Chapter 7

Numerical integration

7.1 Introduction

In this chapter we discuss some of the classic formulae ssitheatrapezoidal rule and Simpson’s rule
for equally spaced abscissas and formulae based on Gaggsidrature. The latter are more suitable
for the case where the abscissas are not equally spacedniiasis is on methods for evaluating one-
dimensional integrals. In chaptgr 8 we show how Monte Carhimds can be used to compute multi-
dimensional integrals. We discuss also how to compute Engutegrals and outline a physics project
which combines numerical integration techniques and se/@f a matrix to solve quantum mechanical
scattering problems.

We end this chapter with an extensive discussion on MPI arallpbcomputing. The examples focus
on parallelization of algorithms for computing integrals.

The integral
b
I:/ f(x)dx (7.1)

has a very simple meaning. If we consider Hig.] 7.1 the intefamply represents the area enscribed
by the functionf(x) starting fromz = @ and ending at: = . Two main methods will be discussed
below, the first one being based on equal (or allowing forhsligodifications) steps and the other on
more adaptive steps, namely so-called Gaussian quadraetteods. Both main methods encompass a
plethora of approximations and only some of them will be ulsed here.

7.2 Newton-Cotes quadrature: equal step methods

In considering equal step methods, our basic tool is theoFadpansion of the functioyi(x) around a
pointz and a set of surrounding neighbouring points. The algorithrather simple, and the number of
approximations perhaps unlimited!

— Choose a step size
_b—a

h
N

whereN is the number of steps andandb the lower and upper limits of integration.

125

Numerical integration

Y

a a+h a+ 2h a—+ 3h b x

Figure 7.1: The area enscribed by the functjdm) starting fromz = a to x = b. It is subdivided in
several smaller areas whose evaluation is to be approxinbgtthe techniques discussed in the text. The
areas under the curve can for example be approximated @ngdar boxes or trapezoids.

126

7.2 — Newton-Cotes quadrature: equal step methods

— With a given step length we rewrite the integral as

[= [T g [T s [@

+h b—h

— The strategy then is to find a reliable Taylor expansionffar) in the various intervals. Choosing
a given truncation of the Taylor expansion ffz) at a certain derivative we obtain a specific
approximation to the integral.

— With this approximation tof (z) we perform the integration by computing the integrals over a
subintervals.

Such a small measure may seemingly allow for the derivatfovadous integrals. To see this, let us
briefly recall the discussion in the previous section and[El§. First we rewrite the integral as

b a+2h a+4h b
/ flz)dx = / f(x)dx + / flx)dx + ... f(x)dx.
a a a+2h b—2h

The strategy then is to find a reliable Taylor expansionffar) in the smaller sub intervals. Consider for
example evaluating

a+2h
/ f(2)da,
which we rewrite as
a+2h zo+h
/ f(x)dx = / f(x)dz, (7.2)
a zro—h

where we will Taylor expand () around a point:g, see Figlz3]1. We have defined = a + h and use
xo as the midpoint.
The general form for the Taylor expansion aroundjoes like

h2f// N h3f///

4
5 =+ O(h").

fl@=xzo£h)= f(zo) £hf +

Let us now suppose that we split the integral in EQ1(7.2) imparts, one fromy — h to 2o and the other
from x(to z¢ + h, that is, our integral is rewritten as

/a T @y = / Y @)de + / T e,

o—h xo

Next we assume that we can use the two-point formula for thigalive, meaning that we approximate
f(z) in these two regions by a straight line, as indicated in theréig This means that every small
element under the functiofi(z) looks like a trapezoid. The pertinent numerical approadhédntegral
bears thus the predictable name 'trapezoidal rule’. It medso that we are trying to approximate our
function f(z) with a first order polynomial, that i$(x) = a + bx. The constant is the slope given by
the first derivative at = z

- flwo+h) = flzo) | oh),

or

/= +0(h),

h
f(xo) — f(zo —h)
h

127

Numerical integration

and if we stop the Taylor expansion at that point our funcbhenomes,

In—Jfo

f(z) = fo+ .

x,

for z € [zg, o + h] and
Jo—J-n

f(x) =~ fo+ T:H—’

for x € [xg — h, 7). The error is proportional witth(h?). If we then evaluate the integral we obtain

zo+h h
/ o f(w)dw = 5 (f:]co+h + 2fa:0 + f:to—h) + O(h3)7 (73)

which is the well-known trapezoidal rule. Concerning theoein the approximation made)(h3) =
O((b — a)®/N3), you should note the followingThis is the local error! Since we are splitting the
integral froma to b in IV pieces, we will have to perform approximately such operations. This means
that theglobal error goes like~~ O(h?). To see that, we use the trapezoidal rule to compute theraiteg

of Eq. (Z),
b
I— / F(x)de = h(f(a)/2+ fla+h) + fa+2) + -+ Fo—h) + fo/2), (7.4)

with a global error which goes lik€(h?).
Hereafter we use the shorthand notatigng = f(zo — h), fo = f(zo) andfy, = f(zo + h). The
correct mathematical expression for the local error forttapezoidal rule is

|t =252 @) + 1] = ~55720)
and the global error reads

b _
[s~ 1) = - 10,

whereT}, is the trapezoidal result arfde [a, b].
The trapezoidal rule is easy to implement numerically throthe following simple algorithm

— Choose the number of mesh points and fix the step.
— calculatef (a) and f(b) and multiply withh /2

— Perform aloop overn = 1ton — 1 (f(a) andf(b) are known) and sum up the term
fla+h)+ f(a+2h)+ f(a+3h)+---+ f(b—h). Each step in the loop correspon
to a given value:r + nh.

— Multiply the final result byh and addh f (a)/2 andh f(b)/2.

A simple function which implements this algorithm is as éells

128

7.2 — Newton-Cotes quadrature: equal step methods

double TrapezoidalRule@ouble a, double b, int n, double (xfunc)(double))
{
double TrapezSum;
double fa, fb, x, step;
int i;
step=(b-a) /((double) n);
fa=(xfunc)(a)/2. ;
fb=(xfunc)(b) /2.
TrapezSum=0.;
for (j=1; j <= n-=1; j++){
X=jxstep+a;
TrapezSum+={func) (x) ;
}
TrapezSum=(TrapezSum+fb+fa¥tep;
return TrapezSum;
} [/l end TrapezoidalRule

The function returns a new value for the specific integradulgh the variabl8rapezSum There is one
new feature to note here, namely the transfer of a user ddiimetion calledfunc in the definition

void TrapezoidalRulefouble a, double b, int n, double *xTrapezSum,
double (xfunc)(double))

What happens here is that we are transferring a pointer toathee of a user defined function, which
has as input a double precision variable and returns a dqubldsion number. The functiofrape-
zoidalRuleis called as

TrapezoidalRule(a, b, n, &MyFunction)

in the calling function. We note tha, b andn are called by value, whil@rapezSum and the user
defined functiorMyFunction are called by reference.

Another very simple approach is the so-called midpoint otaregle method. In this case the integra-
tion area is split in a given number of rectangles with lenigiind height given by the mid-point value
of the function. This gives the following simple rule for apgimating an integral

b N
I= [f@)s b fai), (7.5)
a i=1

where f(x;_2) is the midpoint value off for a given rectangle. We will discuss its truncation error
below. It is easy to implement this algorithm, as shown here

double RectangleRule@ouble a, double b, int n, double (xfunc)(double))
{
double RectangleSum;
double fa, fb, x, step;
int i;
step=(b-a) /((double) n);
RectangleSum=0.;
for (j = 0; j <= n; j++){
X = (j+0.5)xstep +; /' midpoint of a given rectangle
RectangleSum+=(func) (x); // add value of function.

129

Numerical integration

}
RectangleSum«= step; // multiply with step length.
return RectangleSum;

} // end RectangleRule

The correct mathematical expression for the local errottferectangular rulé; (i) for element is

" pydo — Ruh) =~ 12 5
| e = R =~ 1260)

and the global error reads
b

/f)z — Ri(f) =~ “n2f@g).

whereRy, is the result obtained with rectangular rule gnd [a, b].

Instead of using the above linear two-point approximatifamsf, we could use the three-point for-
mula for the derivatives. This means that we will choose fdem based on function values which lie
symmetrically around the point where we perform the Taybqramsion. It means also that we are ap-
proximating our function with a second-order polynomjalr) = a + bz + cx?. The first and second
derivatives are given by

Jn—f-n > (2j+1)

Jh Joh h2i
2h f°+z (2 +1)1 7
and
fn—=2fo+ fen +2Z f02j+2)
h? (25 +2)!

and we note that in both cases the error goes(l)léezﬂ). With the latter two expressions we can now
approximate the functior as

F@) ~ fo+ I ;hf— $+fh_22];32+f—h 2

Inserting this formula in the integral of EQ.{¥.2) we obtain

+h h
f(z)dz = 3 (fn+4fo+ f-n) + O(R°),

which is Simpson’s rule. Note that the improved accuracyhm évaluation of the derivatives gives a
better error approximatior)(h®) vs. O(h?) . But this is again thdocal error approximation Using
Simpson’s rule we can easily compute the integral of EQ)) {0.be

b
[:/f(ac)dw:g(f(a)+4f(a+h)+2f(a+2h)+---+4f(b—h)+fb), (7.6)

with a global error which goes lik&(h*). More formal expressions for the local and global errors are
for the local error

/a ' fla)d

a 5
[F(@) + 4@+ 0)/2) + F(0)] = — 5 1€,

130

7.2 — Newton-Cotes quadrature: equal step methods

and for the global error

b

b —a
[o= su(5) = =Tt

with ¢ € [a,b] and Sy, the results obtained with Simpson’s method. The method eaityebe imple-
mented numerically through the following simple algorithm

— Choose the number of mesh points and fix the step.
— calculatef (a) and f(b)

— Perform aloop oven = 1ton — 1 (f(a) and f(b) are known) and sum up the term
4f(a+ h) 4+ 2f(a+2h) +4f(a+ 3h) +--- +4f(b — h). Each step in the loop
corresponds to a given value+ nh. Odd values of. give 4 as factor while even
values yield® as factor.

- - h
— Multiply the final result bys.

In more general terms, what we have done here is to approximafiven functionf(x) with a
polynomial of a certain degree. One can show that given 1 distinct pointszo, ..., x, € [a,b] and
n + 1 valuesyy, . . ., y, there exists a unique polynomi&l, (z) with the property

pl(zj)=vy; 7=0,....,n

In the Lagrange representation discussed in chlpter Gnthipolating polynomial is given by

Po=> Ly,
k=0

with the Lagrange factors

n

Xr — Xy
lp(z) = H xk_x‘k:O,...,n,
1=0

i #k
see for example the text of Kress [30] or Burlich and Stoet fdOdetails. If we for example set = 1,
we obtain

T — T y T — X yl—yow Y1Zo + YoT1
1 = —
To — X1 xr1 — o 1 — Xo xr1 — o

)

which we recognize as the equation for a straight line.

The polynomial interpolatory quadrature of ordewith equidistant quadrature pointg = a + kh
and steph = (b — a)/n is called the Newton-Cotes quadrature formula of ordeGeneral expressions
can be found in for example Refs. [30, 40].

131

Numerical integration

7.3 Adaptive integration

Before we proceed with more advanced methods like Gaussiatrgture, we mention breefly how an
adaptive integration method can be implemented.

The above methods are all based on a defined step length, lyopravided by the user, dividing
the integration domain with a fixed number of subintervalkisTs rather simple to implement may be
inefficient, in particular if the integrand varies consalaly in certain areas of the integration domain. In
these areas the number of fixed integration points may noteguate. In other regions, the integrand
may vary slowly and fewer integration points may be needed.

In order to account for such features, it may be conveniefitdbstudy the properties of integrand,
via for example a plot of the function to integrate. If thiswfition oscillates largely in some specific
domain we may then opt for adding more integration pointshed particular domain. However, this
procedure needs to be repeated for every new integrand eksl déviously the advantages of a more
generic code.

The algorithm we present here is based on a recursive preeadd allows us to automate an adaptive
domain. The procedure is very simple to implement.

Assume that we want to compute an integral using say thezoiged rule. We limit ourselves to a
one-dimensional integral. Our integration domain is defibgz € [a, b]. The algorithm goes as follows

— We compute our first approximation by computing the intefalthe full domain. We label this
asI()_ Itis obtained by calling our previously discussed funcfloapezoidalRule as

I0 = TrapezoidalRule(a, b, n, function);

— In the next step we split the integration in two, with= (a + b)/2. We compute then the two
integrals/%) and 7(1%)

I1L = TrapezoidalRule(a, ¢, n, function);

and

I1IR = TrapezoidalRule(c, b, n, function);

With a given defined tolerance, being a small number provigeds, we estimate the difference
|10L) 4 TOR) _ 1O0)| < tolerance. If this test is satisfied, our first approximation is satitfay.

— If not, we can set up a recursive procedure where the intégsglit into subsequent subintervals
until our tolerance is satisfied.

This recursive procedure can be easily implemented viadifenfing function

/1 Simple recursive function that implements the
/1 adaptive integration using the trapezoidal rule
/1 It is convenient to define as global variables
/1 the tolerance and the number of recursive steps

const int maxrecursions = 50;

const double tolerance = 1.0E10;

[/l Takes as input the integration Ilimits, number of pointsunfttion to
integrate

/I and the number of steps

void Adaptivelntegration{ouble a, double b, double xIntegral, int n, int
steps , double (xfunc)(double))

132

7.4 — Gaussian quadrature

if (steps > maxrecursions){
cout << ’Too many recursive steps, the function varies too much’ <<
endl;
break;
}
double ¢ = (a+b)*0.5;
/I the whole integral
double 10 = TrapezoidalRule(a, b,n, func);
/I the left half
double I1L = TrapezoidalRule(a, c,n, func);
/I the right half
double I11R = TrapezoidalRule(c, b,n, func);
if (fabs(I1L+I1R-10) < tolerance) integral = 10;
else
{
Adaptivelntegration(a, c, Integral jnt n, ++steps, func)
Adaptivelntegration(c, b, Integral ,int n, ++steps, func)
}
}

/1l end function Adaptivelntegration

The variablesintegral and stepsshould be initialized to zero by the function that calls tlizagtive
procedure.

7.4 Gaussian quadrature

The methods we have presented hitherto are taylored togmabivhere the mesh pointg are equidis-
tantly spacedy; differing from x;, 1 by the steph. These methods are well suited to cases where the
integrand may vary strongly over a certain region or if wegnate over the solution of a differential
equation.

If however our integrand varies only slowly over a large imé, then the methods we have discussed
may only slowly converge towards a chosen precksidys an example,

b
_ -2
I—/l x”“f(x)dx,

may converge very slowly to a given precisiorbiis large and/orf (x) varies slowly as function of at
large values. One can obviously rewrite such an integrahlayging variables to= 1/ resulting in

1
I=[f@tHat,

b*l

which has a small integration range and hopefully the nurnberesh points needed is not that large.
However, there are cases where no trick may help and whergntieeexpenditure in evaluating

an integral is of importance. For such cases we would likeetmmmend methods based on Gaussian
quadrature. Here one can catch at least two birds with a st@mely, increased precision and fewer
integration points. But it is important that the integraradigs smoothly over the interval, else we have
to revert to splitting the interval into many small subineds and the gain achieved may be lost.

1You could e.g., impose that the integral should not chanderagion of increasing mesh points beyond the sixth digit.

133

Numerical integration

The basic idea behind all integration methods is to appraterthe integral

b N
I= / flz)dr ~ Zwif(xi),
@ i=1

wherew and z are the weights and the chosen mesh points, respectivelgurliprevious discussion,
these mesh points were fixed at the beginning, by choosingea giumber of pointsvV. The weigthsy
resulted then from the integration method we applied. Sampsule, see Eq[{7.6) would give

w:{h/3,4h/3,2h/3,4h/3, ... 4h/3,h/3},
for the weights, while the trapezoidal rule resulted in
w:{h/2,h,h,... h,h/2}.

In general, an integration formula which is based on a Tagdoies usingV points, will integrate exactly
a polynomialP of degreeN — 1. That is, thelV weightsw,, can be chosen to satisfy linear equations,
see chapter 3 of Ref. [3]. A greater precision for a given amofi numerical work can be achieved if
we are willing to give up the requirement of equally spacddgration points. In Gaussian quadrature
(hereafter GQ), both the mesh points and the weights aredeteemined. The points will not be equally
spacefl. The theory behind GQ is to obtain an arbitrary weighhrough the use of so-called orthogonal
polynomials. These polynomials are orthogonal in somevateay e.g., [-1,1]. Our points; are chosen
in some optimal sense subject only to the constraint that sheuld lie in this interval. Together with
the weights we have thenV (N the number of points) parameters at our disposal.

Even though the integrand is not smooth, we could renderaiosimby extracting from it the weight
function of an orthogonal polynomial, i.e., we are rewmtin

b b N
1= [f@ys = [W)z ~ Y wigle) 7.7)
@ @ i=1

whereg is smooth and/¥ is the weight function, which is to be associated with a gieethogonal
polynomial. Note that with a give weight function we end ulexating the integrand for the function
9(@i).

The weight functiorlV is non-negative in the integration intervale [a, b] such that for any. > 0

ff |x|"W (x)dz is integrable. The naming weight function arises from ttet flaat it may be used to give
more emphasis to one part of the interval than another. Arqiia@ formula

b N
[W@~ Y) (7.8)
a i=1

with NV distinct quadrature points (mesh points) is a called a Gawsgiadrature formula if it integrates
all polynomialsp € Py _1 exactly, that is

b N
[w@le)ds =Y (e, (7.9)
@ i=1

2Typically, most points will be located near the origin, venfew points are needed for largevalues since the integrand is
supposed to vary smoothly there. See below for an example.

134

7.4 — Gaussian quadrature

It is assumed thdt/ (x) is continuous and positive and that the integral

/ab W (z)dx

exists. Note that the replacementfof— W g is normally a better approximation due to the fact that we
may isolate possible singularities Bf and its derivatives at the endpoints of the interval.

The quadrature weights or just weights (not to be confuséil tveé weight function) are positive and
the sequence of Gaussian quadrature formulae is convefgleatsequencé) y of quadrature formulae

b
Qn(f) — Q) = / f(x)dz,

in the limit N — oo. Then we say that the sequence

N
Qn() =Y WM ™),
=1

is convergent for all polynomialg, that is

Qn(p) = Q(p)
if there exits a constar' such that N

SV <c,

=1

for all N which are natural numbers.
The error for the Gaussian quadrature formulae of ondés given by

b N 2N b
[W@ 3wt =10 [Wl s
a —1 - Ja

whereqy is the chosen orthogonal polynomial afts a number in the intervak, b]. We have assumed
that f € C?N|a, b], viz. the space of all real or complexV times continuously differentiable functions.
In physics there are several important orthogonal polyatsmihich arise from the solution of dif-

ferential equations. Well-known examples are the Legertdeemite, Laguerre and Chebyshev polyno-
mials. They have the following weight functions

Weight function Interval Polynomial
Wi(x)=1 x € [—1,1] Legendre
W(a)=e™ —oo<z<oo Hermite

W(zx) =z%™" 0<z<o0 Laguerre
Wi(zx)=1/(V1—2?) —1<z <1 Chebyshev

The importance of the use of orthogonal polynomials in tteetion of integrals can be summarized
as follows.

— As stated above, methods based on Taylor series gipgints will integrate exactly a polynomial
P of degreeN — 1. If a function f(x) can be approximated with a polynomial of degrée- 1

f(z) = Py_1(z),
with N mesh points we should be able to integrate exactly the potjadaPy 1.

135

Numerical integration

— Gaussian quadrature methods promise more than this. Weetarbgtter polynomial approxima-
tion with order greater thafv to f(z) and still get away with onlyNV mesh points. More precisely,
we approximate

f(z) = Pay_1(2),

and with onlyN mesh points these methods promise that

N-1
/f(x)dx ~ /PQN_l(x)dx = Z Pyn_1(zi)w;,
i=0

The reason why we can represent a functfgm) with a polynomial of degre@ N — 1 is due to
the fact that we have/N equations/V for the mesh points an®¥ for the weights.

The mesh points are the zeros of the chosen orthogonal puolghof order NV, and the weights are
determined from the inverse of a matrix. An orthogonal polyials of degreeV defined in an interval
[a, b] has preciselyV distinct zeros on the open interval, b).

Before we detail how to obtain mesh points and weights withagonal polynomials, let us revisit
some features of orthogonal polynomials by specializinftdgendre polynomials. In the text below,
we reserve hereafter the labellidgy for a Legendre polynomial of orde¥, while Py is an arbitrary
polynomial of orderN. These polynomials form then the basis for the Gauss-Legenédthod.

7.4.1 Orthogonal polynomials, Legendre

The Legendre polynomials are the solutions of an importéfgrdntial equation in physics, hamely

C(l—az)P—miP+ (1 - wz)% ((1 - w%%) =0.
C'is a constant. Famn; = 0 we obtain the Legendre polynomials as solutions, whetgag 0 yields the
so-called associated Legendre polynomials. This difteakaquation arises in for example the solution
of the angular dependence of Schridinger's equation whiersgally symmetric potentials such as the
Coulomb potential.
The corresponding polynomial? are

__1 d
- 2kEl dak
which, up to a factor, are the Legendre polynomiajs The latter fulfil the orthorgonality relation

Ly (z) (x> — 1)k k=0,1,2,...,

1
2
L;(z)L; = —0;;, 7.10
[L@@ = 3=, (7.10)
and the recursion relation
G+ Ljpa(x) +jLj—1(x) — (2§ + 1)aL;(x) = 0. (7.11)

It is common to choose the normalization condition
Ly(1)=1.

With these equations we can determine a Legendre polynaféabitrary order with input polynomials
of orderN — 1 andN — 2.

136

7.4 — Gaussian quadrature

As an example, consider the determinatiorLgf L1 and L,. We have that
Lo(z) = ¢,
with ¢ a constant. Using the normalization equatigy{1) = 1 we get that
Lo(z) = 1.
For L, (z) we have the general expression
Ly(z) = a + bz,

and using the orthorgonality relation

1
/_ Lo(z) L1 (z)dz = 0,

1
we obtaina = 0 and with the conditiorL; (1) = 1, we obtainb = 1, yielding
Li(x) =x.
We can proceed in a similar fashion in order to determine dledficients ofZ,
Loy(z) = a + bx + ca?,

using the orthorgonality relations

1
/_ Lo(x)La(z)dz = 0,

1
and

1
/_ Li(xz)La(z)dz =0,

1
and the conditior.5(1) = 1 we would get

La(z) = % (32 —1).

We note that we have three equations to determine the thedficgentsa, b andc.
Alternatively, we could have employed the recursion relatf Eq. [ZIll), resulting in

2L2(1‘) = 31‘L1((£) — LQ,

which leads to EqI{Z12).

(7.12)

The orthogonality relation above is important in our distos on how to obtain the weights and
mesh points. Suppose we have an arbitrary polyno@ial ; of orderN — 1 and a Legendre polynomial

Ly (x) of orderN. We could represer®) ;—; by the Legendre polynomials through

N-1
Qv-1(x) =) arLi(x),
k=0

whereqy,'s are constants.

(7.13)

137

Numerical integration

Using the orthogonality relation of Eq._{7]10) we see that

1 N-1
/ In(@)Qu1(@)dz = 3 / L () g Ly (@) d = 0. (7.14)
—1 k=0 —1

We will use this result in our construction of mesh points amilghts in the next subsection.
In summary, the first few Legendre polynomials are

Lo(z) =1,
Li(z) ==,
Ly(x) = (32° - 1)/2,
L3(x) = (52° — 3x)/2,
and
Ly(z) = (352" — 3022 + 3)/8.

The following simple function implements the above reaumsielation of Eq.[[ZJ1). for computing
Legendre polynomials of ordey .

/[l This function computes the Legendre polynomial of degite

double Legendre(int n, double x)
{
double r, s, t;
int m;
r=20;, s=1.;
/I Use recursion relation to generate pl and p2
for (m=0; m < n; m++)
{
t r. r=-s;
S (2xm+1)kxxr — mxt;
s /= (m+1);
} // end of do loop
return s;
} /I end of function Legendre

The variables representd.; («), while r holds L ; (=) andt the valueL;_;(x).

7.4.2 Integration points and weights with orthogonal palymals

To understand how the weights and the mesh points are gedeved define first a polynomial of degree
2N —1 (since we have N variables at hand, the mesh points and weights\fqoints). This polynomial
can be represented through polynomial division by

Pyy_1(x) = Ly(x)Pn_1(z) + Qn-1(x),

where Py _1(z) and@y—1(z) are some polynomials of degréé — 1 or less. The functior. y(x) is a
Legendre polynomial of orde¥.

Recall that we wanted to approximate an arbitrary funcf¢n) with a polynomial P> _; in order
to evaluate

1 1
/_1 f(z)dz ~ /_1 Pyn_1(z)dz,

138

7.4 — Gaussian quadrature

we can use Eq[{7Z14) to rewrite the above integral as

1 1 1
/_1 Pyn_1(z)dr = /_I(LN(SL')PN_1(CL') +Qn-1(x))dx = /_1 QnN-1(x)dx

due to the orthogonality properties of the Legendre polyiatsn We see that it suffices to evaluate the
integral overf_l1 QnN-1(z)dz in order to evaluatq_l1 Pyn—_1(x)dz. In addition, at the points; where
L is zero, we have

Pon_1(7g) = Qn—1(xp) k=0,1,...,N -1,

and we see that through thedepoints we can fully defin€) y_; (z) and thereby the integral. Note that
we have chosen to let the numbering of the points run fidm/N — 1. The reason for this choice is that
we wish to have the same numbering as the order of a polynahitdgreeN — 1. This numbering will
be useful below when we introduce the matrix elements whafnd the integration weights;.

We develope thef) y_1(x) in terms of Legendre polynomials, as done in Eq.(]7.13),

Qn-1(x) = Z o; Li(z). (7.15)

1
/_1 Qn-1(z)dr = Z ozi/ Lo(z)Li(z)dr = 2aq,

where we have just insertelth(z) = 1! Instead of an integration problem we need now to define the
coefficientay. Since we know the values 6f y_; at the zeros of. 5, we may rewrite EQL{Z15) as

N-1 N-—
Qn-1(zk) = > aiLi(zx) = Y oL k=0,1,...,N—1. (7.16)
=0 =

Since the Legendre polynomials are linearly independeetoh other, none of the columns in the ma-
trix L;;, are linear combinations of the others. This means that thexmh;;, has an inverse with the
properties

L'L=1

Multiplying both sides of Eq{Z16) with "' L' results in

N-1

> (Lk@Qn—1 () = . (7.17)

=0

We can derive this result in an alternative way by definingvigtors

Zo Qo
I a1
X = o= ,
TN-1 QN-1

139

Numerical integration

and the matrix

LQ(I‘Q) Ll(x()) . LN_l(IL'O)
i: _ L(]([L'l) Ll(ﬂj‘l) LN—I(:L'I)
Lo(zn-1) Li(zn-1) ... Ly-i(zn-1)
We have then
Qn-1(Zr) = La,

yielding (if L has an inverse)
L™'Qn-1(dx) = &,

which is Eq. [Z1I7).

Using the above results and the fact that

/P2N dfﬂ—/ Qn-1(

N-1
/ Py (z)dz = / Qn-1(z)dz =200 =2 Y (L™)oi Pan—1(x:).
1=0

If we identify the weights witt2(L~1)y;, where the points; are the zeros of. v, we have an integration
formula of the type

we get

1 N-1
/ Pon_1(z)dr = Y wiPay_1(x;)
-1 i=0

and if our functionf(z) can be approximated by a polynomidlof degree2N — 1, we have finally that

1 1 N-1
/ flx)dx =~ / Pyn_1(z)dr = Z wiPan—1(x;).
-1 -1 i=0

In summary, the mesh points are defined by the zeros of an otrhogonal polynomial of degfeley
while the weights are given B(L~1)o;.

7.4.3 Application to the cast’ = 2

Let us visualize the above formal results for the cAse= 2. This means that we can approximate a
function f () with a polynomial P (x) of order2N — 1 = 3.

The mesh points are the zeros bf(z) = 1/2(3z% — 1). These points are, = —1/+/3 and
T = 1/\/§
Specializing Eq.[{Z.16)
N-1
QN—I(:L'k): Zasz(xk) k:07177N_1
=0
to N = 2yields
Q1(70) = ap — 041%,

140

7.4 — Gaussian quadrature

and

Q1(z1) = ag +Oél%a

sinceLo(x = +1/v/3) = 1 and L (z = +1/v/3) = £1//3.
The matrixL;; defined in Eq.[(Z16) is then

&
ol
I
VRS
—_
|
Sl |-

with an inverse given by

V3 1 1
D l=22 v8 v3 .
The weights are given by the matrix eleme®té;,). We have thencey = 1 andw; = 1.
Obviously, there is no problem in changing the numberingpefhatrix elements £ = 0,1,2,..., N—
1toi,k = 1,2,...,N. We have chosen to start from zero, since we deal with polyalsnof degree
N —1.

Summarizing, for Legendre polynomials withi = 2 we have weights

w:{l,1},
and mesh points
. {_L L}
: 57/
If we wish to integrate
1
|t
-1
with f(z) = x2, we approximate
1 N-1
:/ 2ldx ~ Z Wiz
-1 =0

the exact answer!
If we were to emply the trapezoidal rule we would get

[t _b—a C1—(-1) B
I—/_lwzdw— 5 ((a)*+(0)%) /2 = T((—1)2+(1)2) /2=1

With just two points we can calculate exactly the integrald@econd-order polynomial since our meth-
ods approximates the exact function with higher order pamiyial. How many points do you need with
the trapezoidal rule in order to achieve a similar accuracy?

141

Numerical integration

7.4.4 General integration intervals for Gauss-Legendre

Note that the Gauss-Legendre method is not limited to amvalt¢-1,1], since we can always through a
change of variable

b— b
a++a

t= x ,
2 2

rewrite the integral for an interval [a,b]

/abf(t)dt _ b;a /_11 p ((b —2a):13 N b;a) .

If we have an integral on the form
| st
0

we can choose new mesh points and weights by using the mapping

;= tan{%(l —I—xZ)} ,

and
s W

YT L cos? (31 +zy))’

wherex; andw; are the original mesh points and weights in the intepvl, 1], while z; and®; are the
new mesh points and weights for the interf@aloo].

To see that this is correct by inserting the the valug;of —1 (the lower end of the interval-1, 1])
into the expression far;. That givesz; = 0, the lower end of the intervadl, oc]. Forz; = 1, we obtain
Z; = oo. To check that the new weights are correct, recall that thight® should correspond to the
derivative of the mesh points. Try to convince yourself thatabove expression fulfils this condition.

7.4.5 Other orthogonal polynomials
Laguerre polynomials

If we are able to rewrite our integral of EQ_{VV.7) with a weifimction W (x) = x®e~* with integration
limits [0, co], we could then use the Laguerre polynomials. The polynariaim then the basis for the
Gauss-Laguerre method which can be applied to integratsedirm

[= /0 " w)dy = /0 " e g (2)da,

These polynomials arise from the solution of the differgngiquation

(d—z—di+5—l(l“)>c(x):o,

dx? 2

wherel is an integeri > 0 and A a constant. This equation arises e.g., from the solutiohefadial
Schrédinger equation with a centrally symmetric poterdiath as the Coulomb potential. The first few
polynomials are

El(x) =1- z,

142

7.4 — Gaussian quadrature

Lo(z) =2 — 4o + 22,
L3(z) =6 — 18z + 922 — 23,

and
L4(z) =z — 162 + 722% — 962 + 24.

They fulfil the orthorgonality relation

/ e Ly (x)dr = 1,

—00

and the recursion relation
(n+1)Lys1(z) = 2n+1—2)Ly(z) — nlp_1(z).

Hermite polynomials

In a similar way, for an integral which goes like

I /_ Z F2)ds = /_ o; e g(2)dx.

we could use the Hermite polynomials in order to extract Wesigand mesh points. The Hermite polyno-
mials are the solutions of the following differential eqoat

d*H () dH (x)
dz? — 2 dx

+(A—1)H(z) = 0. (7.18)

Atypical example is again the solution of Schrédinger'saimqn, but this time with a harmonic oscillator
potential. The first few polynomials are

Hy(z) = 42* — 2,
Hs(z) = 82° — 12,

and
Hy(z) = 162" — 482% + 12.

They fulfil the orthorgonality relation

/ e~ Hy(z)%dx = 2"nl\/T,

—00

and the recursion relation
Hy11(z) =22H,(x) — 2nHy,_1(z).

143

Numerical integration

Table 7.1: Mesh points and weights for the integration irakf0,100] with N = 10 using the Gauss-
Legendre method.

ZT; W;
1.305 3.334
6.747 7.473

16.030 10.954
28.330 13.463
42.556 14.776
57.444 14.776
71.670 13.463
83.970 10.954
93.253 7.473
98.695 3.334

O© 0O ~NO UL, WN P -

[
o

7.4.6 Applications to selected integrals

Before we proceed with some selected applications, it i©nmapt to keep in mind that since the mesh
points are not evenly distributed, a careful analysis ofileavior of the integrand as functionofand
the location of mesh points is mandatory. To give you an exenipthe Table below we show the mesh
points and weights for the integration interval [0,100] fr= 10 points obtained by the Gauss-Legendre
method. Clearly, if your function oscillates strongly inyasubinterval, this approach needs to be refined,
either by choosing more points or by choosing other integmanethods. Note also that for integration
intervals like for example: € [0, oc|, the Gauss-Legendre method places more points at the lrgginn
of the integration interval. If your integrand varies slgvibr large values of, then this method may be
appropriate.

Let us here compare three methods for integrating, namelyréipezoidal rule, Simpson’s method
and the Gauss-Legendre approach. We choose two functiomzgpate:

/100 exp (—) .
1

X

3
1
——dx.
/0 2 4 22 o

A program example which uses the trapezoidal rule, Simpsaé and the Gauss-Legendre method is
included here. For the corresponding Fortran programacocepprograml.cpp with program1.f90. The
Pyhton program is listed as programl.py.

and

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter07/cpp/programl . cpp

#include <iostream >

#include "1lib.h"

using namespacestd;

/1 Here we define various functions called by the main progra
/1 this function defines the function to integrate

double IntFunction (double x);

/1 Main function begins here

int main()

144

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter07/cpp/program1.cpp

7.4 — Gaussian quadrature

/1
/1
/1
/1

/11
/11

/11

}
/1

int n;

double a, b;

COUt << "Read in the number of integration points" << endl;

cin >> n;

cout << "Read in integration limits" << endl;

cin >> a >> b;

reserve space in memory for vectors containing the meshnp®

weights and function values for the use of the gaulegendre

method

double xx = new double [n];

double xw = new double [n];

set up the mesh points and weights

GausslLegendre(a, b,x,w, n);

evaluate the integral with the Gaustegendre method

Note that we initialize the sum

double IntGauss = 0.;

for (int i = 0; i < n; i++){
IntGauss+=w[ikIntFunction (x[i]);

}

final output

cout << "Trapez-rule = " << TrapezoidalRule(a, b,n, IntFunction)
<< endl;

cout << "Simpson’s rule = " << Simpson(a, b,n, IntFunction)
<< endl;

Cout << "Gaussian quad = " << IntGauss << endl;

delete [] x;
delete [] w;
return O;

/Il end of main program

this function defines the function to integrate

double IntFunction (double x)

{

double value = 4./(1.+x%x);
return value;

} /1 end of function to evaluate

To be noted in this program is that we can transfer the namegofean function to integrate. In Table
[Z2 we show the results for the first integral using varioushmgoints, while Tablé—7.3 displays the
corresponding results obtained with the second integralnte here that, since the area over where we

Table 7.2: Results 1‘05f1100 exp (—x)/xzdz using three different methods as functions of the number of
mesh pointsV.

N Trapez Simpson Gauss-Legendre
10 1.821020 1.214025 0.1460448
20 0.912678 0.609897 0.2178091
40 0.478456 0.333714 0.2193834
100 0.273724 0.231290 0.2193839
1000 0.219984 0.219387 0.2193839

145

Numerical integration

integrate is rather large and the integrand goes slowly o fze large values ok, both the trapezoidal
rule and Simpson’s method need quite many points in ordeppooach the Gauss-Legendre method.
This integrand demonstrates clearly the strength of thes&hagendre method (and other GQ methods
as well), viz., few points are needed in order to achieve g kigh precision.

The second Table however shows that for smaller integrati@nvals, both the trapezoidal rule and
Simpson’s method compare well with the results obtainetl thié¢ Gauss-Legendre approach.

Table 7.3: Results fof03 1/(2 + x?)dz using three different methods as functions of the numberesfim
points V.

N Trapez Simpson Gauss-Legendre
10 0.798861 0.799231 0.799233
20 0.799140 0.799233 0.799233
40 0.799209 0.799233 0.799233
100 0.799229 0.799233 0.799233
1000 0.799233 0.799233 0.799233

7.5 Treatment of singular Integrals

So-called principal value (PV) integrals are often emptbyephysics, from Green’s functions for scat-
tering to dispersion relations. Dispersion relations drenorelated to measurable quantities and provide
important consistency checks in atomic, nuclear and panpicysics. A PV integral is defined as

b T—€ b
I(x):P/ it i [/ AU +/ dtf(t)},
e t—2x =0t |/, t—x z+e t—
and arises in applications of Cauchy's residue theorem wiepolex lies on the real axis within the
interval of integrationa, b]. HereP stands for the principal valuédn important assumption is that the
function f(¢) is continuous on the interval of integration.
In casef(t) is a closed form expression or it has an analytic continnatiothe complex plane, it

may be possible to obtain an expression on closed form faalibge integral.

However, the situation which we are often confronted witthat f(¢) is only known at some points

t; with corresponding valueg(¢;). In order to obtain/ (z) we need to resort to a numerical evaluation.
To evaluate such an integral, let us first rewrite it as

b z—A b z+A
P/dtf(t):/ dtf(t)—i-/ dtf(tl+7>/+ dtf(tl,
a a z+A - z—A

t—x t—x + t t—

where we have isolated the principal value part in the ldsgial.
Defining a new variable = ¢ — x, we can rewrite the principal value integral as

In(z) =P /_ZA duw. (7.19)

One possibility is to Taylor expanfl(u + x) aroundu = 0, and compute derivatives to a certain order
as we did for the Trapezoidal rule or Simpson’s rule. Sintteains with even powers af in the Taylor

146

7.5 — Treatment of singular Integrals

expansion dissapear, we have that

Nmaz (2n41) A2n+1
I ~ " .
s@ =~ 3 [2n +1)(2n + 1)

n=0

To evaluate higher-order derivatives may be both time coirsgand delicate from a numerical point
of view, since there is always the risk of loosing precisionew calculating derivatives numerically.
Unless we have an analytic expression fér + x) and can evaluate the derivatives in a closed form, the
above approach is not the preferred one.

Rather, we show here how to use the Gauss-Legendre methasnjoute Eq.[[Z19). Let us first
introduce a new variable = «/A and rewrite Eq.[{7.19) as

@ =7 [dsw. (7.20)
1

The integration limits are now from 1 to 1, as for the Legendre polynomials. The principal value
in Eq. (Z2D) is however rather tricky to evaluate numelycahainly since computers have limited pre-
cision. We will here use a subtraction trick often used whealidg with singular integrals in numerical
calculations. We introduce first the calculus relation

+1 d
/ oo
-1 S

It means that the curvk/(s) has equal and opposite areas on both sides of the singutarspsi0.
If we then note thaf (x) is just a constant, we have also

@ [T [T ® <o

-1 S -1 S

Subtracting this equation from E@.{7120) yields

Ia(x) :7?/:1 PRAC R :/+1 gs [R5+ o) = J(@) (7.21)

S 1 S

and the integrand is now longer singular since we havelthat.o(f(s + =) — f(z)) = 0 and for the
particular case = 0 the integrand is now finite.
Eq. (ZZ1) is now rewritten using the Gauss-Legendre methsalting in

Mo fAsta) — f@) _ iwifmsi -
i=1

—1 S

z) — f(@) (7.22)

Si

wheres; are the mesh points\ in total) andw; are the weights.

In the selection of mesh points for a PV integral, it is impattto use an even number of points, since
an odd number of mesh points always pisks= 0 as one of the mesh points. The sum in EQ.{]7.22) will
then diverge.

Let us apply this method to the integral

I(z) = P/:ldt%t. (7.23)

147

Numerical integration

The integrand diverges at=t = 0. We rewrite it using Eq{7.21) as

+1 Ut +1 gt _q
Pl datS = / S (7.24)
R S

sincee” = ¢ = 1. With Eq. [ZZ2) we have then

+1 .t N ti
et —1 e —1
~ ; . 7.25
| e (7.25)
=1
The exact results i8.11450175075..... With just two mesh points we recall from the previous sub-
section thaty; = wo = 1 and that the mesh points are the zerod.gfz), namelyz; = —1//3 and

ry = 1/4/3. SettingN = 2 and inserting these values in the last equation gives
Lz=0) =3 <el/\/§ — e VV3) = 21120772845,
With six mesh points we get even the exact result to the tegth d
Ig(z = 0) = 2.11450175075!

We can repeat the above subtraction trick for more compgitategrands. First we modify the
integration limits totco and use the fact that

/°° dk /0 dk /00 dk
= + =0.
ok —ko o k—k Sy k—ko

A change of variables = —k in the integral with limits from—oc to 0 gives

* dk O —du > dk > dk > dk
_ook_k(] Oo—u—k() 0 k—ko 0 —]{T—ko 0]{T—ko

It means that the curve/(k — k¢) has equal and opposite areas on both sides of the singularigoi
If we break the integral into one over positi¥eand one over negativie, a change of variable — —k
allows us to rewrite the last equation as

> dk
=0,
=

We can use this to express a principal values integral as

* f(k)ydk [(f(k) — f(ko))dk
7:/0 k2—k§_/0 T (7.26)

where the right-hand side is no longer singulak at ko, it is proportional to the derivativéf /dk, and
can be evaluated numerically as any other integral.
Such a trick is often used when evaluating integral equatias discussed in the next section.

148

7.6 — Scattering equation and principal value integrals

7.6 Scattering equation and principal value integrals

In guantum mechanics, it is often common to rewrite Schigelils equation in momentum space, after
having made a so-called partial wave expansion of the ictiera We will not go into the details of these
expressions but limit ourselves to study the equivalenblpra for so-called scattering states, meaning
that the total energy of two particles which collide is lartfean or equal zero. The benefit of rewriting
the equation in momentum space, after having performed adfdransformation, is that the coordinate
space equation, being an integro-differantial equat®transformed into an integral equation. The latter
can be solved by standard matrix inversion techniqueshgunrtore, the results of solving these equation
can be related directly to experimental observables likesttattering phase shifts. The latter tell us how
much the incoming two-particle wave function is modified byodlision. Here we take a more technical
stand and consider the technical aspects of solving anraiteguation with a principal value.

For scattering stateg; > 0, the corresponding equation to solve is the so-called Lgp®&chwinger
equation. This is an integral equation where we have to digaltiae amplitudeR (&, £’) (reaction matrix)
defined through the integral equation

n o / E /OO 2 1 /
where the total kinetic energy of the two incoming partidlethe center-of-mass system is
2
p- o, (7.28)
m

The symbolP indicates that Cauchy’s principal-value prescriptionssdin order to avoid the singularity
arising from the zero of the denominator. We will discussotsehow to solve this problem. Equation
(ZZ1) represents then the problem you will have to solveerigally. The interaction between the two
particles is given by a partial-wave decomposed ver§ijdh, k'), wherel stands for a quantum number
like the orbital momentum. We have assumed that interactoss not coupled to partial waves with
different orbital momenta. The variablésandk’ are the outgoing and incoming relative momenta of the
two interacting particles.
The matrixR,;(k, k') relates to the experimental the phase shifthrough its diagonal elements as

tand;
mko
wherem is the reduced mass of the interacting particles. Furthemibe interaction between the parti-
cles,V, carries

In order to solve the Lippman-Schwinger equation in mommngpace, we need first to write a
function which sets up the integration points. We need tchab $ince we are going to approximate the
integral through

Ri(ko, ko) = — (7.29)

b N
/ f(@)dz ~ Zwif(xi)a
a i=1

where we have fixedV integration points through the corresponding weightsaand pointsz;. These
points can for example be determined using Gaussian quaerat

The principal value in EqL{Z27) is rather tricky to evakiatimerically, mainly since computers have
limited precision. We will here use a subtraction trick aftssed when dealing with singular integrals in
numerical calculations. We use the calculus relation froengrevious section

© dk
ek —ko

0,

149

Numerical integration

or

* dk
= 7=

We can use this to express a principal values integral as

< fk)ydk [(f(k) — f(ko))dk
73/0 o _/0 e (7.30)

where the right-hand side is no longer singulak at ko, it is proportional to the derivativéf /dk, and
can be evaluated numerically as any other integral.
We can then use the trick in EG.{7130) to rewrite EQ.(I7.27) as

g /OO dqq2v(k7 q)R(qa k/) - k%V(k, kO)R(kO7 k/)
0 (k% —q*)/m .
We are interested in obtaining(kg, ko), since this is the quantity we want to relate to experimeahtd

like the phase shifts.
How do we proceed in order to solve EQ.(4.31)?

R(k, k') =V (kK + (7.31)

1. Using the mesh points; and the weights,;, we can rewrite EqL{ZB1) as

)R(kjﬂ k/) 2

N
— 2KV (k, ko) R(k
kg)/m o 0 (5 0 07 Z

n:l

N

) wjk
kK V(k, k) —E
R(,) = +7T

2
= k)/m’

(7.32)
This equation contains now the unknowRg&k;, k;) (with dimensionN x N) andR(ko, ko).

2. We can turn EqQI{ZB2) into an equation with dimengiéh+ 1) x (N + 1) with an integration
domain which contains the original mesh poiktsfor j = 1, N and the point which corresponds
to the energyky. Consider the latter as the 'observable’ point. The meshtpdiecome theh,; for
i=1n ande+1 = ko.

3. With these new mesh points we define the matrix

Aij =05 — Viki, kj)uy, (7.33)
whered is the Kroneckep and
2 wjkrjz)
= = =1,N 7.34
TR (7:349)
and
N
2 k‘gw]'
UNp = —= Z s (7.35)
T3 (kg kj)/m

The first task is then to set up the matrxfor a givenky. This is an(N + 1) x (N + 1) matrix.
It can be convenient to have an outer loop which runs over tlesen observable values for the
energykZ/m. Note that all mesh points; for j = 1, N must be different fronk,. Note also that
V (ki kj)isan(N + 1) x (N + 1) matrix

150

7.7 — Parallel computing

4. With the matrixA we can rewrite Eq[{7.32) as a matrix problem of dimengivr+ 1) x (N +1).
All matrices R, A andV have this dimension and we get

ARy =Vij, (7.36)

or just
AR =1V. (7.37)

5. Since we already have definddandV’ (these are stored &8/ + 1) x (IV + 1) matrices) Eq{Z37)
involves only the unknowrR. We obtain it by matrix inversion, i.e.,

R=A"'V. (7.38)

Thus, to obtaink, we need to set up the matricdsandV” and invert the matrixd. With the inverse
A~! we perform a matrix multiplication witf and obtainR.

With R we can in turn evaluate the phase shifts by noting that
R(kn+1,kn+1) = R(ko, ko), (7.39)

and we are done.

7.7 Parallel computing

We end this chapter by discussing modern supercomputingepds like parallel computing. In particu-
lar, we will introduce you to the usage of the Message Pagssiegface (MPI) library. MPI is a library,
not a programming language. It specifies the names, caliggences and results of functions or sub-
routines to be called from C++ or Fortran programs, and thssels and methods that make up the MPI
C++ library. The programs that users write in Fortran or Cte-r@mpiled with ordinary compilers and
linked with the MPI library. MPI programs should be able ta an all possible machines and run all MPI
implementetations without change. An excellent referéatke text by Karniadakis and Kirby Il [17].

7.7.1 Brief survey of supercomputing concepts and terrogies

Since many discoveries in science are nowadays obtainddrge-scale simulations, there is an ever-
lasting wish and need to do larger simulations using shaxenputer time. The development of the
capacity for single-processor computers (even with irsgdgrocessor speed and memory) can hardly
keep up with the pace of scientific computing. The solutiothtoneeds of the scientific computing and
high-performance computing (HPC) communities has theedfeen parallel computing.

The basic ideas of parallel computing is that multiple pssoes are involved to solve a global prob-
lem. The essence is to divide the entire computation evantyng collaborative processors.

Today's supercomputers are parallel machines and carvagh@ak performances almost upl®
floating point operations per second, so-called peta-smaitgputers, see for example the list over the
world’s top 500 supercomputersfatw . top500.org. This list gets updated twice per year and sets up
the ranking according to a given supercomputer’s perfoo@am a benchmark code from the LINPACK
library. The benchmark solves a set of linear equationgyusia best software for a given platform.

To understand the basic philosophy, it is useful to have ghraquicture of how to classify different
hardware models. We distinguish betwen three major grofipspnventional single-processor com-
puters, normally called SISD (single-instruction-sindkta) machines, (ii) so-called SIMD machines

151

www.top500.org

Numerical integration

(single-instruction-multiple-data), which incorporates idea of parallel processing using a large num-
ber of processing units to execute the same instruction fiereiit data and finally (iii) modern parallel
computers, so-called MIMD (multiple-instruction- muliedata) machines that can execute different
instruction streams in parallel on different data. On a MIMiachine the different parallel process-
ing units perform operations independently of each othamly, subject to synchronization via a given
message passing interface at specified time intervals. MiMDhines are the dominating ones among
present supercomputers, and we distinguish between twas tgp MIMD computers, namely shared
memory machines and distributed memory machines. In shmesdory systems the central processing
units (CPU) share the same address space. Any CPU can aogasata in the global memory. In dis-
tributed memory systems each CPU has its own memory. The @rRlnnected by some network and
may exchange messages. A recent trend are so-called ccN0dthAg-coherent-non-uniform-memory-
access) systems which are clusters of SMP (symmetric matessing) machines and have a virtual
shared memory.

Distributed memory machines, in particular those based®a&sters, are nowadays the most widely
used and cost-effective, although farms of PC clustersinedarge infrastuctures and yield additional
expenses for cooling. PC clusters with Linux as operatirgjesys are easy to setup and offer several ad-
vantages, since they are built from standard commodityvireare with the open source software (Linux)
infrastructure. The designer can improve performance gtmmally with added machines. The com-
modity hardware can be any of a number of mass-market, stimg- compute nodes as simple as two
networked computers each running Linux and sharing a fileesysr as complex as thousands of nodes
with a high-speed, low-latency network. In addition to thereased speed of present individual proces-
sors (and most machines come today with dual cores or foesceo-called quad-cores) the position of
such commodity supercomputers has been strenghtened facttkat a library like MPI has made par-
allel computing portable and easy. Although there are séimplementations, they share the same core
commands. Message-passing is a mature programming peradid widely accepted. It often provides
an efficient match to the hardware.

7.7.2 Parallelism

When we discuss parallelism, it is common to subdivide kffie algorithms in three major groups.

— Task parallelism:the work of a global problem can be divided into a number dépendent tasks,
which rarely need to synchronize. Monte Carlo simulationd aumerical integration are exam-
ples of possible applications. Since there is more or lessamomunication between different
processors, task parallelism results in almost a perfetiienzatical parallelism and is commonly
dubbed embarassingly parallel (EP). The examples in tlapteln fall under that category. The use
of the MPI library is then limited to some few function callscethe programming is normally very
simple.

— Data parallelism: use of multiple threads (e.g., one thread per processatjssect loops over
arrays etc. This paradigm requires a single memory addpesz s Communication and synchro-
nization between the processors are often hidden, anchiigsdasy to program. However, the user
surrenders much control to a specialized compiler. An exaropdata parallelism is compiler-
based parallelization.

— Message-passingall involved processors have an independent memory asldpege. The user is
responsible for partitioning the data/work of a global peot and distributing the subproblems to
the processors. Collaboration between processors isvachi® explicit message passing, which
is used for data transfer plus synchronization.

152

7.7 — Parallel computing

This paradigm is the most general one where the user hasoiulial. Better parallel efficiency
is usually achieved by explicit message passing. Howevessage-passing programming is more
difficult. We will meet examples of this in connection withetlsolution eigenvalue problems in
chaptefIR and of partial differential equations in chalfi&r

Before we proceed, let us look at two simple examples. Wealslb use these simple examples to
define the speedup factor of a parallel computation. Thedase is that of the additions of two vectors
of dimensionn,

z = ax + [y,

wherea andj are two real or complex numbers angk,y € R™ or € C". For every element we have
thus
zi = owi + Py

For every element; we have three floating point operations, two multiplicasi@md one addition. If we
assume that these operations take the sameditnéhen the total time spent by one processor is

Tl = 3nAt.

Suppose now that we have access to a parallel supercomptheP\wrocessors. Assume also that<
n. We split then these addition and multiplication operation every processor so that every processor
performs3n /P operations in total, resulting in a tinf’® = 3nAt/ P for every single processor. We also
assume that the time needed to gather together these sutssuegtible

If we have a perfect parallelism, our speedup shouldbéhe number of processors available. We
see that this is case by computing the relation betweenrig tised in case of only one processor and
the time used if we can accessprocessors. The speedfp is defined as

Tl 3nAt

S = Ty T 3nap L

a perfect speedup. As mentioned above, we call calculatiatsyield a perfect speedup for embarass-
ingly parallel. The efficiency is defined as

Our next example is that of the inner product of two vectoffinge in Eq. [4.5),

n
=1

We assume again th& < n and definel = n/P. Each processor is assigned with its own subset of
local multiplicationscp = Zp zpyp, Wherep runs over all possible terms for processor P. As an example,
assume that we have four processors. Then we have

n/4 n/2
1 = E LjYj5, C2 = E LjYj5,
j=1 j=n/4+1
3n/4 n
C3 = E xjyj, Cy = E acjyj.
j=n/2+1 j=3n/4+1

153

Numerical integration

We assume again that the time for every operatiafvtisif we have only one processor, the total time is
T, = (2n — 1)At. For four processors, we must now add the time needed to,add; + c3 + ¢4, which
is 3At (three additions) and the time needed to communicate tta tesultcp to all other processors.
This takes roughly P — 1) At., whereAt. need not equalt.
The speedup for four processors becomes now
T (2n — 1)At _ 4n -2

= g T 2 1)AL T 3AL 1 3AL, 10+’

if At = At.. Forn = 100, the speedup i, = 3.62 < 4. For P processors the inner products yields a
speedup

(2n —1)
2I+P—2))+(P—-1)y’

with v = At./At. Even withy = 0, we see that the speedup is less ti¥an

The communication timeé\t. can reduce significantly the speedup. However, even if itrials
there are other factors as well which may reduce the effigigpcFor example, we may have an uneven
load balance, meaning that not all the processors can perfseful work at all time, or that the number
of processors doesn’t match properly the size of the probemmemory problems, or that a so-called
startup time penalty known as latency may slow down the tearsf data. Crucial here is the rate at
which messages are transferred

Sp =

7.7.3 MPI with simple examples

When we want to parallelize a sequential algorithm, theecahdeast two aspects we need to consider,
namely

— Identify the part(s) of a sequential algorithm that can beceked in parallel. This can be difficult.

— Distribute the global work and data amogprocessors. Stated differently, here you need to
understand how you can get computers to run in parallel. Fr@mactical point of view it means
to implement parallel programming tools.

In this chapter we focus mainly on the last point. MPI is thetoa for writing programs to run in
parallel, without needing to know much (in most cases ngihabout a given machine’s architecture.
MPI programs work on both shared memory and distributed nmgmmachines. Furthermore, MPI is a
very rich and complicated library. But it is not necessaryde all the features. The basic and most used
functions have been optimized for most machine architestur

Before we proceed, we need to clarify some concepts, incodaiti the usage of the words process
and processor. We refer to process as a logical unit whictuéesg its own code, in an MIMD style. The
processor is a physical device on which one or several pgesexe executed. The MPI standard uses the
concept process consistently throughout its documentatifmwever, since we only consider situations
where one processor is responsible for one process, wddrergse the two terms interchangeably in
the discussion below, hopefully without creating ambigsit

The six most important MPI functions are

— MPIL_ Init - initiate an MPI computation
— MPI_Finalize - terminate the MPI computation and clean up

— MPI_Comm_size - how many processes participate in a givehddi®putation.

154

7.7 — Parallel computing

— MPI_Comm_rank - which rank does a given process have. THeisaa humber between 0 and
size-1, the latter representing the total number of presess

— MPI_Send - send a message to a particular process within acdifputation
— MPI_Recv - receive a message from a particular processmathiMP| computation.

The first MPI C++ program is a rewriting of our 'hello world’ ggram (without the computation of
the sine function) from chaptBl 2. We let every process WHigllo world" on the standard output.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/MPI/chapter07/program?.cpp

/1 First C++ example of MPI Hello world
using namespacestd;

#include <mpi.h>

#include <iostream >

int main (int nargs, charx args][])

{
int numprocs, my_rank;
/1l MPI initializations
MPI_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM WORLD, &nhumprocs);
MPI_Comm_rank (MPI_COMM WORLD, &my_rank) ;
cout << "Hello world, I have rank " << my_rank <<" out of " <<
numprocs << endl;

/1 End MPI
MPI_Finalize ();
return 0;
}

The corresponding Fortran program reads

PROGRAM hello
INCLUDE "mpif.h"
INTEGER :: numprocs, my_rank, ierr

CALL MPI_INIT(ierr)

CALL MPI_COMM_SIZE (MPI_COMM_WORLD, numprocs, ierr)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, my_rank, ierr)

WRITE (% ,+x)"Hello world, I’ve rank ",my_rank, out of ",numprocs
CALL MPI_FINALIZE(ierr)

END PROGRAM hello

MPI is a message-passing library where all the routines aaeeresponding C++-bindirﬁMPI_Command_name

or Fortran-bindings (function names are by convention ipenpase, but can also be in lower case)
MPI_COMMAND_NAME

To use the MPI library you must include header files which amntlefinitions and declarations that
are needed by the MPI library routines. The following linesthappear at the top of any source code
file that will make an MPI call. For Fortran you must put in theginingINCLUDE 'mpif.h’ while for

3The C++ bindings used in practice are the same as the C bmdafitnough reading older texts like [15-17] one finds
extensive discussions on the difference between C and Gxelirlgis. Throughout this text we will use the C bindings.

155

http://www.fys.uio.no/compphys/cp/programs/FYS3150/MPI/chapter07/program2.cpp

Numerical integration

C++ you need to include the statemefiniclude "mpi.h". These header files contain the declarations of
functions, variabels etc. needed by the MPI library.

The first MPI call must bevPI_INIT, which initializes the message passing routines, as defined
for exampleINTEGER :: ierr and CALL MPI_INIT(ierr) for the Fortran example. The variablerr is an
integer which holds an error code when the call returns. Hhgevof ierr is however of little use since,
by default, MPI aborts the program when it encounters arr.eHowever, ierr must be included when
MPI starts. For the C++ code we have the call to the funcitionMPI_Init(int xargc, charxargv)where
argcandargvare arguments passed to main. MPI does not use these arguimany way, however, and
in MPI-2 implementations, NULL may be passed instead. Whaun lyave finished you must call the
functionMPI1_Finalize In Fortran you use the statememiLL MPI_FINALIZE(ierr) while for C++ we use
the functionint MPI_Finalize(void)

In addition to these calls, we have also included calls teated inquiry functions. There are
two MPI calls that are usually made soon after initializatioThey are for C++MPI_COMM_SIZE
((MPI_COMM_WORLD, &numprocsandCALL MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)
for Fortran. The functiomMPIl_COMM_SIZEreturns the number of tasks in a specified MPI communicator
(comm when we refer to it in generic function calls below).

In MPI you can divide your total number of tasks into groupsllerl communicators. What does
that mean? All MPI communication is associated with what caiéss a communicator that describes a
group of MPI processes with a hame (context). The commumiachdsignates a collection of processes
which can communicate with each other. Every process isittetified by its rank. The rank is only
meaningful within a particular communicator. A communigat thus used as a mechanism to identify
subsets of processes. MPI has the flexibility to allow youdiong different types of communicators, see
for example [16]. However, here we have used the commumitd COMM_WORLDthat contains all
the MPI processes that are initiated when we run the program.

The variablenumprocsrefers to the number of processes we have at our disposal. fuRicgon
MPI_COMM_RANK returns the rank (the name or identifier) of the tasks runttiegcode. Each task (or
processor) in a communicator is assigned a numiyerankfrom 0 to numprocs — 1.

We are now ready to perform our first MPI calculations.

Running codes with MPI

To compile and load the above C++ code (after having undaaldtow to use a local cluster), we can use
the command

mpicxx -02 -o program2.x program2.cpp
and try to run with ten nodes using the command
mpiexec -np 10 ./program2.x

If we wish to use the Fortran version we need to replace the €émpiler statementnpicc with
mpif90 or equivalent compilers. The name of the compiler is obuiosgstem dependent. The command
mpirunmay be instead ahpiexec Here you need to check your own system.

When we run MPI all processes use the same binary executatd®n of the code and all processes
are running exactly the same code. The question is then howveatell the difference between our
parallel code running on a given number of processes andeh cetde? There are two major distinctions
you should keep in mind: (i) MPI lets each process have aqudati rank to determine which instructions
are run on a particular process and (ii) the processes comatarwith each other in order to finalize a

156

7.7 — Parallel computing

task. Even if all processes receive the same set of insing;tthey will normally not execute the same
instructions.We will exemplify this in connection with oumtegration example below.
The above example spits out the following output

Hello world, I’ve rank
Hello world, I’ve rank
Hello world, I’ve rank
Hello world, I’ve rank
Hello world, I’ve rank
Hello world, I’ve rank
Hello world, I’ve rank
Hello world, I’ve rank
Hello world, I’ve rank
Hello world, I’ve rank

out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.

DN O N0 W W~ O

The output to screen is not ordered since all processesyairg to write to screen simultaneously. It
is then the operating system which opts for an ordering. Ifweah to have an organized output, starting
from the first process, we may rewrite our program as follows

http://www.fys.uio.no/compphys/cp/programs/FYS3150/MPI/chapter07/program3. cpp

/1 Second C++ example of MPI Hello world
using namespacestd ;

#include <mpi.h>

#include <iostream >

int main (int nargs, charx args][])
{
int numprocs, my_rank, i;
/1 MPI initializations
MPI_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM WORLD, &numprocs);
MPI_Comm_rank (MPI_COMM WORLD, &my_rank);

for (i = 0; i < numprocs; i++) {
MPI_Barrier (MP_COMM _WORLD) ;
if (i == my_rank) {

cout << "Hello world, I have rank " << my_rank <<" out of " <<
numprocs << endl;
fflush (stdout);
}

}
/I End MPI

MPI_Finalize ();
return O;

}

Here we have used tiePI_Barrierfunction to ensure that every process has completed it settouc-
tions in a particular order. A barrier is a special collegtoperation that does not allow the processes to
continue until all processes in the communicator (¢ _COMM_WORLD) have calledvPI_Barriet.
The output is now

Hello world, I’ve rank O out of 10 procs.

157

http://www.fys.uio.no/compphys/cp/programs/FYS3150/MPI/chapter07/program3.cpp

Numerical integration

Hello world, I’ve rank
Hello world, I’ve rank
Hello world, I’ve rank
Hello world, I’ve rank
Hello world, I’ve rank
Hello world, I’ve rank
Hello world, I’ve rank
Hello world, I’ve rank
Hello world, I’ve rank

out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.

© 0 N 0> WN -

The barriers make sure that all processes have reachedhtlegoeint in the code. Many of the collective
operations likeMPI_ALLREDUCE to be discussed later, have the same property; viz. no (gaeesexit
the operation until all processes have started. Howevisrjdtslightly more time-consuming since the
processes synchronize between themselves as many tinles@site processes. In the next Hello world
example we use the send and receive functions in order toeadhaynchronized action.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/MPI/chapter07/program4.cpp

/1 Third C++ example of MPI Hello world
using namespacestd;

#include <mpi.h>

#include <iostream >

int main (int nargs, charx args][])
{
int numprocs, my_rank, flag;
/1l MPI initializations
MPI|_Status status;
MPI1_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM WORLD, &numprocs);
MPI_Comm_rank (MPI_COMM WORLD, &my_rank);
/1 Send and Receive example
if (my_rank > 0)
MPI_Recv (&flag, 1, MPIL_INT, my_rank1, 100, MPIL. COMM WORLD, &status
cout << "Hello world, I have rank " << my_rank <<" out of " <<
numprocs << endl;
if (my_rank < numprocs1)
MPI_Send (&my_rank, 1, MPI_INT, my_rank+1, 100, MPI_COMMORLD) ;
/1 End MPI
MPI_Finalize ();
return O;

}

The basic sending of messages is given by the funétien SEND, which in C++ is defined as

int MPI_Send{oid xbuf, int count, MPI_Datatype datatype nt dest, int tag,
MPI_Comm comm)

while in Fortran we would call this function with the follong parameters

CALL MPI_SEND(buf, count, MPI_TYPE, dest, tag, comm, ierr)

158

http://www.fys.uio.no/compphys/cp/programs/FYS3150/MPI/chapter07/program4.cpp

7.7 — Parallel computing

This single command allows the passing of any kind of vaeaéVven a large array, to any group of tasks.
The variablebuf is the variable we wish to send whideuntis the number of variables we are passing. If
we are passing only a single value, this should be 1. If westesran array, it is the overall size of the
array. For example, if we want to send a 10 by 10 array, counddvoe 10 x 10 = 100 since we are
actually passing 100 values.

We define the type of variable usimgPl_TYPE in order to let MPI function know what to expect.
The destination of the send is declared via the varidbkt which gives the ID number of the task we are
sending the message to. The variatalgis a way for the receiver to verify that it is getting the megsa
it expects. The message tag is an integer number that we sigm asy value, normally a large number
(larger than the expected number of processes). The comsatarsommis the group ID of tasks that the
message is going to. For complex programs, tasks may beedivido groups to speed up connections
and transfers. In small programs, this will more than like¢dyinMPI_COMM_WORLD.

Furthermore, when an MPI routine is called, the Fortran ot Gata type which is passed must match
the corresponding MPI integer constant. An integer is ddfe@MVPI_INT in C++ andMPI_INTEGER
in Fortran. A double precision real MPI_DOUBLE in C++ andMPI_DOUBLE_PRECISIONN Fortran
and single precision real igPI_FLOAT in C++ andMPI_REAL in Fortran. For further definitions of data
types see chapter five of Ref. [16].

Once you have sent a message, you must receive it on anosiker Tae functionMPI_RECV is
similar to the send call. In C++ we would define this as

int MPI_Recv(void xbuf, int count, MPI_Datatype datatype jnt source, int
tag, MPI_Comm comm, MPI_Statugsstatus)

while in Fortran we would use the call

CALL MPI_RECV(buf, count, MPI_TYPE, source, tag, comm, sts , ierr)}.

The arguments that are different from thos@linl_SENDarebuf which is the name of the variable where
you will be storing the received datsgurcewhich replaces the destination in the send command. This is
the return ID of the sender.

Finally, we have use®PI_Status statuswhere one can check if the receive was completed. The
source or tag of a received message may not be known if widdedues are used in the receive function.
In C++, MPI Status is a structure that contains further imfation. One can obtain this information using

MPI_Get_count (MPI_Statuscstatus , MPI_Datatype datatypeint xcount)}

The output of this code is the same as the previous examplepbuprocess 0 sends a message to process
1, which forwards it further to process 2, and so forth.

Armed with this wisdom, performed all hello world greetingge are now ready for serious work.

7.7.4 Numerical integration with MPI

To integrate numerically with MPI we need to define how to sand receive data types. This means
also that we need to specify which data types to send to MRkifums.
The program listed here integrates

1
4
ﬂ:/ do—2
0 1+Z’2

159

Numerical integration

by simply adding up areas of rectangles according to theithgo discussed in EqL(4.5), rewritten here

b N
I= / f(z)dr = hZf(l'i—lﬂ)a
a i=1

wheref (z) = 4/(1+x2). Thisis a brute force way of obtaining an integral but suffittedemonstrate our
first application of MPI to mathematical problems. What wasitw subdivide the integration rangec

[0, 1] into n rectangles. Increasingshould obviously increase the precision of the result, ssudised in
the beginning of this chapter. The parallel part proceedstting every process collect a part of the sum
of the rectangles. At the end of the computation all the suors the processes are summed up to give
the final global sum. The program below serves thus as a siexpi@ple on how to integrate in parallel.
We will refine it in the next examples and we will also add a dargxample on how to implement the
trapezoidal rule.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/MPI/chapter07/programb.cpp

1

A WN

31

33

160

11

Receive

using namespacestd;
#include <mpi.h>
#include <iostream >

int main (int nargs, charx args[])

{
int numprocs, my_rank, i, n = 1000;
double local _sum, rectangle_sum, x, h;
/1 MPI initializations

MPI_Init (&nargs, &args);

Reactangle rule and numerical integration using MPI serthd

MPI_Comm_size (MPI_COMM WORLD, &numprocs);
MPI_Comm_rank (MPI_COMM WORLD, &my_rank);
/1l Read from screen a possible new vaue of n
if (my_rank == 0 & nargs > 1) {

n = atoi(args[1l]);
}

h = 1.0/n;
/!l Broadcast n and h to all processes
MPI_Bcast (&n, 1, MPL_INT, 0, MPI_COMM WORLD) ;
MPI_Bcast (&h, 1, MPI_DOUBLE, 0, MPI_COMM WORLD) ;
/I Every process sets up its contribution to the integral
local_sum = 0.;
for (i = my_rank; i < n; i += numprocs) {
x = (i+0.5)h;
local_sum += 4.0/(1.0+xx);
}
local _sumsx= h;
if (my_rank == 0) {
MPI_Status status;
rectangle_sum = local_sum;
for (i=1; i < numprocs; i++) {
MPI_Recv(&local _sum ,1 ,MPI_DOUBLE, MPI_ANY_SOURCEQ® ,
MPI_COMM_WORLD,& status);
rectangle_sum += local_sum;

http://www.fys.uio.no/compphys/cp/programs/FYS3150/MPI/chapter07/program5.cpp

7.7 — Parallel computing

34 }

35 cout << "Result: " << rectangle_sum << endl;

36 } else

37 MPI_Send(&local_sum ,1 ,MPI_DOUBLE,0,500 ,MP|_COMMORLD) ;
38 /1 End MPI

39 MPI_Finalize ();

40 return O;

41 }

After the standard initializations with MPI such as

MPI1_Init, MPI_Comm_size, MPI_Comm_rank,

MPI_COMM_WORLD contains now the number of processes defined by using forgram
mpirun -np 10 ./prog.x

In line 4 we check if we have read in from screen the number afimmintsn. Note that in line 7 we
fix n = 1000, however we have the possibility to run the code with a daiftmumber of mesh points as
well. If my_rankequals zero, which correponds to the master node, then weareaw value of: if the
number of arguments is larger than two. This can be done lasviolvhen we run the code

mpiexec -np 10 ./prog.x 10000

Inline 17 we define also the step lengthin lines 19 and 20 we use the broadcast functigh_Bcast We
use this particular function because we want data on on@psoc (our master node) to be shared with all
other processors. The broadcast function sends data tap gf@rocesses. The MPI routiidPl_Bcast
transfers data from one task to a group of others. The fororathe call is in C++ given by the pa-
rameters oMPI_Bcast (&n, 1, MPI_INT, 0, MPI_COMM_WORLD);MPI_Bcast (&h, 1, MPI_DOUBLE, 0,
MPI_COMM_WORLD);in case of a double. The general structure of this functiantisviPl_Bcast(void
xbuf, int count, MPI_Datatype datatypent root, MPI_Comm comm) All processes call this function,
both the process sending the data (with rank zero) and abitther processes iMPI_COMM_WORLD.
Every process has now copiesroindh, the number of mesh points and the step length, respectively

We transfer the addressesmofindh. The second argument represents the number of data sent. In
case of a one-dimensional array, one needs to transfer théaruof array elements. If you have an
n X m matrix, you must transfet x m. We need also to specify whether the variable type we traisfe
a non-numerical such as a logical or character variable wenigal of the integer, real or complex type.

We transfer also an integer varialite root. This variable specifies the process which has the original
copy of the data. Since we fix this value to zero in the call iedi 19 and 20, it means that it is the
master process which keeps this information. For Forttas ftinction is called via the statemeDALL
MPI_BCAST (buff, count, MPI_TYPE, root, comm, ierr)

Inlines 23-27, every process sums its own part of the finalssma by the rectangle rule. The receive
statement collects the sums from all other processes imeasank == Q else an MPI send is performed.

The above function is not very elegant. Furthermore, the MBiructions can be simplified by
using the functions1Pl_Reducer MPI_Allreduce The first function takes information from all processes
and sends the result of the MPI operation to one process typigally the master node. If we use
MPI_Allreduce the result is sent back to all processes, a feature whickeilwhen all nodes need the
value of a joint operation. We limit ourselvesNtl_Reducssince it is only one process which will print
out the final number of our calculation, The argumentsIR)_Allreduceare the same.

The MPI_Reducefunction is defined as followsnt MPI_Bcast(void *senddata ,void+ resultdata ,
int count, MPI_Datatype datatype, MPI_QOpt root, MPI_Comm comm)The two variablesenddatand

161

Numerical integration

resultdata are obvious, besides the fact that one sends the address w@érilable or the first element
of an array. If they are arrays they need to have the same $lme.variablecountrepresents the total
dimensionality, 1 in case of just one variable, whM@I_Datatypedefines the type of variable which is
sent and received. The new featureviBl_Op. MPI_Op defines the type of operation we want to do.
There are many options, see again Refs. [15-17] for full listour case, since we are summing the
rectangle contributions from every process we defife Op = MP1_SUM If we have an array or matrix
we can search for the largest og smallest element by seniliveg BIPI_MAX or MPI_MIN. If we want
the location as well (which array element) we simply transfii®l_ MAXLOC or MPI_MINOC. If we
want the product we writ®1PI_PROD MPI_Allreduceis defined asnt MPI_Bcast(void xsenddata ,voidx
resultdata ,int count, MPI_Datatype datatype, MPI_Op, MPI_Comm comm)

The function we list in the next example is the MPI extensibprograml.cpp. The difference is that
we employ only the trapezoidal rule. Itis easy to extenddbide to include gaussian quadrature or other
methods.

It is also worth noting that every process has now its owristaand ending point. We read in
the number of integration points and the integration limite andb. These are called andb. They
serve to define the local integration limits used by evergess. The local integration limits are defined
as local_a = a + my_rank(b—a)/numprocsand local_ b = a + (my_rank1)x(b—a)/numprocs These two
variables are transfered to the method for the trapezoidal Mhese two methods return the local sum
variablelocal_sum MPI_Reducecollects all the local sums and returns the total sum, wischritten out
by the master node. The program below implements this. We &0 added the possibility to measure
the total time used by the code via the call$t®el_Wtime.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/MPI/chapter07/programb.cpp

/1l Trapezoidal rule and numerical integration using MPI witMPI_Reduce
using namespacestd ;

#include <mpi.h>

#include <iostream >

/1 Here we define various functions called by the main progra

double int_function (double);
double trapezoidal_rule{ouble , double , int , double (x)(double));

/1 Main function begins here
int main (int nargs, char« args][])
{

int n, local_n, numprocs, my_rank;

double a, b, h, local _a, local b, total sum, local _sum;

double time_start, time_end, total _time;

/I MPI initializations

MPI_Init (&nargs, &args);

MPI_Comm_size (MPI_COMM WORLD, &numprocs);

MPI_Comm_rank (MPI_COMM_WORLD, &my_rank) ;

time_ start = MPI_Wtime () ;

/I Fixed values for a, b and n

a=00;b=10; n=1000;

h = (b-a)/n; /I h is the same for all processes

local_n = n/numprocs; // make sure n > numprocs, else integer division

gives zero
/Il Length of each process’ interval of

162

http://www.fys.uio.no/compphys/cp/programs/FYS3150/MPI/chapter07/program6.cpp

7.7 — Parallel computing

/l integration = local_n«h.
local_a = a + my_ranklocal_nxh;
local_b = local_a + local_nh;
total_sum = 0.0;

local_sum = trapezoidal_rule(local_a, local_b, local_ &int_function);

MPI_Reduce(&local _sum , &total _sum, 1, MPI_DOUBLE, MPUS, O,
MPI_COMM_WORLD) ;

time_end = MPI_Wtime () ;

total _time = time_endtime_start;

if (my_rank == 0) {

cout << "Trapezoidal rule = " << total_sum << endl;
cout << "Time = " << total_time <<" on number of processors: " <<
numprocs << endl;
}
/!l End MPI
MPI_Finalize ();
return O;

} // end of main program

/I this function defines the function to integrate

double int_function (double x)

{
double value = 4./(1.+x%x);
return value;

} /1 end of function to evaluate

/1l this function defines the trapezoidal rule
double trapezoidal_ruledouble a, double b, int n, double (xfunc)(double))
{
double trapez_sum;
double fa, fb, x, step;
int i
step=(b-a)/((double) n);
fa=(«xfunc)(a)/2. ;
fb=(«xfunc)(b)/2. ;
trapez_sum =0.;
for (j=1; j <= n-=1; j++){
X=j*xstep+a;
trapez_sum+={func) (x);
}
trapez_sum=(trapez_sum+fb+fajtep;
return trapez_sum;
} // end trapezoidal_rule

An obvious extension of this code is to read from file or scrbenintegration variables. One could also
use the program library to call a particular integration moett

163

