi−1 − [Ni−1/q]M)MOD(M), (8.26)

since we can add or subtract any integer multiple ofM from aNi−1. The last term[Ni−1/q]MMOD(M)
is zero since the integer division[Ni−1/q] just yields a constant which is multiplied withM . We can now
rewrite Eq. (8.26) as

(aNi−1)MOD(M) = (aNi−1 − [Ni−1/q](aq + r))MOD(M), (8.27)

which results in

(aNi−1)MOD(M) = (a(Ni−1 − [Ni−1/q]q)− [Ni−1/q]r)) MOD(M), (8.28)

yielding
(aNi−1)MOD(M) = (a(Ni−1MOD(q))− [Ni−1/q]r)) MOD(M). (8.29)

The term[Ni−1/q]r is always smaller or equalNi−1(r/q) and withr < q we obtain always a number
smaller thanNi−1, which is smaller thanM . And since the numberNi−1MOD(q) is between zero and
q − 1 thena(Ni−1MOD(q)) < aq. Combined with our definition ofq = [M/a] ensures that this term
is also smaller thanM meaning that both terms fit into a 32-bit signed integer. Noneof these two terms
can be negative, but their difference could. The algorithm below addsM if their difference is negative.
Note that the program uses the bitwise⊕ operator to generate the starting point for each generationof a
random number. The period ofran0 is∼ 2.1 × 109. A special feature of this algorithm is that is should
never be called with the initial seed set to0.

193

Outline of the Monte Carlo strategy

/∗
∗∗ The f u n c t i o n
∗∗ ran0 ()
∗∗ i s an " Minimal " random number g e n e r a t o r o f Park and M i l l e r
∗∗ (see Numer ica l r e c i p e page 279) . S e t or r e s e t t h e i n p u t v a l u e
∗∗ idum t o any i n t e g e r v a l u e (e x c e p t t h e u n l i k e l y v a l u e MASK)
∗∗ t o i n i t i a l i z e t h e sequence ; idum must no t be a l t e r e d between
∗∗ c a l l s f o r s u c e s s i v e d e v i a t e s i n a sequence .
∗∗ The f u n c t i o n r e t u r n s a un i fo rm d e v i a t e be tween 0 .0 and 1 . 0 .
∗ /

double ran0 (long &idum)
{

cons t i n t a = 16807 , m = 2147483647 , q = 127773 ;
cons t i n t r = 2836 , MASK = 123459876;
cons t double am = 1 . /m;
long k ;
double ans ;
idum ^= MASK;
k = (∗ idum) / q ;
idum = a∗ (idum − k∗q) − r ∗k ;
/ / add m i f n e g a t i v e d i f f e r e n c e
i f (idum < 0) idum += m;
ans=am∗ (idum) ;
idum ^= MASK;
re turn ans ;

} / / End : f u n c t i o n ran0 ()

The other random number generatorsran1, ran2 andran3 are described in detail in Ref. [36]. Here we
limit ourselves to study selected properties of these generators.

8.3.1 Properties of selected random number generators

As mentioned previously, the underlying PDF for the generation of random numbers is the uniform
distribution, meaning that the probability for finding a numberx in the interval [0,1] isp(x) = 1.

A random number generator should produce numbers which uniformly distributed in this interval.
Table 8.3 shows the distribution ofN = 10000 random numbers generated by the functions in the
program library. We note in this table that the number of points in the various intervals0.0 − 0.1,
0.1− 0.2 etc are fairly close to1000, with some minor deviations.

Two additional measures are the standard deviationσ and the meanµ = 〈x〉.
For the uniform distribution withN points we have that the average〈xk〉 is

〈xk〉 = 1

N

N∑

i=1

xk
i p(xi),

and taking the limitN →∞ we have

〈xk〉 =

∫ 1

0
dxp(x)xk =

∫ 1

0
dxxk =

1

k + 1
,

sincep(x) = 1. The mean valueµ is then

µ = 〈x〉 =
1

2

194

8.3 – Random numbers

while the standard deviation is

σ =
√
〈x2〉 − µ2 =

1√
12

= 0.2886.

The various random number generators produce results whichagree rather well with these limiting
values.

Table 8.3: Number ofx-values for various intervals generated by 4 random number generators, their cor-
responding mean values and standard deviations. All calculations have been initialized with the variable
idum = −1.

x-bin ran0 ran1 ran2 ran3
0.0-0.1 1013 991 938 1047
0.1-0.2 1002 1009 1040 1030
0.2-0.3 989 999 1030 993
0.3-0.4 939 960 1023 937
0.4-0.5 1038 1001 1002 992
0.5-0.6 1037 1047 1009 1009
0.6-0.7 1005 989 1003 989
0.7-0.8 986 962 985 954
0.8-0.9 1000 1027 1009 1023
0.9-1.0 991 1015 961 1026
µ 0.4997 0.5018 0.4992 0.4990
σ 0.2882 0.2892 0.2861 0.2915

There are many other tests which can be performed. Often a picture of the numbers generated may
reveal possible patterns.

Since our random numbers, which are typically generated viaa linear congruential algorithm, are
never fully independent, we can then define an important testwhich measures the degree of correlation,
namely the so-called auto-correlation functionCk

Ck =
〈xi+kxi〉 − 〈xi〉2
〈x2

i 〉 − 〈xi〉2
,

with C0 = 1. Recall thatσ2 = 〈x2
i 〉 − 〈xi〉2. The non-vanishing ofCk for k 6= 0 means that the random

numbers are not independent. The independence of the randomnumbers is crucial in the evaluation of
other expectation values. If they are not independent, our assumption for approximatingσN in Eq. (8.5)
is no longer valid.

The expectation values which enter the definition ofCk are given by

〈xi+kxi〉 =
1

N − k

N−k∑

i=1

xixi+k.

Fig. 8.3 compares the auto-correlation function calculated from ran0 andran1. As can be seen, the
correlations are non-zero, but small. The fact that correlations are present is expected, since all random
numbers do depend in some way on the previous numbers.

195

Outline of the Monte Carlo strategy

Ck with ran1
Ck with ran0

k

C
k

30002500200015001000500

0.1

0.05

0

-0.05

-0.1

Figure 8.3: Plot of the auto-correlation functionCk for variousk-values forN = 10000 using the random
number generatorsran0 andran1.

8.4 Improved Monte Carlo integration

In section 8.1 we presented a simple brute force approach to integration with the Monte Carlo method.
There we sampled over a given number of points distributed uniformly in the interval[0, 1]

I =

∫ 1

0
f(x)dx ≈

N∑

i=1

ωif(xi) =
1

N

N∑

i=1

f(xi) = 〈f〉,

with the weightsωi = 1 .
Here we introduce two important topics which in most cases improve upon the above simple brute

force approach with the uniform distributionp(x) = 1 for x ∈ [0, 1]. With improvements we think of a
smaller variance and the need for fewer Monte Carlo samples,although each new Monte Carlo sample
will most likely be more times consuming than correspondingones of the brute force method.

– The first topic deals with change of variables, and is linked to the cumulative functionP (x) of a
PDFp(x). Obviously, not all integration limits go fromx = 0 to x = 1, rather, in physics we are
often confronted with integration domains likex ∈ [0,∞) or x ∈ (−∞,∞) etc. Since all random
number generators give numbers in the intervalx ∈ [0, 1], we need a mapping from this integration
interval to the explicit one under consideration.

– The next topic deals with the shape of the integrand itself. Let us for the sake of simplicity just
assume that the integration domain is again fromx = 0 to x = 1. If the function to be integrated
f(x) has sharp peaks and is zero or small for many values ofx ∈ [0, 1], most samples off(x) give
contributions to the integralI which are negligible. As a consequence we need manyN samples to
have a sufficient accuracy in the region wheref(x) is peaked. What do we do then? We try to find
a new PDFp(x) chosen so as to matchf(x) in order to render the integrand smooth. The new PDF

196

8.4 – Improved Monte Carlo integration

p(x) has in turn anx domain which most likely has to be mapped from the domain of the uniform
distribution.

Why care at all and not be content with just a change of variables in cases where that is needed?
Below we show several examples of how to improve a Monte Carlointegration through smarter choices
of PDFs which render the integrand smoother. However one classic example from quantum mechanics
illustrates the need for a good sampling function.

In quantum mechanics, the probability distribution function is given byp(x) = Ψ(x)∗Ψ(x), where
Ψ(x) is the eigenfunction arising from the solution of e.g., the time-independent Schrödinger equation.
If Ψ(x) is an eigenfunction, the corresponding energy eigenvalue is given by

H(x)Ψ(x) = EΨ(x),

whereH(x) is the hamiltonian under consideration. The expectation value of H, assuming that the
quantum mechanical PDF is normalized, is given by

〈H〉 =

∫
dxΨ(x)∗H(x)Ψ(x).

We could insertΨ(x)/Ψ(x) right to the left ofH and rewrite the last equation as

〈H〉 =

∫
dxΨ(x)∗Ψ(x)

H(x)

Ψ(x)
Ψ(x), (8.30)

or

〈H〉 =

∫
dxp(x)H̃(x),

which is on the form of an expectation value with

H̃(x) =
H(x)

Ψ(x)
Ψ(x).

The crucial point to note is that ifΨ(x) is the exact eigenfunction itself with eigenvalueE, thenH̃(x)
reduces just to the constantE and we have

〈H〉 =
∫
dxp(x)E = E,

sincep(x) is normalized.
However,in most cases of interest we do not have the exactΨ. But if we have made a clever choice

for Ψ(x), the expressioñH(x) exhibits a smooth behavior in the neighbourhood of the exactsolution.
The above example encompasses the main essence of the Monte Carlo philosophy. It is a trial approach,
where intelligent guesses lead to hopefully better results.

8.4.1 Change of variables

The starting point is always the uniform distribution

p(x)dx =

{
dx 0 ≤ x ≤ 1
0 else

197

Outline of the Monte Carlo strategy

with p(x) = 1 and satisfying ∫ ∞

−∞
p(x)dx = 1.

All random number generators provided in the program library generate numbers in this domain.
When we attempt a transformation to a new variablex→ y we have to conserve the probability

p(y)dy = p(x)dx,

which for the uniform distribution implies

p(y)dy = dx.

Let us assume thatp(y) is a PDF different from the uniform PDFp(x) = 1 with x ∈ [0, 1]. If we integrate
the last expression we arrive at

x(y) =

∫ y

0
p(y′)dy′,

which is nothing but the cumulative distribution ofp(y), i.e.,

x(y) = P (y) =

∫ y

0
p(y′)dy′.

This is an important result which has consequences for eventual improvements over the brute force
Monte Carlo.

To illustrate this approach, let us look at some examples.

Transformed uniform distribution

Suppose we have the general uniform distribution

p(y)dy =

{ dy
b−a a ≤ y ≤ b
0 else

If we wish to relate this distribution to the one in the interval x ∈ [0, 1] we have

p(y)dy =
dy

b− a = dx,

and integrating we obtain the cumulative function

x(y) =

∫ y

a

dy′

b− a,

yielding

y = a+ (b− a)x,

a well-known result!

198

8.4 – Improved Monte Carlo integration

Exponential distribution

Assume that
p(y) = e−y,

which is the exponential distribution, important for the analysis of e.g., radioactive decay. Again,p(x)
is given by the uniform distribution withx ∈ [0, 1], and with the assumption that the probability is
conserved we have

p(y)dy = e−ydy = dx,

which yields after integration

x(y) = P (y) =

∫ y

0
exp (−y′)dy′ = 1− exp (−y),

or
y(x) = −ln(1− x).

This gives us the new random variabley in the domainy ∈ [0,∞) determined through the random
variablex ∈ [0, 1] generated by functions likeran0.

This means that if we can factor outexp (−y) from an integrand we may have

I =

∫ ∞

0
F (y)dy =

∫ ∞

0
exp (−y)G(y)dy

which we rewrite as

∫ ∞

0
exp (−y)G(y)dy =

∫ 1

0
G(y(x))dx ≈ 1

N

N∑

i=1

G(y(xi)),

wherexi is a random number in the interval [0,1]. We have changed the integration limits in the second
integral, since we have performed a change of variables. Since we have used the uniform distribution
defined forx ∈ [0, 1], the integration limits change to0 and1. The variabley is now a function ofx.
Note also that in practical implementations, our random number generators for the uniform distribution
never return exactly 0 or 1, but we we may come very close. We should thus in principle setx ∈ (0, 1).

The algorithm for the last example is rather simple. In the function which sets up the integral, we
simply need to call one of the random number generators likeran0, ran1, ran2 or ran3 in order to
obtain numbers in the interval [0,1]. We obtainy by the taking the logarithm of(1 − x). Our calling
function which sets up the new random variabley may then include statements like.....idum=-1;x=ran0(&idum);y=-log(1.-x);.....
Another example

Another function which provides an example for a PDF is

p(y)dy =
dy

(a+ by)n
,

199

Outline of the Monte Carlo strategy

with n > 1. It is normalizable, positive definite, analytically integrable and the integral is invertible,
allowing thereby the expression of a new variable in terms ofthe old one. The integral

∫ ∞

0

dy

(a+ by)n
=

1

(n− 1)ban−1
,

gives

p(y)dy =
(n− 1)ban−1

(a+ by)n
dy,

which in turn gives the cumulative function

x(y) = P (y) =

∫ y

0

(n− 1)ban−1

(a+ bx)n
dy′ =,

resulting in

x(y) = 1− 1

(1 + b/ay)n−1
,

or
y =

a

b

(
(1− x)−1/(n−1) − 1

)
.

With the random variablex ∈ [0, 1] generated by functions likeran0, we have again the appropriate
random variabley for a new PDF.

Normal distribution

For the normal distribution, expressed here as

g(x, y) = exp (−(x2 + y2)/2)dxdy.

it is rather difficult to find an inverse since the cumulative distribution is given by the error function
erf(x).

If we however switch to polar coordinates, we have forx andy

r =
(
x2 + y2

)1/2
θ = tan−1x

y
,

resulting in
g(r, θ) = r exp (−r2/2)drdθ,

where the angleθ could be given by a uniform distribution in the region[0, 2π]. Following example 1
above, this implies simply multiplying random numbersx ∈ [0, 1] by 2π. The variabler, defined for
r ∈ [0,∞) needs to be related to to random numbersx′ ∈ [0, 1]. To achieve that, we introduce a new
variable

u =
1

2
r2,

and define a PDF
exp (−u)du,

with u ∈ [0,∞). Using the results from example 2, we have that

u = −ln(1− x′),

200

8.4 – Improved Monte Carlo integration

wherex′ is a random number generated forx′ ∈ [0, 1]. With

x = rcos(θ) =
√

2ucos(θ),

and
y = rsin(θ) =

√
2usin(θ),

we can obtain new random numbersx, y through

x =
√
−2ln(1− x′)cos(θ),

and
y =

√
−2ln(1− x′)sin(θ),

with x′ ∈ [0, 1] andθ ∈ 2π[0, 1].
A function which yields such random numbers for the normal distribution would include statements

like.....idum=-1;radius=sqrt(-2*ln(1.-ran0(idum)));theta=2*pi*ran0(idum);x=radius*
os(theta);y=radius*sin(theta);.....
8.4.2 Importance sampling

With the aid of the above variable transformations we address now one of the most widely used ap-
proaches to Monte Carlo integration, namely importance sampling.

Let us assume thatp(y) is a PDF whose behavior resembles that of a functionF defined in a certain
interval [a, b]. The normalization condition is

∫ b

a
p(y)dy = 1.

We can rewrite our integral as

I =

∫ b

a
F (y)dy =

∫ b

a
p(y)

F (y)

p(y)
dy.

This integral resembles our discussion on the evaluation ofthe energy for a quantum mechanical system
in Eq. (8.30).

Since random numbers are generated for the uniform distribution p(x) with x ∈ [0, 1], we need to
perform a change of variablesx→ y through

x(y) =

∫ y

a
p(y′)dy′,

where we used
p(x)dx = dx = p(y)dy.

201

Outline of the Monte Carlo strategy

If we can invertx(y), we findy(x) as well.
With this change of variables we can express the integral of Eq. (8.4.2) as

I =

∫ b

a
p(y)

F (y)

p(y)
dy =

∫ b̃

ã

F (y(x))

p(y(x))
dx,

meaning that a Monte Carlo evalutaion of the above integral gives

∫ b̃

ã

F (y(x))

p(y(x))
dx =

1

N

N∑

i=1

F (y(xi))

p(y(xi))
.

Note the well the change in integration limits froma andb to ã and b̃. The advantage of such a change
of variables in casep(y) follows closelyF is that the integrand becomes smooth and we can sample over
relevant values for the integrand. It is however not trivialto find such a functionp. The conditions onp
which allow us to perform these transformations are

1. p is normalizable and positive definite,

2. it is analytically integrable and

3. the integral is invertible, allowing us thereby to express a new variable in terms of the old one.

The variance is now with the definition

F̃ =
F (y(x))

p(y(x))
,

given by

σ2 =
1

N

N∑

i=1

(
F̃
)2
−
(

1

N

N∑

i=1

F̃

)2

.

The algorithm for this procedure is

– Use the uniform distribution to find the random variabley in the interval [0,1]. p(x) is a user
provided PDF.

– Evaluate thereafter

I =

∫ b

a
F (x)dx =

∫ b

a
p(x)

F (x)

p(x)
dx,

by rewriting
∫ b

a
p(x)

F (x)

p(x)
dx =

∫ b̃

ã

F (x(y))

p(x(y))
dy,

since
dy

dx
= p(x).

– Perform then a Monte Carlo sampling for

∫ b̃

ã

F (x(y))

p(x(y))
dy,≈ 1

N

N∑

i=1

F (x(yi))

p(x(yi))
,

with yi ∈ [0, 1],

– and evaluate the variance as well according to Eq. (8.4.2).

202

8.5 – Monte Carlo integration of multidimensional integrals

8.4.3 Acceptance-Rejection method

This is rather simple and appealing method after von Neumann. Assume that we are looking at an interval
x ∈ [a, b], this being the domain of the PDFp(x). Suppose also that the largest value our distribution
function takes in this interval isM , that is

p(x) ≤M x ∈ [a, b].

Then we generate a random numberx from the uniform distribution forx ∈ [a, b] and a corresponding
numbers for the uniform distribution between[0,M]. If

p(x) ≥ s,

we accept the new value ofx, else we generate again two new random numbersx ands and perform the
test in the latter equation again.

As an example, consider the evaluation of the integral

I =

∫ 3

0
exp (x)dx.

Obviously to derive it analytically is much easier, howeverthe integrand could pose some more difficult
challenges. The aim here is simply to show how to implent the acceptance-rejection algorithm. The
integral is the area below the curvef(x) = exp (x). If we uniformly fill the rectangle spanned by
x ∈ [0, 3] andy ∈ [0, exp (3)], the fraction below the curve obtained from a uniform distribution, and
multiplied by the area of the rectangle, should approximatethe chosen integral. It is rather easy to
implement this numerically, as shown in the following code.

Acceptance-Rejection algorithm

/ / Loop over Monte Car lo t r i a l s n
i n t e g r a l = 0 . ;
f o r (i n t i = 1 ; i <= n ; i ++) {

/ / F inds a random v a l u e f o r x i n t h e i n t e r v a l [0 , 3]
x = 3∗ ran0 (&idum) ;

/ / F inds y−v a l u e between [0 , exp (3)]
y = exp (3 . 0)∗ ran0 (&idum) ;

/ / i f t h e v a l u e o f y a t exp (x) i s below t h e curve , we a c c e p t
i f (y < exp (x)) s = s+ 1 . 0 ;

/ / The i n t e g r a l i s area e n c l o s e d below t h e l i n e f (x)=exp (x)
}

/ / Then we m u l t i p l y w i th t h e area o f t h e r e c t a n g l e and d i v i d e by t h e number
o f c y c l e s
I n t e g r a l = 3 .∗ exp (3 .)∗ s / n

8.5 Monte Carlo integration of multidimensional integrals

When we deal with multidimensional integrals of the form

I =

∫ 1

0
dx1

∫ 1

0
dx2 . . .

∫ 1

0
dxdg(x1, . . . , xd),

203

Outline of the Monte Carlo strategy

with xi defined in the interval[ai, bi] we would typically need a transformation of variables of theform

xi = ai + (bi − ai)ti,

if we were to use the uniform distribution on the interval[0, 1]. In this case, we need a Jacobi determinant

d∏

i=1

(bi − ai),

and to convert the functiong(x1, . . . , xd) to

g(x1, . . . , xd)→ g(a1 + (b1 − a1)t1, . . . , ad + (bd − ad)td).

As an example, consider the following six-dimensional integral

∫ ∞

−∞
dxdyg(x,y),

where

g(x,y) = exp (−x2 − y2 − (x− y)2/2),

with d = 6.
We can solve this integral by employing our brute force scheme, or using importance sampling and

random variables distributed according to a gaussian PDF. For the latter, if we set the mean valueµ = 0
and the standard deviationσ = 1/

√
2, we have

1√
π

exp (−x2),

and using this normal distribution we rewrite our integral as

π3

∫ 6∏

i=1

(
1√
π

exp (−x2
i)

)
exp (−(x− y)2/2)dx1. . . . dx6,

which is rewritten in a more compact form as

∫
f(x1, . . . , xd)F (x1, . . . , xd)

6∏

i=1

dxi,

wheref is the above normal distribution and

F (x1, . . . , x6) = F (x,y) = exp−(x− y2/2,

Below we list two codes, one for the brute force integration and the other employing importance
sampling with a gaussian distribution.

204

8.5 – Monte Carlo integration of multidimensional integrals

8.5.1 Brute force integrationhttp://www.fys.uio.no/
ompphys/
p/programs/FYS3150/
hapter08/
pp/program4.
pp
inc lude < ios t ream >
inc lude < fs t r eam >
inc lude < iomanip >
inc lude "lib.h"
us ing namespace s t d ;

double bru te_ fo rce_MC (double ∗) ;
/ / Main f u n c t i o n b e g i n s here
i n t main ()
{

i n t n ;
double x [6] , y , f x ;
double i n t_mc = 0 . ; double v a r i a n c e = 0 . ;
double sum_sigma= 0 . ; long idum=−1 ;
double l e n g t h = 5 . ; / / we f i x t h e max s i z e o f t h e box t o L=5
double volume=pow ((2∗ l e n g t h) , 6) ;
cou t << "Read in the number of Monte-Carlo samples" << end l ;
c i n >> n ;

/ / e v a l u a t e t h e i n t e g r a l w i th impo r tance sampl ing
f o r (i n t i = 1 ; i <= n ; i ++) {

/ / x [] c o n t a i n s t h e random numbers f o r a l l d imens ions
f o r (i n t j = 0 ; j < 6 ; j ++) {

x [j]=− l e n g t h +2∗ l e n g t h∗ ran0 (&idum) ;
}
f x=bru te_ fo rce_MC (x) ;
in t_mc += fx ;
sum_sigma += fx∗ f x ;

}
in t_mc = in t_mc / ((double) n) ;
sum_sigma = sum_sigma / ((double) n) ;
v a r i a n c e =sum_sigma−i n t_mc∗ i n t_mc ;

/ / f i n a l o u t p u t
cou t << s e t i o s f l a g s (i o s : : showpo in t | i o s : : u p p e r c a s e) ;
cou t << " Monte
arlo result= " << setw (1 0) << s e t p r e c i s i o n (8) <<

volume∗ i n t_mc ;
cou t << " Sigma= " << setw (1 0) << s e t p r e c i s i o n (8) << volume∗ s q r t (

v a r i a n c e / ((double) n)) << end l ;
re turn 0 ;

} / / end o f main program

/ / t h i s f u n c t i o n d e f i n e s t h e i n t e g r a n d t o i n t e g r a t e

double bru te_ fo rce_MC (double ∗x)
{

double a = 1 . ; double b = 0 . 5 ;
/ / e v a l u a t e t h e d i f f e r e n t te rms o f t h e e x p o n e n t i a l

double xx=x [0] ∗ x [0]+ x [1] ∗ x [1]+ x [2] ∗ x [2] ;
double yy=x [3] ∗ x [3]+ x [4] ∗ x [4]+ x [5] ∗ x [5] ;
double xy=pow ((x [0]−x [3]) , 2) +pow ((x [1]−x [4]) , 2) +pow ((x [2]−x [5]) , 2) ;

205

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter08/cpp/program4.cpp

Outline of the Monte Carlo strategy

re turn exp(−a∗xx−a∗yy−b∗xy) ;
} / / end f u n c t i o n f o r t h e i n t e g r a n d

8.5.2 Importance sampling

This code includes a call to the functionnormal_random, which produces random numbers from a
gaussian distribution.http://www.fys.uio.no/
ompphys/
p/programs/FYS3150/
hapter08/
pp/program5.
pp
/ / impo r tance sampl ing w i th gauss ian d e v i a t e s
inc lude < ios t ream >
inc lude < fs t r eam >
inc lude < iomanip >
inc lude "lib.h"
us ing namespace s t d ;

double gaussian_MC (double ∗) ;
double g a u s s i a n _ d e v i a t e (long ∗) ;
/ / Main f u n c t i o n b e g i n s here
i n t main ()
{

i n t n ;
double x [6] , y , f x ;
cou t << "Read in the number of Monte-Carlo samples" << end l ;
c i n >> n ;
double i n t_mc = 0 . ; double v a r i a n c e = 0 . ;
double sum_sigma= 0 . ; long idum=−1 ;
double l e n g t h = 5 . ; / / we f i x t h e max s i z e o f t h e box t o L=5
double volume=pow(acos (−1 .) , 3 .) ;
double s q r t 2 = 1 . / s q r t (2 .) ;

/ / e v a l u a t e t h e i n t e g r a l w i th impo r tance sampl ing
f o r (i n t i = 1 ; i <= n ; i ++) {

/ / x [] c o n t a i n s t h e random numbers f o r a l l d imens ions
f o r (i n t j = 0 ; j < 6 ; j ++) {

x [j] = g a u s s i a n _ d e v i a t e (&idum)∗ s q r t 2 ;
}
f x=gaussian_MC (x) ;
in t_mc += fx ;
sum_sigma += fx∗ f x ;

}
in t_mc = in t_mc / ((double) n) ;
sum_sigma = sum_sigma / ((double) n) ;
v a r i a n c e =sum_sigma−i n t_mc∗ i n t_mc ;

/ / f i n a l o u t p u t
cou t << s e t i o s f l a g s (i o s : : showpo in t | i o s : : u p p e r c a s e) ;
cou t << " Monte
arlo result= " << setw (1 0) << s e t p r e c i s i o n (8) <<

volume∗ i n t_mc ;
cou t << " Sigma= " << setw (1 0) << s e t p r e c i s i o n (8) << volume∗ s q r t (

v a r i a n c e / ((double) n)) << end l ;
re turn 0 ;

} / / end o f main program

206

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter08/cpp/program5.cpp

8.5 – Monte Carlo integration of multidimensional integrals

/ / t h i s f u n c t i o n d e f i n e s t h e i n t e g r a n d t o i n t e g r a t e

double gaussian_MC (double ∗x)
{

double a = 0 . 5 ;
/ / e v a l u a t e t h e d i f f e r e n t te rms o f t h e e x p o n e n t i a l

double xy=pow ((x [0]−x [3]) , 2) +pow ((x [1]−x [4]) , 2) +pow ((x [2]−x [5]) , 2) ;
re turn exp(−a∗xy) ;

} / / end f u n c t i o n f o r t h e i n t e g r a n d

/ / random numbers w i th gauss ian d i s t r i b u t i o n
double g a u s s i a n _ d e v i a t e (long ∗ idum)
{

s t a t i c i n t i s e t = 0 ;
s t a t i c double g s e t ;
double fac , rsq , v1 , v2 ;

i f (idum < 0) i s e t =0 ;
i f (i s e t == 0) {

do {
v1 = 2 .∗ ran0 (idum) −1.0;
v2 = 2 .∗ ran0 (idum) −1.0;
r s q = v1∗v1+v2∗v2 ;

} whi le (r s q >= 1 .0 | | r s q == 0 .) ;
f a c = s q r t (−2.∗ l og (r s q) / r s q) ;
g s e t = v1∗ f a c ;
i s e t = 1 ;
re turn v2∗ f a c ;

} e l s e {
i s e t =0 ;
re turn g s e t ;

}
} / / end f u n c t i o n f o r gauss ian d e v i a t e s

The following table lists the results from the above two programs as function of the number of Monte
Carlo samples. The suffixcr stands for the brute force approach whilegd stands for the use of a Gaussian
distribution function. One sees clearly that the approachwith a Gaussian distribution function yields a
much improved numerical result, with fewer samples.

Table 8.4: Results as function of number of Monte Carlo samplesN . The exact answer isI ≈ 10.9626
for the integral. The suffixcr stands for the brute force approach whilegd stands for the use of a Gaussian
distribution function. All calculations use ran0 as function to generate the uniform distribution.

N Icr Igd

10000 1.15247E+01 1.09128E+01
100000 1.29650E+01 1.09522E+01

1000000 1.18226E+01 1.09673E+01
10000000 1.04925E+01 1.09612E+01

207

Outline of the Monte Carlo strategy

8.6 Exercises and projects

Exercise 8.1: Cumulative functions

Calculate the cumulative functionsP (x) for the binomial and the Poisson distributions and their vari-
ances.

Exercise 8.2: Random number algorithm

Make a program which computes random numbers according to the algorithm of Marsaglia and Zaman,
Eqs. (8.24) and (8.25). Compute the correlation functionCk and compare with the auto-correlation
function from the functionran0.

Exercise 8.3: Normal distribution and random numbers

Make a functionnormal_random which computes random numbers for the normal distribution based
on random numbers generated from the functionran0.

Exercise 8.4: Exponential distribution and random numbers

Make a functionexp_random which computes random numbers for the exponential distribution p(y) =
e−αy based on random numbers generated from the functionran0.

Exercise 8.5: Monte Carlo integration

(a) Calculate the integral

I =

∫ 1

0
e−x2

dx,

using brute force Monte Carlo withp(x) = 1 and importance sampling withp(x) = ae−x where
a is a constant.

(b) Calculate the integral

I =

∫ π

0

1

x2 + cos2(x)
dx,

with p(x) = ae−x wherea is a constant. Determine the value ofa which minimizes the variance.

Project 8.1: Decay of210Bi and210Po

In this project we are going to simulate the radioactive decay of these nuclei using sampling through
random numbers. We assume that att = 0 we haveNX(0) nuclei of the typeX which can decay
radioactively. At a given timet we are left withNX(t) nuclei. With a transition rateωX , which is the
probability that the system will make a transition to another state during a time step of one second, we
get the following differential equation

dNX(t) = −ωXNX(t)dt,

whose solution is

NX(t) = NX(0)e−ωX t,

208

8.6 – Exercises and projects

and where the mean lifetime of the nucleusX is

τ =
1

ωX
.

If the nucleusX decays toY , which can also decay, we get the following coupled equations

dNX(t)

dt
= −ωXNX(t),

and
dNY (t)

dt
= −ωYNY (t) + ωXNX(t).

We assume that att = 0 we haveNY (0) = 0. In the beginning we will have an increase ofNY

nuclei, however, they will decay thereafter. In this project we let the nucleus210Bi representX. It decays
throughβ-decay to210Po, which is theY nucleus in our case. The latter decays through emision of an
α-particle to206Pb, which is a stable nucleus.210Bi has a mean lifetime of 7.2 days while210Po has a
mean lifetime of 200 days.

a) Find analytic solutions for the above equations assumingcontinuous variables and setting the num-
ber of210Po nuclei equal zero att = 0.

b) Make a program which solves the above equations. What is a reasonable choice of timestep∆t?
You could use the program on radioactive decay from the web-page of the course as an example
and make your own for the decay of two nuclei. Compare the results from your program with the
exact answer as function ofNX(0) = 10, 100 and1000. Make plots of your results.

c) When210Po decays it produces anα particle. At what time does the production ofα particles reach
its maximum? Compare your results with the analytic ones forNX(0) = 10, 100 and1000.

Project 8.2: Numerical integration of the correlation energy of the helium atom

The task of this project is to integrate in a brute force manner a six-dimensional integral which is used to
determine the ground state correlation energy between two electrons in a helium atom. We will employ
both Gauss-Legendre quadrature and Monte-Carlo integration. Furthermore, you will need to parallelize
your code for the Monte-Carlo integration.

We assume that the wave function of each electron can be modelled like the single-particle wave
function of an electron in the hydrogen atom. The single-particle wave function for an electroni in the
1s state is given in terms of a dimensionless variable (the wavefunction is not properly normalized)

ri = xiex + yiey + ziez,

as
ψ1s(ri) = e−αri ,

whereα is a parameter and

ri =
√
x2

i + y2
i + z2

i .

We will fix α = 2, which should correspond to the charge of the helium atomZ = 2.
The ansatz for the wave function for two electrons is then given by the product of two1s wave

functions as
Ψ(r1, r2) = e−α(r1+r2).

209

Outline of the Monte Carlo strategy

Note that it is not possible to find an analytic solution to Schrödinger’s equation for two interacting
electrons in the helium atom.

The integral we need to solve is the quantum mechanical expectation value of the correlation energy
between two electrons, namely

〈 1

|r1 − r2|
〉 =

∫ ∞

−∞
dr1dr2e

−2α(r1+r2) 1

|r1 − r2|
. (8.31)

Note that our wave function is not normalized. There is a normalization factor missing, but for this project
we don’t need to worry about that.

a) Use Gauss-Legendre quadrature and compute the integral by integrating for each variablex1, y1,
z1, x2, y2, z2 from−∞ to∞. How many mesh points do you need before the results converges at
the level of the fourth leading digit? Hint: the single-particle wave functione−αri is more or less
zero atri ≈ 10 − 15. You can therefore replace the integration limits−∞ and∞ with −10 and
10, respectively. You need to check that this approximation issatisfactory.

b) Compute the same integral but now with brute force Monte Carlo and compare your results with
those from the previous point. Discuss the differences. With bruce force we mean that you should
use the uniform distribution.

c) Improve your brute force Monte Carlo calculation by usingimportance sampling. Hint: use the
exponential distribution. Does the variance decrease? Does the CPU time used compared with the
brute force Monte Carlo decrease in order to achieve the sameaccuracy? Comment your results.

d) Parallelize your code from the previous point and comparethe CPU time needed with that from
point [c)]. Do you achieve a good speedup?

e) The integral of Eq. (8.31) has an analytical expression. Can you find it?

210

