
Chapter 7

Numerical integration

7.1 Introduction

In this chapter we discuss some of the classic formulae such as the trapezoidal rule and Simpson’s rule
for equally spaced abscissas and formulae based on Gaussianquadrature. The latter are more suitable
for the case where the abscissas are not equally spaced. The emphasis is on methods for evaluating one-
dimensional integrals. In chapter 8 we show how Monte Carlo methods can be used to compute multi-
dimensional integrals. We discuss also how to compute singular integrals and outline a physics project
which combines numerical integration techniques and inverse of a matrix to solve quantum mechanical
scattering problems.

We end this chapter with an extensive discussion on MPI and parallel computing. The examples focus
on parallelization of algorithms for computing integrals.

The integral

I =

∫ b

a
f(x)dx (7.1)

has a very simple meaning. If we consider Fig. 7.1 the integral I simply represents the area enscribed
by the functionf(x) starting fromx = a and ending atx = b. Two main methods will be discussed
below, the first one being based on equal (or allowing for slight modifications) steps and the other on
more adaptive steps, namely so-called Gaussian quadraturemethods. Both main methods encompass a
plethora of approximations and only some of them will be discussed here.

7.2 Newton-Cotes quadrature: equal step methods

In considering equal step methods, our basic tool is the Taylor expansion of the functionf(x) around a
pointx and a set of surrounding neighbouring points. The algorithmis rather simple, and the number of
approximations perhaps unlimited!

– Choose a step size

h =
b− a
N

whereN is the number of steps anda andb the lower and upper limits of integration.

125

Numerical integration

-

f(x)

x

6

a a+ h a+ 2h a+ 3h b

Figure 7.1: The area enscribed by the functionf(x) starting fromx = a to x = b. It is subdivided in
several smaller areas whose evaluation is to be approximated by the techniques discussed in the text. The
areas under the curve can for example be approximated by rectangular boxes or trapezoids.

126

7.2 – Newton-Cotes quadrature: equal step methods

– With a given step length we rewrite the integral as

∫ b

a
f(x)dx =

∫ a+h

a
f(x)dx+

∫ a+2h

a+h
f(x)dx+ . . .

∫ b

b−h
f(x)dx.

– The strategy then is to find a reliable Taylor expansion forf(x) in the various intervals. Choosing
a given truncation of the Taylor expansion off(x) at a certain derivative we obtain a specific
approximation to the integral.

– With this approximation tof(x) we perform the integration by computing the integrals over all
subintervals.

Such a small measure may seemingly allow for the derivation of various integrals. To see this, let us
briefly recall the discussion in the previous section and Fig. 3.1. First we rewrite the integral as

∫ b

a
f(x)dx =

∫ a+2h

a
f(x)dx+

∫ a+4h

a+2h
f(x)dx+ . . .

∫ b

b−2h
f(x)dx.

The strategy then is to find a reliable Taylor expansion forf(x) in the smaller sub intervals. Consider for
example evaluating ∫ a+2h

a
f(x)dx,

which we rewrite as ∫ a+2h

a
f(x)dx =

∫ x0+h

x0−h
f(x)dx, (7.2)

where we will Taylor expandf(x) around a pointx0, see Fig. 3.1. We have definedx0 = a+ h and use
x0 as the midpoint.

The general form for the Taylor expansion aroundx0 goes like

f(x = x0 ± h) = f(x0)± hf ′ +
h2f ′′

2
± h3f ′′′

6
+O(h4).

Let us now suppose that we split the integral in Eq. (7.2) in two parts, one fromx0−h tox0 and the other
from x0 to x0 + h, that is, our integral is rewritten as

∫ a+2h

a
f(x)dx =

∫ x0

x0−h
f(x)dx+

∫ x0+h

x0

f(x)dx.

Next we assume that we can use the two-point formula for the derivative, meaning that we approximate
f(x) in these two regions by a straight line, as indicated in the figure. This means that every small
element under the functionf(x) looks like a trapezoid. The pertinent numerical approach tothe integral
bears thus the predictable name ’trapezoidal rule’. It means also that we are trying to approximate our
functionf(x) with a first order polynomial, that isf(x) = a+ bx. The constantb is the slope given by
the first derivative atx = x0

f ′ =
f(x0 + h)− f(x0)

h
+O(h),

or

f ′ =
f(x0)− f(x0 − h)

h
+O(h),

127

Numerical integration

and if we stop the Taylor expansion at that point our functionbecomes,

f(x) ≈ f0 +
fh − f0

h
x,

for x ∈ [x0, x0 + h] and

f(x) ≈ f0 +
f0 − f−h

h
x+,

for x ∈ [x0 − h, x0]. The error is proportional withO(h2). If we then evaluate the integral we obtain

∫ x0+h

x0−h
f(x)dx =

h

2
(fx0+h + 2fx0 + fx0−h) +O(h3), (7.3)

which is the well-known trapezoidal rule. Concerning the error in the approximation made,O(h3) =
O((b − a)3/N3), you should note the following.This is the local error! Since we are splitting the
integral froma to b in N pieces, we will have to perform approximatelyN such operations. This means
that theglobal error goes like≈ O(h2). To see that, we use the trapezoidal rule to compute the integral
of Eq. (7.1),

I =

∫ b

a
f(x)dx = h (f(a)/2 + f(a+ h) + f(a+ 2h) + · · · + f(b− h) + fb/2) , (7.4)

with a global error which goes likeO(h2).
Hereafter we use the shorthand notationsf−h = f(x0 − h), f0 = f(x0) andfh = f(x0 + h). The

correct mathematical expression for the local error for thetrapezoidal rule is

∫ b

a
f(x)dx− b− a

2
[f(a) + f(b)] = −h

3

12
f (2)(ξ),

and the global error reads ∫ b

a
f(x)dx− Th(f) = −b− a

12
h2f (2)(ξ),

whereTh is the trapezoidal result andξ ∈ [a, b].
The trapezoidal rule is easy to implement numerically through the following simple algorithm

– Choose the number of mesh points and fix the step.

– calculatef(a) andf(b) and multiply withh/2

– Perform a loop overn = 1 to n− 1 (f(a) andf(b) are known) and sum up the terms
f(a+h)+f(a+2h)+f(a+3h)+ · · ·+f(b−h). Each step in the loop corresponds
to a given valuea+ nh.

– Multiply the final result byh and addhf(a)/2 andhf(b)/2.

A simple function which implements this algorithm is as follows

128

7.2 – Newton-Cotes quadrature: equal step methods

double T r a p e z o i d a l R u l e (double a , double b , i n t n , double (∗ func) (double))
{

double TrapezSum ;
double fa , fb , x , s t e p ;
i n t j ;
s t e p =(b−a) / ((double) n) ;
f a =(∗ func) (a) / 2 . ;
fb =(∗ func) (b) / 2 . ;
TrapezSum = 0 . ;
f o r (j =1 ; j <= n−1; j ++) {

x= j ∗ s t e p +a ;
TrapezSum+=(∗ func) (x) ;

}
TrapezSum=(TrapezSum+fb+ f a)∗ s t e p ;
re turn TrapezSum ;

} / / end T r a p e z o i d a l R u l e

The function returns a new value for the specific integral through the variableTrapezSum. There is one
new feature to note here, namely the transfer of a user definedfunction calledfunc in the definition

vo id T r a p e z o i d a l R u l e (double a , double b , i n t n , double ∗TrapezSum ,
double (∗ func) (double))

What happens here is that we are transferring a pointer to thename of a user defined function, which
has as input a double precision variable and returns a doubleprecision number. The functionTrape-
zoidalRule is called as

T r a p e z o i d a l R u l e (a , b , n , &MyFunct ion)

in the calling function. We note thata, b andn are called by value, whileTrapezSum and the user
defined functionMyFunction are called by reference.

Another very simple approach is the so-called midpoint or rectangle method. In this case the integra-
tion area is split in a given number of rectangles with lengthh and height given by the mid-point value
of the function. This gives the following simple rule for approximating an integral

I =

∫ b

a
f(x)dx ≈ h

N∑

i=1

f(xi−1/2), (7.5)

wheref(xi−1/2) is the midpoint value off for a given rectangle. We will discuss its truncation error
below. It is easy to implement this algorithm, as shown here

double Rec tang leRu le (double a , double b , i n t n , double (∗ func) (double))
{

double Rectang leSum ;
double fa , fb , x , s t e p ;
i n t j ;
s t e p =(b−a) / ((double) n) ;
Rectang leSum = 0 . ;
f o r (j = 0 ; j <= n ; j ++) {

x = (j + 0 . 5)∗ s t e p +; / / m idpo in t o f a g i v e n r e c t a n g l e
Rectang leSum+=(∗ func) (x) ; / / add v a l u e o f f u n c t i o n .

129

Numerical integration

}
Rectang leSum∗= s t e p ; / / m u l t i p l y w i th s t e p l e n g t h .
re turn Rectang leSum ;

} / / end R e c t a n g l e R u l e

The correct mathematical expression for the local error forthe rectangular ruleRi(h) for elementi is

∫ h

−h
f(x)dx−Ri(h) = −h

3

24
f (2)(ξ),

and the global error reads ∫ b

a
f(x)dx−Rh(f) = −b− a

24
h2f (2)(ξ),

whereRh is the result obtained with rectangular rule andξ ∈ [a, b].
Instead of using the above linear two-point approximationsfor f , we could use the three-point for-

mula for the derivatives. This means that we will choose formulae based on function values which lie
symmetrically around the point where we perform the Taylor expansion. It means also that we are ap-
proximating our function with a second-order polynomialf(x) = a + bx + cx2. The first and second
derivatives are given by

fh − f−h

2h
= f ′0 +

∞∑

j=1

f
(2j+1)
0

(2j + 1)!
h2j ,

and
fh − 2f0 + f−h

h2
= f ′′0 + 2

∞∑

j=1

f
(2j+2)
0

(2j + 2)!
h2j ,

and we note that in both cases the error goes likeO(h2j). With the latter two expressions we can now
approximate the functionf as

f(x) ≈ f0 +
fh − f−h

2h
x+

fh − 2f0 + f−h

2h2
x2.

Inserting this formula in the integral of Eq. (7.2) we obtain

∫ +h

−h
f(x)dx =

h

3
(fh + 4f0 + f−h) +O(h5),

which is Simpson’s rule. Note that the improved accuracy in the evaluation of the derivatives gives a
better error approximation,O(h5) vs.O(h3) . But this is again thelocal error approximation. Using
Simpson’s rule we can easily compute the integral of Eq. (7.1) to be

I =

∫ b

a
f(x)dx =

h

3
(f(a) + 4f(a+ h) + 2f(a+ 2h) + · · ·+ 4f(b− h) + fb) , (7.6)

with a global error which goes likeO(h4). More formal expressions for the local and global errors are
for the local error

∫ b

a
f(x)dx− b− a

6
[f(a) + 4f((a+ b)/2) + f(b)] = −h

5

90
f (4)(ξ),

130

7.2 – Newton-Cotes quadrature: equal step methods

and for the global error
∫ b

a
f(x)dx− Sh(f) = −b− a

180
h4f (4)(ξ).

with ξ ∈ [a, b] andSh the results obtained with Simpson’s method. The method can easily be imple-
mented numerically through the following simple algorithm

– Choose the number of mesh points and fix the step.

– calculatef(a) andf(b)

– Perform a loop overn = 1 to n− 1 (f(a) andf(b) are known) and sum up the terms
4f(a + h) + 2f(a + 2h) + 4f(a + 3h) + · · · + 4f(b − h). Each step in the loop
corresponds to a given valuea + nh. Odd values ofn give 4 as factor while even
values yield2 as factor.

– Multiply the final result byh
3 .

In more general terms, what we have done here is to approximate a given functionf(x) with a
polynomial of a certain degree. One can show that givenn + 1 distinct pointsx0, . . . , xn ∈ [a, b] and
n+ 1 valuesy0, . . . , yn there exists a unique polynomialPn(x) with the property

pn(xj) = yj j = 0, . . . , n

In the Lagrange representation discussed in chapter 6, thisinterpolating polynomial is given by

Pn =
n∑

k=0

lkyk,

with the Lagrange factors

lk(x) =
n∏

i = 0
i 6= k

x− xi

xk − xi
k = 0, . . . , n,

see for example the text of Kress [30] or Burlich and Stoer [40] for details. If we for example setn = 1,
we obtain

P1(x) = y0
x− x1

x0 − x1
+ y1

x− x0

x1 − x0
=
y1 − y0

x1 − x0
x− y1x0 + y0x1

x1 − x0
,

which we recognize as the equation for a straight line.
The polynomial interpolatory quadrature of ordern with equidistant quadrature pointsxk = a+ kh

and steph = (b− a)/n is called the Newton-Cotes quadrature formula of ordern. General expressions
can be found in for example Refs. [30, 40].

131

Numerical integration

7.3 Adaptive integration

Before we proceed with more advanced methods like Gaussian quadrature, we mention breefly how an
adaptive integration method can be implemented.

The above methods are all based on a defined step length, normally provided by the user, dividing
the integration domain with a fixed number of subintervals. This is rather simple to implement may be
inefficient, in particular if the integrand varies considerably in certain areas of the integration domain. In
these areas the number of fixed integration points may not be adequate. In other regions, the integrand
may vary slowly and fewer integration points may be needed.

In order to account for such features, it may be convenient tofirst study the properties of integrand,
via for example a plot of the function to integrate. If this function oscillates largely in some specific
domain we may then opt for adding more integration points to that particular domain. However, this
procedure needs to be repeated for every new integrand and lacks obviously the advantages of a more
generic code.

The algorithm we present here is based on a recursive procedure and allows us to automate an adaptive
domain. The procedure is very simple to implement.

Assume that we want to compute an integral using say the trapezoidal rule. We limit ourselves to a
one-dimensional integral. Our integration domain is defined byx ∈ [a, b]. The algorithm goes as follows

– We compute our first approximation by computing the integralfor the full domain. We label this
asI(0). It is obtained by calling our previously discussed function TrapezoidalRule as

I0 = T r a p e z o i d a l R u l e (a , b , n , f u n c t i o n) ;

– In the next step we split the integration in two, withc = (a + b)/2. We compute then the two
integralsI(1L) andI(1R)

I1L = T r a p e z o i d a l R u l e (a , c , n , f u n c t i o n) ;

and

I1R = T r a p e z o i d a l R u l e (c , b , n , f u n c t i o n) ;

With a given defined tolerance, being a small number providedby us, we estimate the difference
|I(1L) + I(1R) − I(0)| < tolerance. If this test is satisfied, our first approximation is satisfactory.

– If not, we can set up a recursive procedure where the integralis split into subsequent subintervals
until our tolerance is satisfied.

This recursive procedure can be easily implemented via the following function

/ / S imp le r e c u r s i v e f u n c t i o n t h a t imp lemen ts t h e
/ / a d a p t i v e i n t e g r a t i o n u s i n g t h e t r a p e z o i d a l r u l e
/ / I t i s c o n v e n i e n t t o d e f i n e as g l o b a l v a r i a b l e s
/ / t h e t o l e r a n c e and t h e number o f r e c u r s i v e s t e p s
cons t i n t m a x r e c u r s i o ns = 50 ;
cons t double t o l e r a n c e = 1 .0E−10;
/ / Takes as i n p u t t h e i n t e g r a t i o n l i m i t s , number o f p o i n t s , fu n c t i o n t o

i n t e g r a t e
/ / and t h e number o f s t e p s
vo id A d a p t i v e I n t e g r a t i o n (double a , double b , double ∗ I n t e g r a l , i n t n , i n t

s t e p s , double (∗ func) (double))

132

7.4 – Gaussian quadrature

i f (s t e p s > m a x r e c u r s i o ns) {
cou t << 'Too many re
ursive steps, the fun
tion varies too mu
h' <<

end l ;
break ;

}
double c = (a+b)∗0 . 5 ;
/ / t h e whole i n t e g r a l
double I0 = T r a p e z o i d a l R u l e (a , b , n , func) ;
/ / t h e l e f t h a l f
double I1L = T r a p e z o i d a l R u l e (a , c , n , func) ;
/ / t h e r i g h t h a l f
double I1R = T r a p e z o i d a l R u l e (c , b , n , func) ;
i f (f a b s (I1L+I1R−I0) < t o l e r a n c e) i n t e g r a l = I0 ;
e l s e
{

A d a p t i v e I n t e g r a t i o n (a , c , I n t e g r a l ,i n t n , ++ s t e p s , func)
A d a p t i v e I n t e g r a t i o n (c , b , I n t e g r a l ,i n t n , ++ s t e p s , func)

}
}
/ / end f u n c t i o n A d a p t i v e I n t e g r a t i o n

The variablesIntegral and stepsshould be initialized to zero by the function that calls the adaptive
procedure.

7.4 Gaussian quadrature

The methods we have presented hitherto are taylored to problems where the mesh pointsxi are equidis-
tantly spaced,xi differing from xi+1 by the steph. These methods are well suited to cases where the
integrand may vary strongly over a certain region or if we integrate over the solution of a differential
equation.

If however our integrand varies only slowly over a large interval, then the methods we have discussed
may only slowly converge towards a chosen precision1. As an example,

I =

∫ b

1
x−2f(x)dx,

may converge very slowly to a given precision ifb is large and/orf(x) varies slowly as function ofx at
large values. One can obviously rewrite such an integral by changing variables tot = 1/x resulting in

I =

∫ 1

b−1

f(t−1)dt,

which has a small integration range and hopefully the numberof mesh points needed is not that large.
However, there are cases where no trick may help and where thetime expenditure in evaluating

an integral is of importance. For such cases we would like to recommend methods based on Gaussian
quadrature. Here one can catch at least two birds with a stone, namely, increased precision and fewer
integration points. But it is important that the integrand varies smoothly over the interval, else we have
to revert to splitting the interval into many small subintervals and the gain achieved may be lost.

1You could e.g., impose that the integral should not change asfunction of increasing mesh points beyond the sixth digit.

133

Numerical integration

The basic idea behind all integration methods is to approximate the integral

I =

∫ b

a
f(x)dx ≈

N∑

i=1

ωif(xi),

whereω andx are the weights and the chosen mesh points, respectively. Inour previous discussion,
these mesh points were fixed at the beginning, by choosing a given number of pointsN . The weigthsω
resulted then from the integration method we applied. Simpson’s rule, see Eq. (7.6) would give

ω : {h/3, 4h/3, 2h/3, 4h/3, . . . , 4h/3, h/3} ,

for the weights, while the trapezoidal rule resulted in

ω : {h/2, h, h, . . . , h, h/2} .

In general, an integration formula which is based on a Taylorseries usingN points, will integrate exactly
a polynomialP of degreeN − 1. That is, theN weightsωn can be chosen to satisfyN linear equations,
see chapter 3 of Ref. [3]. A greater precision for a given amount of numerical work can be achieved if
we are willing to give up the requirement of equally spaced integration points. In Gaussian quadrature
(hereafter GQ), both the mesh points and the weights are to bedetermined. The points will not be equally
spaced2. The theory behind GQ is to obtain an arbitrary weightω through the use of so-called orthogonal
polynomials. These polynomials are orthogonal in some interval say e.g., [-1,1]. Our pointsxi are chosen
in some optimal sense subject only to the constraint that they should lie in this interval. Together with
the weights we have then2N (N the number of points) parameters at our disposal.

Even though the integrand is not smooth, we could render it smooth by extracting from it the weight
function of an orthogonal polynomial, i.e., we are rewriting

I =

∫ b

a
f(x)dx =

∫ b

a
W (x)g(x)dx ≈

N∑

i=1

ωig(xi), (7.7)

whereg is smooth andW is the weight function, which is to be associated with a givenorthogonal
polynomial. Note that with a give weight function we end up evaluating the integrand for the function
g(xi).

The weight functionW is non-negative in the integration intervalx ∈ [a, b] such that for anyn ≥ 0∫ b
a |x|nW (x)dx is integrable. The naming weight function arises from the fact that it may be used to give

more emphasis to one part of the interval than another. A quadrature formula

∫ b

a
W (x)f(x)dx ≈

N∑

i=1

ωif(xi), (7.8)

with N distinct quadrature points (mesh points) is a called a Gaussian quadrature formula if it integrates
all polynomialsp ∈ P2N−1 exactly, that is

∫ b

a
W (x)p(x)dx =

N∑

i=1

ωip(xi), (7.9)

2Typically, most points will be located near the origin, while few points are needed for largex values since the integrand is
supposed to vary smoothly there. See below for an example.

134

7.4 – Gaussian quadrature

It is assumed thatW (x) is continuous and positive and that the integral
∫ b

a
W (x)dx

exists. Note that the replacement off → Wg is normally a better approximation due to the fact that we
may isolate possible singularities ofW and its derivatives at the endpoints of the interval.

The quadrature weights or just weights (not to be confused with the weight function) are positive and
the sequence of Gaussian quadrature formulae is convergentif the sequenceQN of quadrature formulae

QN (f)→ Q(f) =

∫ b

a
f(x)dx,

in the limitN →∞. Then we say that the sequence

QN (f) =

N∑

i=1

ω
(N)
i f(x

(N)
i),

is convergent for all polynomialsp, that is

QN (p) = Q(p)

if there exits a constantC such that
N∑

i=1

|ω(N)
i | ≤ C,

for all N which are natural numbers.
The error for the Gaussian quadrature formulae of orderN is given by

∫ b

a
W (x)f(x)dx−

N∑

k=1

wkf(xk) =
f2N (ξ)

(2N)!

∫ b

a
W (x)[qN (x)]2dx

whereqN is the chosen orthogonal polynomial andξ is a number in the interval[a, b]. We have assumed
thatf ∈ C2N [a, b], viz. the space of all real or complex2N times continuously differentiable functions.

In physics there are several important orthogonal polynomials which arise from the solution of dif-
ferential equations. Well-known examples are the Legendre, Hermite, Laguerre and Chebyshev polyno-
mials. They have the following weight functions

Weight function Interval Polynomial
W (x) = 1 x ∈ [−1, 1] Legendre

W (x) = e−x2 −∞ ≤ x ≤ ∞ Hermite
W (x) = xαe−x 0 ≤ x ≤ ∞ Laguerre

W (x) = 1/(
√

1− x2) −1 ≤ x ≤ 1 Chebyshev

The importance of the use of orthogonal polynomials in the evaluation of integrals can be summarized
as follows.

– As stated above, methods based on Taylor series usingN points will integrate exactly a polynomial
P of degreeN − 1. If a functionf(x) can be approximated with a polynomial of degreeN − 1

f(x) ≈ PN−1(x),

with N mesh points we should be able to integrate exactly the polynomial PN−1.

135

Numerical integration

– Gaussian quadrature methods promise more than this. We can get a better polynomial approxima-
tion with order greater thanN to f(x) and still get away with onlyN mesh points. More precisely,
we approximate

f(x) ≈ P2N−1(x),

and with onlyN mesh points these methods promise that

∫
f(x)dx ≈

∫
P2N−1(x)dx =

N−1∑

i=0

P2N−1(xi)ωi,

The reason why we can represent a functionf(x) with a polynomial of degree2N − 1 is due to
the fact that we have2N equations,N for the mesh points andN for the weights.

The mesh points are the zeros of the chosen orthogonal polynomial of orderN , and the weights are
determined from the inverse of a matrix. An orthogonal polynomials of degreeN defined in an interval
[a, b] has preciselyN distinct zeros on the open interval(a, b).

Before we detail how to obtain mesh points and weights with orthogonal polynomials, let us revisit
some features of orthogonal polynomials by specializing toLegendre polynomials. In the text below,
we reserve hereafter the labellingLN for a Legendre polynomial of orderN , while PN is an arbitrary
polynomial of orderN . These polynomials form then the basis for the Gauss-Legendre method.

7.4.1 Orthogonal polynomials, Legendre

The Legendre polynomials are the solutions of an important differential equation in physics, namely

C(1− x2)P −m2
l P + (1− x2)

d

dx

(
(1− x2)

dP

dx

)
= 0.

C is a constant. Forml = 0 we obtain the Legendre polynomials as solutions, whereasml 6= 0 yields the
so-called associated Legendre polynomials. This differential equation arises in for example the solution
of the angular dependence of Schrödinger’s equation with spherically symmetric potentials such as the
Coulomb potential.

The corresponding polynomialsP are

Lk(x) =
1

2kk!

dk

dxk
(x2 − 1)k k = 0, 1, 2, . . . ,

which, up to a factor, are the Legendre polynomialsLk. The latter fulfil the orthorgonality relation
∫ 1

−1
Li(x)Lj(x)dx =

2

2i+ 1
δij , (7.10)

and the recursion relation

(j + 1)Lj+1(x) + jLj−1(x)− (2j + 1)xLj(x) = 0. (7.11)

It is common to choose the normalization condition

LN (1) = 1.

With these equations we can determine a Legendre polynomialof arbitrary order with input polynomials
of orderN − 1 andN − 2.

136

7.4 – Gaussian quadrature

As an example, consider the determination ofL0, L1 andL2. We have that

L0(x) = c,

with c a constant. Using the normalization equationL0(1) = 1 we get that

L0(x) = 1.

ForL1(x) we have the general expression

L1(x) = a+ bx,

and using the orthorgonality relation

∫ 1

−1
L0(x)L1(x)dx = 0,

we obtaina = 0 and with the conditionL1(1) = 1, we obtainb = 1, yielding

L1(x) = x.

We can proceed in a similar fashion in order to determine the coefficients ofL2

L2(x) = a+ bx+ cx2,

using the orthorgonality relations ∫ 1

−1
L0(x)L2(x)dx = 0,

and ∫ 1

−1
L1(x)L2(x)dx = 0,

and the conditionL2(1) = 1 we would get

L2(x) =
1

2

(
3x2 − 1

)
. (7.12)

We note that we have three equations to determine the three coefficientsa, b andc.
Alternatively, we could have employed the recursion relation of Eq. (7.11), resulting in

2L2(x) = 3xL1(x)− L0,

which leads to Eq. (7.12).
The orthogonality relation above is important in our discussion on how to obtain the weights and

mesh points. Suppose we have an arbitrary polynomialQN−1 of orderN −1 and a Legendre polynomial
LN (x) of orderN . We could representQN−1 by the Legendre polynomials through

QN−1(x) =
N−1∑

k=0

αkLk(x), (7.13)

whereαk ’s are constants.

137

Numerical integration

Using the orthogonality relation of Eq. (7.10) we see that

∫ 1

−1
LN (x)QN−1(x)dx =

N−1∑

k=0

∫ 1

−1
LN (x)αkLk(x)dx = 0. (7.14)

We will use this result in our construction of mesh points andweights in the next subsection.
In summary, the first few Legendre polynomials are

L0(x) = 1,

L1(x) = x,

L2(x) = (3x2 − 1)/2,

L3(x) = (5x3 − 3x)/2,

and
L4(x) = (35x4 − 30x2 + 3)/8.

The following simple function implements the above recursion relation of Eq. (7.11). for computing
Legendre polynomials of orderN .

/ / Th i s f u n c t i o n computes t h e Legendre po lynomia l o f degreeN

double Legendre (i n t n , double x)
{

double r , s , t ;
i n t m;
r = 0 ; s = 1 . ;
/ / Use r e c u r s i o n r e l a t i o n t o g e n e r a t e p1 and p2
f o r (m=0; m < n ; m++)
{

t = r ; r = s ;
s = (2∗m+1)∗x∗ r − m∗ t ;
s /= (m+1) ;

} / / end o f do loop
re turn s ;

} / / end o f f u n c t i o n Legendre

The variables representsLj+1(x), while r holdsLj(x) andt the valueLj−1(x).

7.4.2 Integration points and weights with orthogonal polynomials

To understand how the weights and the mesh points are generated, we define first a polynomial of degree
2N−1 (since we have2N variables at hand, the mesh points and weights forN points). This polynomial
can be represented through polynomial division by

P2N−1(x) = LN (x)PN−1(x) +QN−1(x),

wherePN−1(x) andQN−1(x) are some polynomials of degreeN − 1 or less. The functionLN (x) is a
Legendre polynomial of orderN .

Recall that we wanted to approximate an arbitrary functionf(x) with a polynomialP2N−1 in order
to evaluate ∫ 1

−1
f(x)dx ≈

∫ 1

−1
P2N−1(x)dx,

138

7.4 – Gaussian quadrature

we can use Eq. (7.14) to rewrite the above integral as

∫ 1

−1
P2N−1(x)dx =

∫ 1

−1
(LN (x)PN−1(x) +QN−1(x))dx =

∫ 1

−1
QN−1(x)dx,

due to the orthogonality properties of the Legendre polynomials. We see that it suffices to evaluate the
integral over

∫ 1
−1QN−1(x)dx in order to evaluate

∫ 1
−1 P2N−1(x)dx. In addition, at the pointsxk where

LN is zero, we have
P2N−1(xk) = QN−1(xk) k = 0, 1, . . . , N − 1,

and we see that through theseN points we can fully defineQN−1(x) and thereby the integral. Note that
we have chosen to let the numbering of the points run from0 toN − 1. The reason for this choice is that
we wish to have the same numbering as the order of a polynomialof degreeN − 1. This numbering will
be useful below when we introduce the matrix elements which define the integration weightswi.

We develope thenQN−1(x) in terms of Legendre polynomials, as done in Eq. (7.13),

QN−1(x) =
N−1∑

i=0

αiLi(x). (7.15)

Using the orthogonality property of the Legendre polynomials we have

∫ 1

−1
QN−1(x)dx =

N−1∑

i=0

αi

∫ 1

−1
L0(x)Li(x)dx = 2α0,

where we have just insertedL0(x) = 1! Instead of an integration problem we need now to define the
coefficientα0. Since we know the values ofQN−1 at the zeros ofLN , we may rewrite Eq. (7.15) as

QN−1(xk) =
N−1∑

i=0

αiLi(xk) =
N−1∑

i=0

αiLik k = 0, 1, . . . , N − 1. (7.16)

Since the Legendre polynomials are linearly independent ofeach other, none of the columns in the ma-
trix Lik are linear combinations of the others. This means that the matrix Lik has an inverse with the
properties

L̂−1L̂ = Î.

Multiplying both sides of Eq. (7.16) with
∑N−1

j=0 L−1
ji results in

N−1∑

i=0

(L−1)kiQN−1(xi) = αk. (7.17)

We can derive this result in an alternative way by defining thevectors

x̂k =





x0

x1

.

.
xN−1




α̂ =





α0

α1

.

.
αN−1




,

139

Numerical integration

and the matrix

L̂ =





L0(x0) L1(x0) . . . LN−1(x0)
L0(x1) L1(x1) . . . LN−1(x1)
.

L0(xN−1) L1(xN−1) . . . LN−1(xN−1)



 .

We have then
QN−1(x̂k) = L̂α̂,

yielding (if L̂ has an inverse)
L̂−1QN−1(x̂k) = α̂,

which is Eq. (7.17).
Using the above results and the fact that

∫ 1

−1
P2N−1(x)dx =

∫ 1

−1
QN−1(x)dx,

we get
∫ 1

−1
P2N−1(x)dx =

∫ 1

−1
QN−1(x)dx = 2α0 = 2

N−1∑

i=0

(L−1)0iP2N−1(xi).

If we identify the weights with2(L−1)0i, where the pointsxi are the zeros ofLN , we have an integration
formula of the type

∫ 1

−1
P2N−1(x)dx =

N−1∑

i=0

ωiP2N−1(xi)

and if our functionf(x) can be approximated by a polynomialP of degree2N − 1, we have finally that

∫ 1

−1
f(x)dx ≈

∫ 1

−1
P2N−1(x)dx =

N−1∑

i=0

ωiP2N−1(xi).

In summary, the mesh pointsxi are defined by the zeros of an otrhogonal polynomial of degreeN LN

while the weights are given by2(L−1)0i.

7.4.3 Application to the caseN = 2

Let us visualize the above formal results for the caseN = 2. This means that we can approximate a
functionf(x) with a polynomialP3(x) of order2N − 1 = 3.

The mesh points are the zeros ofL2(x) = 1/2(3x2 − 1). These points arex0 = −1/
√

3 and
x1 = 1/

√
3.

Specializing Eq. (7.16)

QN−1(xk) =

N−1∑

i=0

αiLi(xk) k = 0, 1, . . . , N − 1.

toN = 2 yields

Q1(x0) = α0 − α1
1√
3
,

140

7.4 – Gaussian quadrature

and

Q1(x1) = α0 + α1
1√
3
,

sinceL0(x = ±1/
√

3) = 1 andL1(x = ±1/
√

3) = ±1/
√

3.
The matrixLik defined in Eq. (7.16) is then

Lik =

(
1 − 1√

3

1 1√
3

)

,

with an inverse given by

(L)−1
ik =

√
3

2

(
1√
3

1√
3

−1 1

)

.

The weights are given by the matrix elements2(L0k)
−1. We have thenceω0 = 1 andω1 = 1.

Obviously, there is no problem in changing the numbering of the matrix elementsi, k = 0, 1, 2, . . . , N−
1 to i, k = 1, 2, . . . , N . We have chosen to start from zero, since we deal with polynomials of degree
N − 1.

Summarizing, for Legendre polynomials withN = 2 we have weights

ω : {1, 1} ,

and mesh points

x :

{
− 1√

3
,

1√
3

}
.

If we wish to integrate ∫ 1

−1
f(x)dx,

with f(x) = x2, we approximate

I =

∫ 1

−1
x2dx ≈

N−1∑

i=0

ωix
2
i .

The exact answer is2/3. UsingN = 2 with the above two weights and mesh points we get

I =

∫ 1

−1
x2dx =

1∑

i=0

ωix
2
i =

1

3
+

1

3
=

2

3
,

the exact answer!
If we were to emply the trapezoidal rule we would get

I =

∫ 1

−1
x2dx =

b− a
2

(
(a)2 + (b)2

)
/2 =

1− (−1)

2

(
(−1)2 + (1)2

)
/2 = 1!

With just two points we can calculate exactly the integral for a second-order polynomial since our meth-
ods approximates the exact function with higher order polynomial. How many points do you need with
the trapezoidal rule in order to achieve a similar accuracy?

141

Numerical integration

7.4.4 General integration intervals for Gauss-Legendre

Note that the Gauss-Legendre method is not limited to an interval [-1,1], since we can always through a
change of variable

t =
b− a

2
x+

b+ a

2
,

rewrite the integral for an interval [a,b]

∫ b

a
f(t)dt =

b− a
2

∫ 1

−1
f

(
(b− a)x

2
+
b+ a

2

)
dx.

If we have an integral on the form ∫ ∞

0
f(t)dt,

we can choose new mesh points and weights by using the mapping

x̃i = tan
{π

4
(1 + xi)

}
,

and
ω̃i =

π

4

ωi

cos2
(

π
4 (1 + xi)

) ,

wherexi andωi are the original mesh points and weights in the interval[−1, 1], while x̃i andω̃i are the
new mesh points and weights for the interval[0,∞].

To see that this is correct by inserting the the value ofxi = −1 (the lower end of the interval[−1, 1])
into the expression for̃xi. That gives̃xi = 0, the lower end of the interval[0,∞]. Forxi = 1, we obtain
x̃i = ∞. To check that the new weights are correct, recall that the weights should correspond to the
derivative of the mesh points. Try to convince yourself thatthe above expression fulfils this condition.

7.4.5 Other orthogonal polynomials

Laguerre polynomials

If we are able to rewrite our integral of Eq. (7.7) with a weight functionW (x) = xαe−x with integration
limits [0,∞], we could then use the Laguerre polynomials. The polynomials form then the basis for the
Gauss-Laguerre method which can be applied to integrals of the form

I =

∫ ∞

0
f(x)dx =

∫ ∞

0
xαe−xg(x)dx.

These polynomials arise from the solution of the differential equation

(
d2

dx2
− d

dx
+
λ

x
− l(l + 1)

x2

)
L(x) = 0,

wherel is an integerl ≥ 0 andλ a constant. This equation arises e.g., from the solution of the radial
Schrödinger equation with a centrally symmetric potentialsuch as the Coulomb potential. The first few
polynomials are

L0(x) = 1,

L1(x) = 1− x,

142

7.4 – Gaussian quadrature

L2(x) = 2− 4x+ x2,

L3(x) = 6− 18x + 9x2 − x3,

and

L4(x) = x4 − 16x3 + 72x2 − 96x+ 24.

They fulfil the orthorgonality relation

∫ ∞

−∞
e−xLn(x)2dx = 1,

and the recursion relation

(n+ 1)Ln+1(x) = (2n + 1− x)Ln(x)− nLn−1(x).

Hermite polynomials

In a similar way, for an integral which goes like

I =

∫ ∞

−∞
f(x)dx =

∫ ∞

−∞
e−x2

g(x)dx.

we could use the Hermite polynomials in order to extract weights and mesh points. The Hermite polyno-
mials are the solutions of the following differential equation

d2H(x)

dx2
− 2x

dH(x)

dx
+ (λ− 1)H(x) = 0. (7.18)

A typical example is again the solution of Schrödinger’s equation, but this time with a harmonic oscillator
potential. The first few polynomials are

H0(x) = 1,

H1(x) = 2x,

H2(x) = 4x2 − 2,

H3(x) = 8x3 − 12,

and

H4(x) = 16x4 − 48x2 + 12.

They fulfil the orthorgonality relation

∫ ∞

−∞
e−x2

Hn(x)2dx = 2nn!
√
π,

and the recursion relation

Hn+1(x) = 2xHn(x)− 2nHn−1(x).

143

Numerical integration

Table 7.1: Mesh points and weights for the integration interval [0,100] withN = 10 using the Gauss-
Legendre method.

i xi ωi

1 1.305 3.334
2 6.747 7.473
3 16.030 10.954
4 28.330 13.463
5 42.556 14.776
6 57.444 14.776
7 71.670 13.463
8 83.970 10.954
9 93.253 7.473

10 98.695 3.334

7.4.6 Applications to selected integrals

Before we proceed with some selected applications, it is important to keep in mind that since the mesh
points are not evenly distributed, a careful analysis of thebehavior of the integrand as function ofx and
the location of mesh points is mandatory. To give you an example, in the Table below we show the mesh
points and weights for the integration interval [0,100] forN = 10 points obtained by the Gauss-Legendre
method. Clearly, if your function oscillates strongly in any subinterval, this approach needs to be refined,
either by choosing more points or by choosing other integration methods. Note also that for integration
intervals like for examplex ∈ [0,∞], the Gauss-Legendre method places more points at the beginning
of the integration interval. If your integrand varies slowly for large values ofx, then this method may be
appropriate.

Let us here compare three methods for integrating, namely the trapezoidal rule, Simpson’s method
and the Gauss-Legendre approach. We choose two functions tointegrate:

∫ 100

1

exp (−x)
x

dx,

and ∫ 3

0

1

2 + x2
dx.

A program example which uses the trapezoidal rule, Simpson’s rule and the Gauss-Legendre method is
included here. For the corresponding Fortran program, replace program1.cpp with program1.f90. The
Pyhton program is listed as program1.py.http://www.fys.uio.no/
ompphys/
p/programs/FYS3150/
hapter07/
pp/program1.
pp
inc lude < ios t ream >
inc lude "lib.h"
us ing namespace s t d ;
/ / Here we d e f i n e v a r i o u s f u n c t i o n s c a l l e d by t h e main program
/ / t h i s f u n c t i o n d e f i n e s t h e f u n c t i o n t o i n t e g r a t e
double I n t F u n c t i o n (double x) ;
/ / Main f u n c t i o n b e g i n s here
i n t main ()

144

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter07/cpp/program1.cpp

7.4 – Gaussian quadrature

{
i n t n ;
double a , b ;
cou t << "Read in the number of integration points" << end l ;
c i n >> n ;
cou t << "Read in integration limits" << end l ;
c i n >> a >> b ;

/ / r e s e r v e space i n memory f o r v e c t o r s c o n t a i n i n g t h e mesh p oi n t s
/ / w e i g h t s and f u n c t i o n v a l u e s f o r t h e use o f t h e gauss−l e g e n d r e
/ / method

double ∗x = new double [n] ;
double ∗w = new double [n] ;

/ / s e t up t h e mesh p o i n t s and w e i g h t s
GaussLegendre (a , b , x ,w, n) ;

/ / e v a l u a t e t h e i n t e g r a l w i th t h e Gauss−Legendre method
/ / Note t h a t we i n i t i a l i z e t h e sum

double I n tGauss = 0 . ;
f o r (i n t i = 0 ; i < n ; i ++) {

I n tGauss +=w[i]∗ I n t F u n c t i o n (x [i]) ;
}

/ / f i n a l o u t p u t
cou t << "Trapez-rule = " << T r a p e z o i d a l R u l e (a , b , n , I n t F u n c t i o n)

<< end l ;
cou t << "Simpson's rule = " << Simpson (a , b , n , I n t F u n c t i o n)

<< end l ;
cou t << "Gaussian quad = " << In tGauss << end l ;
d e l e t e [] x ;
d e l e t e [] w;
re turn 0 ;

} / / end o f main program
/ / t h i s f u n c t i o n d e f i n e s t h e f u n c t i o n t o i n t e g r a t e
double I n t F u n c t i o n (double x)
{

double v a l u e = 4 . / (1 . + x∗x) ;
re turn v a l u e ;

} / / end o f f u n c t i o n t o e v a l u a t e

To be noted in this program is that we can transfer the name of agiven function to integrate. In Table
7.2 we show the results for the first integral using various mesh points, while Table 7.3 displays the
corresponding results obtained with the second integral. We note here that, since the area over where we

Table 7.2: Results for
∫ 100
1 exp (−x)/xdx using three different methods as functions of the number of

mesh pointsN .
N Trapez Simpson Gauss-Legendre
10 1.821020 1.214025 0.1460448
20 0.912678 0.609897 0.2178091
40 0.478456 0.333714 0.2193834

100 0.273724 0.231290 0.2193839
1000 0.219984 0.219387 0.2193839

145

Numerical integration

integrate is rather large and the integrand goes slowly to zero for large values ofx, both the trapezoidal
rule and Simpson’s method need quite many points in order to approach the Gauss-Legendre method.
This integrand demonstrates clearly the strength of the Gauss-Legendre method (and other GQ methods
as well), viz., few points are needed in order to achieve a very high precision.

The second Table however shows that for smaller integrationintervals, both the trapezoidal rule and
Simpson’s method compare well with the results obtained with the Gauss-Legendre approach.

Table 7.3: Results for
∫ 3
0 1/(2+x2)dx using three different methods as functions of the number of mesh

pointsN .
N Trapez Simpson Gauss-Legendre
10 0.798861 0.799231 0.799233
20 0.799140 0.799233 0.799233
40 0.799209 0.799233 0.799233

100 0.799229 0.799233 0.799233
1000 0.799233 0.799233 0.799233

7.5 Treatment of singular Integrals

So-called principal value (PV) integrals are often employed in physics, from Green’s functions for scat-
tering to dispersion relations. Dispersion relations are often related to measurable quantities and provide
important consistency checks in atomic, nuclear and particle physics. A PV integral is defined as

I(x) = P
∫ b

a
dt
f(t)

t− x = lim
ǫ→0+

[∫ x−ǫ

a
dt
f(t)

t− x +

∫ b

x+ǫ
dt
f(t)

t− x

]
,

and arises in applications of Cauchy’s residue theorem whenthe polex lies on the real axis within the
interval of integration[a, b]. HereP stands for the principal value.An important assumption is that the
functionf(t) is continuous on the interval of integration.

In casef(t) is a closed form expression or it has an analytic continuation in the complex plane, it
may be possible to obtain an expression on closed form for theabove integral.

However, the situation which we are often confronted with isthatf(t) is only known at some points
ti with corresponding valuesf(ti). In order to obtainI(x) we need to resort to a numerical evaluation.

To evaluate such an integral, let us first rewrite it as

P
∫ b

a
dt
f(t)

t− x =

∫ x−∆

a
dt
f(t)

t− x +

∫ b

x+∆
dt
f(t)

t− x + P
∫ x+∆

x−∆
dt
f(t)

t− x,

where we have isolated the principal value part in the last integral.
Defining a new variableu = t− x, we can rewrite the principal value integral as

I∆(x) = P
∫ +∆

−∆
du
f(u+ x)

u
. (7.19)

One possibility is to Taylor expandf(u + x) aroundu = 0, and compute derivatives to a certain order
as we did for the Trapezoidal rule or Simpson’s rule. Since all terms with even powers ofu in the Taylor

146

7.5 – Treatment of singular Integrals

expansion dissapear, we have that

I∆(x) ≈
Nmax∑

n=0

f (2n+1)(x)
∆2n+1

(2n + 1)(2n + 1)!
.

To evaluate higher-order derivatives may be both time consuming and delicate from a numerical point
of view, since there is always the risk of loosing precision when calculating derivatives numerically.
Unless we have an analytic expression forf(u+x) and can evaluate the derivatives in a closed form, the
above approach is not the preferred one.

Rather, we show here how to use the Gauss-Legendre method to compute Eq. (7.19). Let us first
introduce a new variables = u/∆ and rewrite Eq. (7.19) as

I∆(x) = P
∫ +1

−1
ds
f(∆s+ x)

s
. (7.20)

The integration limits are now from−1 to 1, as for the Legendre polynomials. The principal value
in Eq. (7.20) is however rather tricky to evaluate numerically, mainly since computers have limited pre-
cision. We will here use a subtraction trick often used when dealing with singular integrals in numerical
calculations. We introduce first the calculus relation

∫ +1

−1

ds

s
= 0.

It means that the curve1/(s) has equal and opposite areas on both sides of the singular point s = 0.
If we then note thatf(x) is just a constant, we have also

f(x)

∫ +1

−1

ds

s
=

∫ +1

−1
f(x)

ds

s
= 0.

Subtracting this equation from Eq. (7.20) yields

I∆(x) = P
∫ +1

−1
ds
f(∆s+ x)

s
=

∫ +1

−1
ds
f(∆s+ x)− f(x)

s
, (7.21)

and the integrand is now longer singular since we have thatlims→0(f(s + x) − f(x)) = 0 and for the
particular cases = 0 the integrand is now finite.

Eq. (7.21) is now rewritten using the Gauss-Legendre methodresulting in

∫ +1

−1
ds
f(∆s+ x)− f(x)

s
=

N∑

i=1

ωi
f(∆si + x)− f(x)

si
, (7.22)

wheresi are the mesh points (N in total) andωi are the weights.
In the selection of mesh points for a PV integral, it is important to use an even number of points, since

an odd number of mesh points always pickssi = 0 as one of the mesh points. The sum in Eq. (7.22) will
then diverge.

Let us apply this method to the integral

I(x) = P
∫ +1

−1
dt
et

t
. (7.23)

147

Numerical integration

The integrand diverges atx = t = 0. We rewrite it using Eq. (7.21) as

P
∫ +1

−1
dt
et

t
=

∫ +1

−1

et − 1

t
, (7.24)

sinceex = e0 = 1. With Eq. (7.22) we have then

∫ +1

−1

et − 1

t
≈

N∑

i=1

ωi
eti − 1

ti
. (7.25)

The exact results is2.11450175075..... With just two mesh points we recall from the previous sub-
section thatω1 = ω2 = 1 and that the mesh points are the zeros ofL2(x), namelyx1 = −1/

√
3 and

x2 = 1/
√

3. SettingN = 2 and inserting these values in the last equation gives

I2(x = 0) =
√

3
(
e1/

√
3 − e−1/

√
3
)

= 2.1129772845.

With six mesh points we get even the exact result to the tenth digit

I6(x = 0) = 2.11450175075!

We can repeat the above subtraction trick for more complicated integrands. First we modify the
integration limits to±∞ and use the fact that

∫ ∞

−∞

dk

k − k0
=

∫ 0

−∞

dk

k − k0
+

∫ ∞

0

dk

k − k0
= 0.

A change of variableu = −k in the integral with limits from−∞ to 0 gives

∫ ∞

−∞

dk

k − k0
=

∫ 0

∞

−du
−u− k0

+

∫ ∞

0

dk

k − k0
=

∫ ∞

0

dk

−k − k0
+

∫ ∞

0

dk

k − k0
= 0.

It means that the curve1/(k − k0) has equal and opposite areas on both sides of the singular point k0.
If we break the integral into one over positivek and one over negativek, a change of variablek → −k
allows us to rewrite the last equation as

∫ ∞

0

dk

k2 − k2
0

= 0.

We can use this to express a principal values integral as

P
∫ ∞

0

f(k)dk

k2 − k2
0

=

∫ ∞

0

(f(k)− f(k0))dk

k2 − k2
0

, (7.26)

where the right-hand side is no longer singular atk = k0, it is proportional to the derivativedf/dk, and
can be evaluated numerically as any other integral.

Such a trick is often used when evaluating integral equations, as discussed in the next section.

148

7.6 – Scattering equation and principal value integrals

7.6 Scattering equation and principal value integrals

In quantum mechanics, it is often common to rewrite Schrödinger’s equation in momentum space, after
having made a so-called partial wave expansion of the interaction. We will not go into the details of these
expressions but limit ourselves to study the equivalent problem for so-called scattering states, meaning
that the total energy of two particles which collide is larger than or equal zero. The benefit of rewriting
the equation in momentum space, after having performed a Fourier transformation, is that the coordinate
space equation, being an integro-differantial equation, is transformed into an integral equation. The latter
can be solved by standard matrix inversion techniques. Furthermore, the results of solving these equation
can be related directly to experimental observables like the scattering phase shifts. The latter tell us how
much the incoming two-particle wave function is modified by acollision. Here we take a more technical
stand and consider the technical aspects of solving an integral equation with a principal value.

For scattering states,E > 0, the corresponding equation to solve is the so-called Lippman-Schwinger
equation. This is an integral equation where we have to deal with the amplitudeR(k, k′) (reaction matrix)
defined through the integral equation

Rl(k, k
′) = Vl(k, k

′) +
2

π
P
∫ ∞

0
dqq2Vl(k, q)

1

E − q2/mRl(q, k
′), (7.27)

where the total kinetic energy of the two incoming particlesin the center-of-mass system is

E =
k2
0

m
. (7.28)

The symbolP indicates that Cauchy’s principal-value prescription is used in order to avoid the singularity
arising from the zero of the denominator. We will discuss below how to solve this problem. Equation
(7.27) represents then the problem you will have to solve numerically. The interaction between the two
particles is given by a partial-wave decomposed versionVl(k, k

′), wherel stands for a quantum number
like the orbital momentum. We have assumed that interactiondoes not coupled to partial waves with
different orbital momenta. The variablesk andk′ are the outgoing and incoming relative momenta of the
two interacting particles.

The matrixRl(k, k
′) relates to the experimental the phase shiftsδl through its diagonal elements as

Rl(k0, k0) = − tanδl
mk0

, (7.29)

wherem is the reduced mass of the interacting particles. Furthemore, the interaction between the parti-
cles,V , carries

In order to solve the Lippman-Schwinger equation in momentum space, we need first to write a
function which sets up the integration points. We need to do that since we are going to approximate the
integral through

∫ b

a
f(x)dx ≈

N∑

i=1

wif(xi),

where we have fixedN integration points through the corresponding weightswi and pointsxi. These
points can for example be determined using Gaussian quadrature.

The principal value in Eq. (7.27) is rather tricky to evaluate numerically, mainly since computers have
limited precision. We will here use a subtraction trick often used when dealing with singular integrals in
numerical calculations. We use the calculus relation from the previous section

∫ ∞

−∞

dk

k − k0
= 0,

149

Numerical integration

or ∫ ∞

0

dk

k2 − k2
0

= 0.

We can use this to express a principal values integral as

P
∫ ∞

0

f(k)dk

k2 − k2
0

=

∫ ∞

0

(f(k)− f(k0))dk

k2 − k2
0

, (7.30)

where the right-hand side is no longer singular atk = k0, it is proportional to the derivativedf/dk, and
can be evaluated numerically as any other integral.

We can then use the trick in Eq. (7.30) to rewrite Eq. (7.27) as

R(k, k′) = V (k, k′) +
2

π

∫ ∞

0
dq
q2V (k, q)R(q, k′)− k2

0V (k, k0)R(k0, k
′)

(k2
0 − q2)/m

. (7.31)

We are interested in obtainingR(k0, k0), since this is the quantity we want to relate to experimentaldata
like the phase shifts.

How do we proceed in order to solve Eq. (7.31)?

1. Using the mesh pointskj and the weightsωj, we can rewrite Eq. (7.31) as

R(k, k′) = V (k, k′) +
2

π

N∑

j=1

ωjk
2
jV (k, kj)R(kj , k

′)

(k2
0 − k2

j)/m
− 2

π
k2
0V (k, k0)R(k0, k

′)
N∑

n=1

ωn

(k2
0 − k2

n)/m
.

(7.32)
This equation contains now the unknownsR(ki, kj) (with dimensionN ×N) andR(k0, k0).

2. We can turn Eq. (7.32) into an equation with dimension(N + 1) × (N + 1) with an integration
domain which contains the original mesh pointskj for j = 1, N and the point which corresponds
to the energyk0. Consider the latter as the ’observable’ point. The mesh points become thenkj for
j = 1, n andkN+1 = k0.

3. With these new mesh points we define the matrix

Ai,j = δi,j − V (ki, kj)uj , (7.33)

whereδ is the Kroneckerδ and

uj =
2

π

ωjk
2
j

(k2
0 − k2

j)/m
j = 1, N (7.34)

and

uN+1 = − 2

π

N∑

j=1

k2
0ωj

(k2
0 − k2

j)/m
. (7.35)

The first task is then to set up the matrixA for a givenk0. This is an(N + 1) × (N + 1) matrix.
It can be convenient to have an outer loop which runs over the chosen observable values for the
energyk2

0/m. Note that all mesh pointskj for j = 1, N must be different fromk0. Note also that
V (ki, kj) is an(N + 1)× (N + 1) matrix.

150

7.7 – Parallel computing

4. With the matrixA we can rewrite Eq. (7.32) as a matrix problem of dimension(N +1)× (N +1).
All matricesR,A andV have this dimension and we get

Ai,lRl,j = Vi,j, (7.36)

or just
AR = V. (7.37)

5. Since we already have definedA andV (these are stored as(N+1)×(N +1) matrices) Eq. (7.37)
involves only the unknownR. We obtain it by matrix inversion, i.e.,

R = A−1V. (7.38)

Thus, to obtainR, we need to set up the matricesA andV and invert the matrixA. With the inverse
A−1 we perform a matrix multiplication withV and obtainR.

With R we can in turn evaluate the phase shifts by noting that

R(kN+1, kN+1) = R(k0, k0), (7.39)

and we are done.

7.7 Parallel computing

We end this chapter by discussing modern supercomputing concepts like parallel computing. In particu-
lar, we will introduce you to the usage of the Message PassingInterface (MPI) library. MPI is a library,
not a programming language. It specifies the names, calling sequences and results of functions or sub-
routines to be called from C++ or Fortran programs, and the classes and methods that make up the MPI
C++ library. The programs that users write in Fortran or C++ are compiled with ordinary compilers and
linked with the MPI library. MPI programs should be able to run on all possible machines and run all MPI
implementetations without change. An excellent referenceis the text by Karniadakis and Kirby II [17].

7.7.1 Brief survey of supercomputing concepts and terminologies

Since many discoveries in science are nowadays obtained vialarge-scale simulations, there is an ever-
lasting wish and need to do larger simulations using shortercomputer time. The development of the
capacity for single-processor computers (even with increased processor speed and memory) can hardly
keep up with the pace of scientific computing. The solution tothe needs of the scientific computing and
high-performance computing (HPC) communities has therefore been parallel computing.

The basic ideas of parallel computing is that multiple processors are involved to solve a global prob-
lem. The essence is to divide the entire computation evenly among collaborative processors.

Today’s supercomputers are parallel machines and can achieve peak performances almost up to1015

floating point operations per second, so-called peta-scalecomputers, see for example the list over the
world’s top 500 supercomputers atwww.top500.org. This list gets updated twice per year and sets up
the ranking according to a given supercomputer’s performance on a benchmark code from the LINPACK
library. The benchmark solves a set of linear equations using the best software for a given platform.

To understand the basic philosophy, it is useful to have a rough picture of how to classify different
hardware models. We distinguish betwen three major groups,(i) conventional single-processor com-
puters, normally called SISD (single-instruction-single-data) machines, (ii) so-called SIMD machines

151

www.top500.org

Numerical integration

(single-instruction-multiple-data), which incorporatethe idea of parallel processing using a large num-
ber of processing units to execute the same instruction on different data and finally (iii) modern parallel
computers, so-called MIMD (multiple-instruction- multiple-data) machines that can execute different
instruction streams in parallel on different data. On a MIMDmachine the different parallel process-
ing units perform operations independently of each others,only subject to synchronization via a given
message passing interface at specified time intervals. MIMDmachines are the dominating ones among
present supercomputers, and we distinguish between two types of MIMD computers, namely shared
memory machines and distributed memory machines. In sharedmemory systems the central processing
units (CPU) share the same address space. Any CPU can access any data in the global memory. In dis-
tributed memory systems each CPU has its own memory. The CPUsare connected by some network and
may exchange messages. A recent trend are so-called ccNUMA (cache-coherent-non-uniform-memory-
access) systems which are clusters of SMP (symmetric multi-processing) machines and have a virtual
shared memory.

Distributed memory machines, in particular those based on PC clusters, are nowadays the most widely
used and cost-effective, although farms of PC clusters require large infrastuctures and yield additional
expenses for cooling. PC clusters with Linux as operating systems are easy to setup and offer several ad-
vantages, since they are built from standard commodity hardware with the open source software (Linux)
infrastructure. The designer can improve performance proportionally with added machines. The com-
modity hardware can be any of a number of mass-market, stand-alone compute nodes as simple as two
networked computers each running Linux and sharing a file system or as complex as thousands of nodes
with a high-speed, low-latency network. In addition to the increased speed of present individual proces-
sors (and most machines come today with dual cores or four cores, so-called quad-cores) the position of
such commodity supercomputers has been strenghtened by thefact that a library like MPI has made par-
allel computing portable and easy. Although there are several implementations, they share the same core
commands. Message-passing is a mature programming paradigm and widely accepted. It often provides
an efficient match to the hardware.

7.7.2 Parallelism

When we discuss parallelism, it is common to subdivide different algorithms in three major groups.

– Task parallelism:the work of a global problem can be divided into a number of independent tasks,
which rarely need to synchronize. Monte Carlo simulations and numerical integration are exam-
ples of possible applications. Since there is more or less nocommunication between different
processors, task parallelism results in almost a perfect mathematical parallelism and is commonly
dubbed embarassingly parallel (EP). The examples in this chapter fall under that category. The use
of the MPI library is then limited to some few function calls and the programming is normally very
simple.

– Data parallelism: use of multiple threads (e.g., one thread per processor) todissect loops over
arrays etc. This paradigm requires a single memory address space. Communication and synchro-
nization between the processors are often hidden, and it is thus easy to program. However, the user
surrenders much control to a specialized compiler. An example of data parallelism is compiler-
based parallelization.

– Message-passing: all involved processors have an independent memory address space. The user is
responsible for partitioning the data/work of a global problem and distributing the subproblems to
the processors. Collaboration between processors is achieved by explicit message passing, which
is used for data transfer plus synchronization.

152

7.7 – Parallel computing

This paradigm is the most general one where the user has full control. Better parallel efficiency
is usually achieved by explicit message passing. However, message-passing programming is more
difficult. We will meet examples of this in connection with the solution eigenvalue problems in
chapter 12 and of partial differential equations in chapter15.

Before we proceed, let us look at two simple examples. We willalso use these simple examples to
define the speedup factor of a parallel computation. The firstcase is that of the additions of two vectors
of dimensionn,

z = αx + βy,

whereα andβ are two real or complex numbers andz,x,y ∈ R
n or ∈ C

n. For every element we have
thus

zi = αxi + βyi.

For every elementzi we have three floating point operations, two multiplications and one addition. If we
assume that these operations take the same time∆t, then the total time spent by one processor is

T1 = 3n∆t.

Suppose now that we have access to a parallel supercomputer with P processors. Assume also thatP ≤
n. We split then these addition and multiplication operations on every processor so that every processor
performs3n/P operations in total, resulting in a timeTP = 3n∆t/P for every single processor. We also
assume that the time needed to gather together these subsumsis neglible

If we have a perfect parallelism, our speedup should beP , the number of processors available. We
see that this is case by computing the relation between the time used in case of only one processor and
the time used if we can accessP processors. The speedupSP is defined as

SP =
T1

TP
=

3n∆t

3n∆t/P
= P,

a perfect speedup. As mentioned above, we call calculationsthat yield a perfect speedup for embarass-
ingly parallel. The efficiency is defined as

η(P) =
S(P)

P
.

Our next example is that of the inner product of two vectors defined in Eq. (4.5),

c =
n∑

j=1

xjyj.

We assume again thatP ≤ n and defineI = n/P . Each processor is assigned with its own subset of
local multiplicationscP =

∑
p xpyp, wherep runs over all possible terms for processor P. As an example,

assume that we have four processors. Then we have

c1 =

n/4∑

j=1

xjyj, c2 =

n/2∑

j=n/4+1

xjyj,

c3 =

3n/4∑

j=n/2+1

xjyj, c4 =

n∑

j=3n/4+1

xjyj.

153

Numerical integration

We assume again that the time for every operation is∆t. If we have only one processor, the total time is
T1 = (2n−1)∆t. For four processors, we must now add the time needed to addc1 + c2 + c3 + c4, which
is 3∆t (three additions) and the time needed to communicate the local resultcP to all other processors.
This takes roughly(P − 1)∆tc, where∆tc need not equal∆t.

The speedup for four processors becomes now

S4 =
T1

T4
=

(2n − 1)∆t

(n/2− 1)∆t+ 3∆t+ 3∆tc
=

4n − 2

10 + n
,

if ∆t = ∆tc. Forn = 100, the speedup isS4 = 3.62 < 4. ForP processors the inner products yields a
speedup

SP =
(2n − 1)

(2I + P − 2)) + (P − 1)γ
,

with γ = ∆tc/∆t. Even withγ = 0, we see that the speedup is less thanP .
The communication time∆tc can reduce significantly the speedup. However, even if it is small,

there are other factors as well which may reduce the efficiency ηp. For example, we may have an uneven
load balance, meaning that not all the processors can perform useful work at all time, or that the number
of processors doesn’t match properly the size of the problem, or memory problems, or that a so-called
startup time penalty known as latency may slow down the transfer of data. Crucial here is the rate at
which messages are transferred

7.7.3 MPI with simple examples

When we want to parallelize a sequential algorithm, there are at least two aspects we need to consider,
namely

– Identify the part(s) of a sequential algorithm that can be executed in parallel. This can be difficult.

– Distribute the global work and data amongP processors. Stated differently, here you need to
understand how you can get computers to run in parallel. Froma practical point of view it means
to implement parallel programming tools.

In this chapter we focus mainly on the last point. MPI is then atool for writing programs to run in
parallel, without needing to know much (in most cases nothing) about a given machine’s architecture.
MPI programs work on both shared memory and distributed memory machines. Furthermore, MPI is a
very rich and complicated library. But it is not necessary touse all the features. The basic and most used
functions have been optimized for most machine architectures

Before we proceed, we need to clarify some concepts, in particular the usage of the words process
and processor. We refer to process as a logical unit which executes its own code, in an MIMD style. The
processor is a physical device on which one or several processes are executed. The MPI standard uses the
concept process consistently throughout its documentation. However, since we only consider situations
where one processor is responsible for one process, we therefore use the two terms interchangeably in
the discussion below, hopefully without creating ambiguities.

The six most important MPI functions are

– MPI_ Init - initiate an MPI computation

– MPI_Finalize - terminate the MPI computation and clean up

– MPI_Comm_size - how many processes participate in a given MPI computation.

154

7.7 – Parallel computing

– MPI_Comm_rank - which rank does a given process have. The rank is a number between 0 and
size-1, the latter representing the total number of processes.

– MPI_Send - send a message to a particular process within an MPI computation

– MPI_Recv - receive a message from a particular process within an MPI computation.

The first MPI C++ program is a rewriting of our ’hello world’ program (without the computation of
the sine function) from chapter 2. We let every process write"Hello world" on the standard output.http://www.fys.uio.no/
ompphys/
p/programs/FYS3150/MPI/
hapter07/program2.
pp
/ / F i r s t C++ example o f MPI He l l o wor ld
us ing namespace s t d ;
inc lude <mpi . h>
inc lude < ios t ream >

i n t main (i n t nargs , char∗ a r g s [])
{

i n t numprocs , my_rank ;
/ / MPI i n i t i a l i z a t i o n s

MPI_ In i t (& nargs , &a r g s) ;
MPI_Comm_size (MPI_COMM_WORLD, &numprocs) ;
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank) ;
cou t << "Hello world, I have rank " << my_rank << " out of " <<

numprocs << end l ;
/ / End MPI

MPI_F ina l i ze () ;
re turn 0 ;

}

The corresponding Fortran program reads

PROGRAM h e l l o
INCLUDE "mpif.h"
INTEGER : : numprocs , my_rank , i e r r

CALL MPI_INIT (i e r r)
CALL MPI_COMM_SIZE (MPI_COMM_WORLD, numprocs , i e r r)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, my_rank , i e r r)
WRITE (∗ ,∗) "Hello world, I've rank " , my_rank ," out of " , numprocs
CALL MPI_FINALIZE(i e r r)

END PROGRAM h e l l o

MPI is a message-passing library where all the routines havea corresponding C++-bindings3 MPI_Command_name
or Fortran-bindings (function names are by convention in uppercase, but can also be in lower case)

MPI_COMMAND_NAME
To use the MPI library you must include header files which contain definitions and declarations that

are needed by the MPI library routines. The following line must appear at the top of any source code
file that will make an MPI call. For Fortran you must put in the beginningINCLUDE ’mpif.h’ while for

3The C++ bindings used in practice are the same as the C bindings, although reading older texts like [15–17] one finds
extensive discussions on the difference between C and C++ bindings. Throughout this text we will use the C bindings.

155

http://www.fys.uio.no/compphys/cp/programs/FYS3150/MPI/chapter07/program2.cpp

Numerical integration

C++ you need to include the statement#include "mpi.h". These header files contain the declarations of
functions, variabels etc. needed by the MPI library.

The first MPI call must beMPI_INIT, which initializes the message passing routines, as definedin
for exampleINTEGER :: ierr andCALL MPI_INIT(ierr) for the Fortran example. The variableierr is an
integer which holds an error code when the call returns. The value of ierr is however of little use since,
by default, MPI aborts the program when it encounters an error. However, ierr must be included when
MPI starts. For the C++ code we have the call to the functionint MPI_Init(int ∗argc, char∗argv)where
argcandargvare arguments passed to main. MPI does not use these arguments in any way, however, and
in MPI-2 implementations, NULL may be passed instead. When you have finished you must call the
functionMPI_Finalize. In Fortran you use the statementCALL MPI_FINALIZE(ierr) while for C++ we use
the function int MPI_Finalize(void).

In addition to these calls, we have also included calls to so-called inquiry functions. There are
two MPI calls that are usually made soon after initialization. They are for C++,MPI_COMM_SIZE
((MPI_COMM_WORLD, &numprocs)andCALL MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)
for Fortran. The functionMPI_COMM_SIZEreturns the number of tasks in a specified MPI communicator
(comm when we refer to it in generic function calls below).

In MPI you can divide your total number of tasks into groups, called communicators. What does
that mean? All MPI communication is associated with what onecalls a communicator that describes a
group of MPI processes with a name (context). The communicator designates a collection of processes
which can communicate with each other. Every process is thenidentified by its rank. The rank is only
meaningful within a particular communicator. A communicator is thus used as a mechanism to identify
subsets of processes. MPI has the flexibility to allow you to define different types of communicators, see
for example [16]. However, here we have used the communicator MPI_COMM_WORLD that contains all
the MPI processes that are initiated when we run the program.

The variablenumprocsrefers to the number of processes we have at our disposal. Thefunction
MPI_COMM_RANK returns the rank (the name or identifier) of the tasks runningthe code. Each task (or
processor) in a communicator is assigned a numbermy_rankfrom 0 to numprocs− 1.

We are now ready to perform our first MPI calculations.

Running codes with MPI

To compile and load the above C++ code (after having understood how to use a local cluster), we can use
the commandmpi
xx -O2 -o program2.x program2.
pp
and try to run with ten nodes using the commandmpiexe
 -np 10 ./program2.x

If we wish to use the Fortran version we need to replace the C++compiler statementmpicc with
mpif90or equivalent compilers. The name of the compiler is obviously system dependent. The command
mpirunmay be instead ofmpiexec. Here you need to check your own system.

When we run MPI all processes use the same binary executable version of the code and all processes
are running exactly the same code. The question is then how can we tell the difference between our
parallel code running on a given number of processes and a serial code? There are two major distinctions
you should keep in mind: (i) MPI lets each process have a particular rank to determine which instructions
are run on a particular process and (ii) the processes communicate with each other in order to finalize a

156

7.7 – Parallel computing

task. Even if all processes receive the same set of instructions, they will normally not execute the same
instructions.We will exemplify this in connection with ourintegration example below.

The above example spits out the following outputHello world, I've rank 0 out of 10 pro
s.Hello world, I've rank 1 out of 10 pro
s.Hello world, I've rank 4 out of 10 pro
s.Hello world, I've rank 3 out of 10 pro
s.Hello world, I've rank 9 out of 10 pro
s.Hello world, I've rank 8 out of 10 pro
s.Hello world, I've rank 2 out of 10 pro
s.Hello world, I've rank 5 out of 10 pro
s.Hello world, I've rank 7 out of 10 pro
s.Hello world, I've rank 6 out of 10 pro
s.
The output to screen is not ordered since all processes are trying to write to screen simultaneously. It

is then the operating system which opts for an ordering. If wewish to have an organized output, starting
from the first process, we may rewrite our program as followshttp://www.fys.uio.no/
ompphys/
p/programs/FYS3150/MPI/
hapter07/program3.
pp
/ / Second C++ example o f MPI He l l o wor ld
us ing namespace s t d ;
inc lude <mpi . h>
inc lude < ios t ream >

i n t main (i n t nargs , char∗ a r g s [])
{

i n t numprocs , my_rank , i ;
/ / MPI i n i t i a l i z a t i o n s

MPI_ In i t (& nargs , &a r g s) ;
MPI_Comm_size (MPI_COMM_WORLD, &numprocs) ;
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank) ;
f o r (i = 0 ; i < numprocs ; i ++) {

MPI_Bar r ie r (MPI_COMM_WORLD) ;
i f (i == my_rank) {

cou t << "Hello world, I have rank " << my_rank << " out of " <<
numprocs << end l ;

f f l u s h (s t d o u t) ;
}

}
/ / End MPI

MPI_F ina l i ze () ;
re turn 0 ;

}

Here we have used theMPI_Barrierfunction to ensure that every process has completed its set of instruc-
tions in a particular order. A barrier is a special collective operation that does not allow the processes to
continue until all processes in the communicator (hereMPI_COMM_WORLD) have calledMPI_Barrier.
The output is nowHello world, I've rank 0 out of 10 pro
s.

157

http://www.fys.uio.no/compphys/cp/programs/FYS3150/MPI/chapter07/program3.cpp

Numerical integrationHello world, I've rank 1 out of 10 pro
s.Hello world, I've rank 2 out of 10 pro
s.Hello world, I've rank 3 out of 10 pro
s.Hello world, I've rank 4 out of 10 pro
s.Hello world, I've rank 5 out of 10 pro
s.Hello world, I've rank 6 out of 10 pro
s.Hello world, I've rank 7 out of 10 pro
s.Hello world, I've rank 8 out of 10 pro
s.Hello world, I've rank 9 out of 10 pro
s.
The barriers make sure that all processes have reached the same point in the code. Many of the collective
operations likeMPI_ALLREDUCE to be discussed later, have the same property; viz. no process can exit
the operation until all processes have started. However, this is slightly more time-consuming since the
processes synchronize between themselves as many times as there are processes. In the next Hello world
example we use the send and receive functions in order to a have a synchronized action.http://www.fys.uio.no/
ompphys/
p/programs/FYS3150/MPI/
hapter07/program4.
pp
/ / Th i rd C++ example o f MPI He l l o wor ld
us ing namespace s t d ;
inc lude <mpi . h>
inc lude < ios t ream >

i n t main (i n t nargs , char∗ a r g s [])
{

i n t numprocs , my_rank , f l a g ;
/ / MPI i n i t i a l i z a t i o n s

MPI_Sta tus s t a t u s ;
MPI_ In i t (& nargs , &a r g s) ;
MPI_Comm_size (MPI_COMM_WORLD, &numprocs) ;
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank) ;
/ / Send and Rece ive example
i f (my_rank > 0)

MPI_Recv (& f l a g , 1 , MPI_INT , my_rank−1, 100 , MPI_COMM_WORLD, &s t a t u s)
;

cou t << "Hello world, I have rank " << my_rank << " out of " <<
numprocs << end l ;

i f (my_rank < numprocs−1)
MPI_Send (&my_rank , 1 , MPI_INT , my_rank+1 , 100 , MPI_COMM_WORLD) ;

/ / End MPI
MPI_F ina l i ze () ;

re turn 0 ;
}

The basic sending of messages is given by the functionMPI_SEND, which in C++ is defined as

i n t MPI_Send (vo id ∗buf , i n t count , MPI_Datatype d a t a t y p e ,i n t des t , i n t tag ,
MPI_Comm comm)

while in Fortran we would call this function with the following parameters

CALL MPI_SEND(buf , count , MPI_TYPE , des t , tag , comm, i e r r).

158

http://www.fys.uio.no/compphys/cp/programs/FYS3150/MPI/chapter07/program4.cpp

7.7 – Parallel computing

This single command allows the passing of any kind of variable, even a large array, to any group of tasks.
The variablebuf is the variable we wish to send whilecountis the number of variables we are passing. If
we are passing only a single value, this should be 1. If we transfer an array, it is the overall size of the
array. For example, if we want to send a 10 by 10 array, count would be10 × 10 = 100 since we are
actually passing 100 values.

We define the type of variable usingMPI_TYPE in order to let MPI function know what to expect.
The destination of the send is declared via the variabledest, which gives the ID number of the task we are
sending the message to. The variabletag is a way for the receiver to verify that it is getting the message
it expects. The message tag is an integer number that we can assign any value, normally a large number
(larger than the expected number of processes). The communicatorcommis the group ID of tasks that the
message is going to. For complex programs, tasks may be divided into groups to speed up connections
and transfers. In small programs, this will more than likelybe inMPI_COMM_WORLD.

Furthermore, when an MPI routine is called, the Fortran or C++ data type which is passed must match
the corresponding MPI integer constant. An integer is defined asMPI_INT in C++ andMPI_INTEGER
in Fortran. A double precision real isMPI_DOUBLE in C++ andMPI_DOUBLE_PRECISIONin Fortran
and single precision real isMPI_FLOAT in C++ andMPI_REAL in Fortran. For further definitions of data
types see chapter five of Ref. [16].

Once you have sent a message, you must receive it on another task. The functionMPI_RECV is
similar to the send call. In C++ we would define this as

i n t MPI_Recv (vo id ∗buf , i n t count , MPI_Datatype d a t a t y p e ,i n t source , i n t
tag , MPI_Comm comm, MPI_Sta tus∗ s t a t u s)

while in Fortran we would use the call

CALL MPI_RECV(buf , count , MPI_TYPE , source , tag , comm, s t at u s , i e r r) } .

The arguments that are different from those inMPI_SENDarebuf which is the name of the variable where
you will be storing the received data,sourcewhich replaces the destination in the send command. This is
the return ID of the sender.

Finally, we have usedMPI_Status status ;where one can check if the receive was completed. The
source or tag of a received message may not be known if wildcard values are used in the receive function.
In C++, MPI Status is a structure that contains further information. One can obtain this information using

MPI_Get_count (MPI_Sta tus∗ s t a t u s , MPI_Datatype d a t a t y p e ,i n t ∗ coun t) }

The output of this code is the same as the previous example, but now process 0 sends a message to process
1, which forwards it further to process 2, and so forth.

Armed with this wisdom, performed all hello world greetings, we are now ready for serious work.

7.7.4 Numerical integration with MPI

To integrate numerically with MPI we need to define how to sendand receive data types. This means
also that we need to specify which data types to send to MPI functions.

The program listed here integrates

π =

∫ 1

0
dx

4

1 + x2

159

Numerical integration

by simply adding up areas of rectangles according to the algorithm discussed in Eq. (7.5), rewritten here

I =

∫ b

a
f(x)dx ≈ h

N∑

i=1

f(xi−1/2),

wheref(x) = 4/(1+x2). This is a brute force way of obtaining an integral but suffices to demonstrate our
first application of MPI to mathematical problems. What we dois to subdivide the integration rangex ∈
[0, 1] into n rectangles. Increasingn should obviously increase the precision of the result, as discussed in
the beginning of this chapter. The parallel part proceeds byletting every process collect a part of the sum
of the rectangles. At the end of the computation all the sums from the processes are summed up to give
the final global sum. The program below serves thus as a simpleexample on how to integrate in parallel.
We will refine it in the next examples and we will also add a simple example on how to implement the
trapezoidal rule.http://www.fys.uio.no/
ompphys/
p/programs/FYS3150/MPI/
hapter07/program5.
pp
1 / / Reac tang le r u l e and numer i ca l i n t e g r a t i o n u s i n g MPI sendand

Rece ive
2 us ing namespace s t d ;
3 # i n c l u d e <mpi . h>
4 # i n c l u d e < ios t ream >

5 i n t main (i n t nargs , char∗ a r g s [])
6 {
7 i n t numprocs , my_rank , i , n = 1000 ;
8 double l oca l_sum , rec tang le_sum , x , h ;
9 / / MPI i n i t i a l i z a t i o n s
10 MPI_ In i t (& nargs , &a r g s) ;
11 MPI_Comm_size (MPI_COMM_WORLD, &numprocs) ;
12 MPI_Comm_rank (MPI_COMM_WORLD, &my_rank) ;
13 / / Read from s c r e e n a p o s s i b l e new vaue o f n
14 i f (my_rank == 0 && n a r g s > 1) {
15 n = a t o i (a r g s [1]) ;
16 }
17 h = 1 . 0 / n ;
18 / / B roadcas t n and h t o a l l p r o c e s s e s
19 MPI_Bcast (&n , 1 , MPI_INT , 0 , MPI_COMM_WORLD) ;
20 MPI_Bcast (&h , 1 , MPI_DOUBLE, 0 , MPI_COMM_WORLD) ;
21 / / Every p r o c e s s s e t s up i t s c o n t r i b u t i o n t o t h e i n t e g r a l
22 loca l_sum = 0 . ;
23 f o r (i = my_rank ; i < n ; i += numprocs) {
24 x = (i + 0 . 5)∗h ;
25 loca l_sum += 4 . 0 / (1 . 0 + x∗x) ;
26 }
27 loca l_sum ∗= h ;
28 i f (my_rank == 0) {
29 MPI_Sta tus s t a t u s ;
30 r e c t a n g l e _ s u m = loca l_sum ;
31 f o r (i =1 ; i < numprocs ; i ++) {
32 MPI_Recv(& loca l_sum , 1 ,MPI_DOUBLE,MPI_ANY_SOURCE , 50 0 ,

MPI_COMM_WORLD,& s t a t u s) ;
33 r e c t a n g l e _ s um += loca l_sum ;

160

http://www.fys.uio.no/compphys/cp/programs/FYS3150/MPI/chapter07/program5.cpp

7.7 – Parallel computing

34 }
35 cou t << "Result: " << r e c t a n g l e _ s um << end l ;
36 } e l s e
37 MPI_Send(& loca l_sum , 1 ,MPI_DOUBLE, 0 , 5 0 0 ,MPI_COMM_WORLD) ;
38 / / End MPI
39 MPI_F ina l i ze () ;
40 re turn 0 ;
41 }

After the standard initializations with MPI such as

MPI_In i t , MPI_Comm_size , MPI_Comm_rank ,

MPI_COMM_WORLDcontains now the number of processes defined by using for examplempirun -np 10 ./prog.x
In line 4 we check if we have read in from screen the number of mesh pointsn. Note that in line 7 we
fix n = 1000, however we have the possibility to run the code with a different number of mesh points as
well. If my_rankequals zero, which correponds to the master node, then we read a new value ofn if the
number of arguments is larger than two. This can be done as follows when we run the codempiexe
 -np 10 ./prog.x 10000
In line 17 we define also the step lengthh. In lines 19 and 20 we use the broadcast functionMPI_Bcast. We
use this particular function because we want data on one processor (our master node) to be shared with all
other processors. The broadcast function sends data to a group of processes. The MPI routineMPI_Bcast
transfers data from one task to a group of others. The format for the call is in C++ given by the pa-
rameters ofMPI_Bcast (&n, 1, MPI_INT, 0, MPI_COMM_WORLD);. MPI_Bcast (&h, 1, MPI_DOUBLE, 0,
MPI_COMM_WORLD); in case of a double. The general structure of this function isint MPI_Bcast(void
∗buf, int count, MPI_Datatype datatype,int root , MPI_Comm comm). All processes call this function,
both the process sending the data (with rank zero) and all theother processes inMPI_COMM_WORLD.
Every process has now copies ofn andh, the number of mesh points and the step length, respectively.

We transfer the addresses ofn andh. The second argument represents the number of data sent. In
case of a one-dimensional array, one needs to transfer the number of array elements. If you have an
n×m matrix, you must transfern×m. We need also to specify whether the variable type we transfer is
a non-numerical such as a logical or character variable or numerical of the integer, real or complex type.

We transfer also an integer variableint root. This variable specifies the process which has the original
copy of the data. Since we fix this value to zero in the call in lines 19 and 20, it means that it is the
master process which keeps this information. For Fortran, this function is called via the statementCALL
MPI_BCAST(buff, count, MPI_TYPE, root, comm, ierr).

In lines 23-27, every process sums its own part of the final sumused by the rectangle rule. The receive
statement collects the sums from all other processes in casemy_rank == 0, else an MPI send is performed.

The above function is not very elegant. Furthermore, the MPIinstructions can be simplified by
using the functionsMPI_Reduceor MPI_Allreduce. The first function takes information from all processes
and sends the result of the MPI operation to one process only,typically the master node. If we use
MPI_Allreduce, the result is sent back to all processes, a feature which is useful when all nodes need the
value of a joint operation. We limit ourselves toMPI_Reducesince it is only one process which will print
out the final number of our calculation, The arguments toMPI_Allreduceare the same.

The MPI_Reducefunction is defined as followsint MPI_Bcast(void ∗senddata,void∗ resultdata ,
int count, MPI_Datatype datatype, MPI_Op,int root , MPI_Comm comm). The two variablessenddataand

161

Numerical integration

resultdata are obvious, besides the fact that one sends the address of the variable or the first element
of an array. If they are arrays they need to have the same size.The variablecount represents the total
dimensionality, 1 in case of just one variable, whileMPI_Datatypedefines the type of variable which is
sent and received. The new feature isMPI_Op. MPI_Op defines the type of operation we want to do.
There are many options, see again Refs. [15–17] for full list. In our case, since we are summing the
rectangle contributions from every process we defineMPI_Op = MPI_SUM. If we have an array or matrix
we can search for the largest og smallest element by sending either MPI_MAX or MPI_MIN. If we want
the location as well (which array element) we simply transfer MPI_MAXLOC or MPI_MINOC. If we
want the product we writeMPI_PROD. MPI_Allreduceis defined asint MPI_Bcast(void ∗senddata,void∗

resultdata , int count, MPI_Datatype datatype, MPI_Op, MPI_Comm comm).
The function we list in the next example is the MPI extension of program1.cpp. The difference is that

we employ only the trapezoidal rule. It is easy to extend thiscode to include gaussian quadrature or other
methods.

It is also worth noting that every process has now its own starting and ending point. We read in
the number of integration pointsn and the integration limitsa andb. These are calleda andb. They
serve to define the local integration limits used by every process. The local integration limits are defined
as local_a = a + my_rank∗(b−a)/numprocsand local_b = a + (my_rank−1)∗(b−a)/numprocs. These two
variables are transfered to the method for the trapezoidal rule. These two methods return the local sum
variablelocal_sum. MPI_Reducecollects all the local sums and returns the total sum, which is written out
by the master node. The program below implements this. We have also added the possibility to measure
the total time used by the code via the calls toMPI_Wtime.http://www.fys.uio.no/
ompphys/
p/programs/FYS3150/MPI/
hapter07/program6.
pp
/ / T r a p e z o i d a l r u l e and numer i ca l i n t e g r a t i o n u s i n g MPI w i th MPI_Reduce
us ing namespace s t d ;
inc lude <mpi . h>
inc lude < ios t ream >

/ / Here we d e f i n e v a r i o u s f u n c t i o n s c a l l e d by t h e main program

double i n t _ f u n c t i o n (double) ;
double t r a p e z o i d a l _ r u l e (double , double , i n t , double (∗) (double)) ;

/ / Main f u n c t i o n b e g i n s here
i n t main (i n t nargs , char∗ a r g s [])
{

i n t n , l o c a l _ n , numprocs , my_rank ;
double a , b , h , l o c a l _ a , l o c a l _ b , to ta l_sum , loca l_sum ;
double t i m e _ s t a r t , t ime_end , t o t a l _ t i m e ;
/ / MPI i n i t i a l i z a t i o n s
MPI_ In i t (& nargs , &a r g s) ;
MPI_Comm_size (MPI_COMM_WORLD, &numprocs) ;
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank) ;
t i m e _ s t a r t = MPI_Wtime () ;
/ / F ixed v a l u e s f o r a , b and n
a = 0 .0 ; b = 1 . 0 ; n = 1000 ;
h = (b−a) / n ; / / h i s t h e same f o r a l l p r o c e s s e s
l o c a l _ n = n / numprocs ; / / make su re n > numprocs , e l s e i n t e g e r d i v i s i o n

g i v e s ze ro
/ / Leng th o f each p r o c e s s ’ i n t e r v a l o f

162

http://www.fys.uio.no/compphys/cp/programs/FYS3150/MPI/chapter07/program6.cpp

7.7 – Parallel computing

/ / i n t e g r a t i o n = l o c a l _ n∗h .
l o c a l _ a = a + my_rank∗ l o c a l _ n∗h ;
l o c a l _ b = l o c a l _ a + l o c a l _ n∗h ;
t o t a l _ s u m = 0 . 0 ;
l oca l_sum = t r a p e z o i d a l _ r u l e (l o c a l _ a , l o c a l _ b , l o c a l _ n ,&i n t _ f u n c t i o n) ;
MPI_Reduce(& loca l_sum , &to ta l_sum , 1 , MPI_DOUBLE, MPI_SUM, 0 ,

MPI_COMM_WORLD) ;
t ime_end = MPI_Wtime () ;
t o t a l _ t i m e = t ime_end− t i m e _ s t a r t ;
i f (my_rank == 0) {

cou t << "Trapezoidal rule = " << t o t a l _ s u m << end l ;
cou t << "Time = " << t o t a l _ t i m e << " on number of pro
essors: " <<

numprocs << end l ;
}
/ / End MPI
MPI_F ina l i ze () ;
re turn 0 ;

} / / end o f main program

/ / t h i s f u n c t i o n d e f i n e s t h e f u n c t i o n t o i n t e g r a t e
double i n t _ f u n c t i o n (double x)
{

double v a l u e = 4 . / (1 . + x∗x) ;
re turn v a l u e ;

} / / end o f f u n c t i o n t o e v a l u a t e

/ / t h i s f u n c t i o n d e f i n e s t h e t r a p e z o i d a l r u l e
double t r a p e z o i d a l _ r u l e (double a , double b , i n t n , double (∗ func) (double))
{

double t rapez_sum ;
double fa , fb , x , s t e p ;
i n t j ;
s t e p =(b−a) / ((double) n) ;
f a =(∗ func) (a) / 2 . ;
fb =(∗ func) (b) / 2 . ;
t rapez_sum = 0 . ;
f o r (j =1 ; j <= n−1; j ++) {

x= j ∗ s t e p +a ;
t rapez_sum +=(∗ func) (x) ;

}
t rapez_sum =(t rapez_sum +fb+ f a)∗ s t e p ;
re turn t rapez_sum ;

} / / end t r a p e z o i d a l _ r u l e

An obvious extension of this code is to read from file or screenthe integration variables. One could also
use the program library to call a particular integration method.

163

