
Chapter 4

Linear algebra

In the training of programming for scientific computation the emphasis has historically
been on squeezing out every drop of floating point performance for a given algorithm.
This practice, however, leads to highly tuned racecarlike software codes: delicate, easily
broken and difficult to maintain, but capable of outperforming more user-friendly family
cars.Smith, Bjorstad and Gropp, An introduction to MPI [16]

4.1 Introduction

In this chapter we deal with basic matrix operations, such asthe solution of linear equations, calculate the
inverse of a matrix, its determinant etc. The solution of linear equations is an important part of numerical
mathematics and arises in many applications in the sciences. Here we focus in particular on so-called
direct or elimination methods, which are in principle determined through a finite number of arithmetic
operations. Iterative methods will be discussed in connection with eigenvalue problems in chapter 12.

This chapter serves also the purpose of introducing important programming details such as handling
memory allocation for matrices and the usage of the libraries which follow these lectures. Classes and
pertinent programming aspects are relegated to the appendix.

The algorithms we describe and their original source codes are taken from the widely used software
package LAPACK [25], which follows two other popular packages developed in the 1970s, namely EIS-
PACK and LINPACK. The latter was developed for linear equations and least square problems while
the former was developed for solving symmetric, unsymmetric and generalized eigenvalue problems.
From LAPACK’s websitehttp://www.netlib.org it is possible to download for free all source codes
from this library. Both C++ and Fortran versions are available. Another important library is BLAS [26],
which stands for Basic Linear Algebra Subprogram. It contains efficient codes for algebraic operations
on vectors, matrices and vectors and matrices. Basically all modern supercomputer include this library,
with efficient algorithms. Else, Matlab offers a very efficient programming environment for dealing with
matrices. The classic text from where we have taken most of the formalism exposed here is the book
on matrix computations by Golub and Van Loan [27]. Good recent introductory texts are Kincaid and
Cheney [24] and Datta [28]. For more advanced ones see Trefethen and Bau III [29], Kress [30] and
Demmel [31]. Ref. [27] contains an extensive list of textbooks on eigenvalue problems and linear alge-
bra. LAPACK [25] contains also extensive listings to the research literature on matrix computations. For
the introduction of the auxiliary library Blitz++ [32], which allows for a very efficient way of handling
arrays in C++ we refer to the online manual athttp://www.oonumeri
s.org and the appendix.

63

http://www.netlib.org
http://www.oonumerics.org

Linear algebra

4.2 Mathematical intermezzo

The matrices we will deal with are primarily square real symmetric or hermitian ones, assuming thereby
that ann× n matrixA ∈ R

n×n for a real matrix1 andA ∈ C
n×n for a complex matrix. For the sake of

simplicity, we take a matrixA ∈ R
4×4 and a corresponding identity matrixI

A =





a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44



 I =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 , (4.1)

whereaij ∈ R. The inverse of a matrix, if it exists, is defined by

A−1 ·A = I.

In the following discussion, matrices are always two-dimensional arrays while vectors are one-dimensional
arrays. In our nomenclature we will restrict boldfaced capitals letters such asA to represent a general
matrix, which is a two-dimensional array, whileaij refers to a matrix element with row numberi and
column numberj. Similarly, a vector being a one-dimensional array, is labelled x and represented as (for
a real vector)

x ∈ R
n ⇐⇒





x1

x2

x3

x4



 ,

with pertinent vector elementsxi ∈ R. Note that this notation impliesxi ∈ R
4×1 and that the members

of x are column vectors. The elements ofxi ∈ R
1×4 are row vectors.

Table 4.2 lists some essential features of various types of matrices one may encounter. Some of the

Table 4.1: Matrix properties

Relations Name matrix elements
A = AT symmetric aij = aji

A =
(
AT
)−1

real orthogonal
∑

k aikajk =
∑

k akiakj = δij
A = A∗ real matrix aij = a∗ij
A = A† hermitian aij = a∗ji
A =

(
A†)−1

unitary
∑

k aika
∗
jk =

∑
k a

∗
kiakj = δij

matrices we will encounter are listed here

1. Diagonal ifaij = 0 for i 6= j,

1A reminder on mathematical symbols may be appropriate here.The symbolR is the set of real numbers. Correspondingly,
N, Z and C represent the set of natural, integer and complex numbers, respectively. A symbol likeRn stands for ann-
dimensional real Euclidean space, whileC[a, b] is the space of real or complex-valued continuous functionson the interval
[a, b], where the latter is a closed interval. Similalry,Cm[a, b] is the space ofm-times continuously differentiable functions on
the interval[a, b]. For more symbols and notations, see the main text.

64

4.2 – Mathematical intermezzo

2. Upper triangular ifaij = 0 for i > j, which for a4× 4 matrix is of the form





a11 a12 a13 a14

0 a22 a23 a24

0 0 a33 a34

0 0 0 ann





3. Lower triangular ifaij = 0 for i < j





a11 0 0 0
a21 a22 0 0
a31 a32 a33 0
a41 a42 a43 a44





4. Upper Hessenberg ifaij = 0 for i > j + 1, which is similar to a upper triangular except that it has
non-zero elements for the first subdiagonal row





a11 a12 a13 a14

a21 a22 a23 a24

0 a32 a33 a34

0 0 a43 a44





5. Lower Hessenberg ifaij = 0 for i < j + 1





a11 a12 0 0
a21 a22 a23 0
a31 a32 a33 a34

a41 a42 a43 a44





6. Tridiagonal ifaij = 0 for |i− j| > 1





a11 a12 0 0
a21 a22 a23 0
0 a32 a33 a34

0 0 a43 a44





There are many more examples, such as lower banded with bandwidth p for aij = 0 for i > j + p, upper
banded with bandwidthp for aij = 0 for i < j + p, block upper triangular, block lower triangular etc.

For a realn× n matrixA the following properties are all equivalent

1. If the inverse ofA exists,A is nonsingular.

2. The equationAx = 0 impliesx = 0.

3. The rows ofA from a basis ofRn.

4. The columns ofA from a basis ofRn.

5. A is a product of elementary matrices.

65

Linear algebra

6. 0 is not an eigenvalue ofA.

The basic matrix operations that we will deal with are addition and subtraction

A = B±C =⇒ aij = bij ± cij , (4.2)

scalar-matrix multiplication
A = γB =⇒ aij = γbij ,

vector-matrix multiplication

y = Ax =⇒ yi =

n∑

j=1

aijxj, (4.3)

matrix-matrix multiplication

A = BC =⇒ aij =

n∑

k=1

bikckj , (4.4)

transposition
A = BT =⇒ aij = bji,

and ifA ∈ C
n×n, conjugation results in

A = B
T

=⇒ aij = bji,

where a variablez = x− ıy denotes the complex conjugate ofz = x+ ıy. In a similar way we have the
following basic vector operations, namely addition and subtraction

x = y ± z =⇒ xi = yi ± zi,

scalar-vector multiplication
x = γy =⇒ xi = γyi,

vector-vector multiplication (called Hadamard multiplication)

x = yz =⇒ xi = yizi,

the inner or so-called dot product

c = yT z =⇒ c =

n∑

j=1

yjzj , (4.5)

with a c a constant and the outer product, which yields a matrix,

A = yzT =⇒ aij = yizj , (4.6)

Other important operations are vector and matrix norms. A class of vector norms are the so-calledp-
norms

||x||p = (|x1|p + |x2|p + · · ·+ |xn|p)
1
p ,

wherep ≥ 1. The most important are the 1, 2 and∞ norms given by

||x||1 = |x1|+ |x2|+ · · ·+ |xn|,

||x||2 = (|x1|2 + |x2|2 + · · ·+ |xn|2)
1
2 = (xTx)

1
2 ,

66

4.3 – Programming details

and
||x||∞ = max |xi|,

for 1 ≤ i ≤ n. From these definitions, one can derive several important relations, of which the so-called
Cauchy-Schwartz inequality is of great importance for manyalgorithms. For anyx andy in a real or
complex, the inner product space satisfies

|xT y| ≤ ||x||2||y||2,

and the equality is obeyed only ifx andy are linearly dependent. An important relation which follows
from the Cauchy-Schwartz relation is the famous triangle relation, which states that for anyx andy in a
real or complex, the inner product space satisfies

||x + y||2 ≤ ||x||2 + ||y||2.

Proofs can be found in for example Ref. [27]. As discussed in chapter 2, the analysis of the relative
error is important in our studies of loss of numerical precision. Using a vector norm we can define the
relative error for the machine representation of a vectorx. We assume thatfl(x) ∈ R

n is the machine
representation of a vectorx ∈ R

n. If x 6= 0, we define the relative error as

ǫ =
||fl(x)− x||
||x|| .

Using the∞-norm one can define a relative error that can be translated into a statement on the correct
significant digits offl(x),

||fl(x)− x||∞
||x||∞

≈ 10−l,

where the largest component offl(x) has roughlyl correct significant digits.
We can define similar matrix norms as well. The most frequently used are the Frobenius norm

||A||F =

√√√√
m∑

i=1

n∑

j=1

|aij |2,

and thep-norms

||A||p =
||Ax||p
||x||p

,

assuming thatx 6= 0. We refer the reader to the text of Golub and Van Loan [27] for afurther discussion
of these norms.

The way we implement these operations will be discussed below, as it depends on the programming
language we opt for.

4.3 Programming details

Many programming problems arise from improper treatment ofarrays. In this section we will dis-
cuss some important points such as array declaration, memory allocation and array transfer between
functions. We distinguish between two cases: (a) array declarations where the array size is given at

67

Linear algebra

compilation time, and (b) where the array size is determinedduring the execution of the program, so-
called dymanic memory allocation. Useful references on C++programming details, in particular on
the use of pointers and memory allocation, are Reek’s text [33] on pointers in C, Berryhill’s mono-
graph [34] on scientific programming in C++ and finally Franek’s text [35] on memory as a program-
ming concept in C and C++. Good allround texts on C++ programming in engineering and science are
the books by Flowers [19] and Barton and Nackman [20]. See also the online lecture notes on C++
at http://heim.ifi.uio.no/~hpl/INF-VERK4830. For Fortran we recommend the online lectures
at http://folk.uio.no/gunnarw/INF-VERK4820. These web pages contain extensive references to
other C++ and Fortran resources. Both web pages contain enough material, lecture notes and exercises,
in order to serve as material for own studies.

Figure 4.1: Segmentation fault, again and again! Alas, thisis a situation you must likely will end up
in, unless you initialize, access, allocate and deallocateproperly your arrays. Many program develop-
ment environments such as Dev C++ atwww.bloodshed.net provide debugging possibilities. Another
possibility, discussed in appendix A, is to use the debuggerGDB within the text editor emacs. Beware
however that there may be segmentation errors which occur due to errors in libraries of the operating
system. (Drawing: courtesy by Victoria Popsueva 2003.)

4.3.1 Declaration of fixed-sized vectors and matrices

Table 4.2 presents a small program which treats essential features of vector and matrix handling where
the dimensions are declared in the program code.

In line a we have a standard C++ declaration of a vector. The compiler reserves memory to store
five integers. The elements are vec[0], vec[1],....,vec[4]. Note that the numbering of elements starts with
zero. Declarations of other data types are similar, including structure data.

68

http://heim.ifi.uio.no/~hpl/INF-VERK4830
http://folk.uio.no/gunnarw/INF-VERK4820
www.bloodshed.net

4.3 – Programming details

The symbol vec is an element in memory containing the addressto the first element vec[0] and is a
pointer to a vector of five integer elements.

In line b we have a standard fixed-size C++ declaration of a matrix. Again the elements start with
zero, matr[0][0], matr[0][1],, matr[0][4], matr[1][0],.... . This sequence of elements also shows how
data are stored in memory. For example, the element matr[1][0] follows matr[0][4]. This is important in
order to produce an efficient code and avoid memory stride.

There is one further important point concerning matrix declaration. In a similar way as for the symbol
vec, matr is an element in memory which contains an address to a vector of three elements, but now these
elements are not integers. Each element is a vector of five integers. This is the correct way to understand
the declaration inline b. With respect to pointers this means that matr ispointer-to-a-pointer-to-an-
integerwhich we can write∗∗matr. Furthermore∗matr isa-pointer-to-a-pointerof five integers. This
interpretation is important when we want to transfer vectors and matrices to a function.

In line c we transfer vec[] and matr[][] to the function sub_1(). To bespecific, we transfer the
addresses of vec[] and matr[][] to sub_1().

In line d we have the function definition of sub_1(). Theint vec[] is a pointer to an integer. Alterna-
tively we could writeint ∗vec. The first version is better. It shows that it is a vector ofseveral integers,
but not how many. The second version could equally well be used to transfer the address to a single
integer element. Such a declaration does not distinguish between the two cases.

The next definition isint matr[][5]. This is a pointer to a vector of five elements and the compiler
must be told that each vector element contains five integers.Here an alternative version could be int
(∗matr)[5] which clearly specifies that matr is a pointer to a vector of five integers.

There is at least one drawback with such a matrix declaration. If we want to change the dimension
of the matrix and replace 5 by something else we have to do the same change in all functions where this
matrix occurs.

There is another point to note regarding the declaration of variables in a function which includes
vectors and matrices. When the execution of a function terminates, the memory required for the variables
is released. In the present case memory for all variables in main() are reserved during the whole program
execution, but variables which are declared in sub_1() are released when the execution returns to main().

4.3.2 Runtime declarations of vectors and matrices in C++

As mentioned in the previous subsection a fixed size declaration of vectors and matrices before com-
pilation is in many cases bad. You may not know beforehand theactually needed sizes of vectors and
matrices. In large projects where memory is a limited factorit could be important to reduce memory re-
quirement for matrices which are not used any more. In C an C++it is possible and common to postpone
size declarations of arrays untill you really know what you need and also release memory reservations
when it is not needed any more. The details are shown in Table 4.3.

In line a we declare a pointer to an integer which later will be used to store an address to the first
element of a vector. Similarily,line b declares a pointer-to-a-pointer which will contain the address to
a pointer of row vectors, each with col integers. This will then become a matrix with dimensionality
[col][col]

In line c we read in the size of vec[] and matr[][] through the numbers row and col.
Next we reserve memory for the vector inline d. In line e we use a user-defined function to reserve

necessary memory for matrix[row][col] and again matr contains the address to the reserved memory
location.

The remaining part of the function main() are as in the previous case down toline f. Here we have a
call to a user-defined function which releases the reserved memory of the matrix. In this case this is not

69

Linear algebra

Table 4.2: Matrix handling program where arrays are defined at compilation time

int main()
{

int k,m, row = 3, col = 5;
int vec[5]; // line a
int matr[3][5]; // line b

for (k = 0; k < col; k++) vec[k] = k; // data into vector[]
for (m = 0; m< row; m++) { // data into matr[][]

for (k = 0; k < col ; k++) matr[m][k] = m + 10∗ k;
}
printf("\n\nVe
tor data in main():\n"); // print vector data
for (k = 0; k < col; k++) printf("ve
tor[%d℄ = %d ",k, vec[k]);
printf("\n\nMatrix data in main():");

for (m = 0; m< row; m++) {
printf("\n");
for (k = 0; k < col; k++)

printf("matr[%d℄[[%d℄ = %d ",m,k,matr[m][k]);
}

}
printf("\n");
sub_1(row, col, vec, matr); // line c
return 0;

} // End: function main()

void sub_1(int row, int col, int vec[], int matr[][5]) // line d
{

int k,m;

printf("\n\nVe
tor data in sub_1():\n"); // print vector data
for (k = 0; k < col; k++) printf("ve
tor[%d℄ = %d ",k, vec[k]);
printf("\n\nMatrix data in sub_1():");

for (m = 0; m< row; m++) {
printf("\n");
for (k = 0; k < col; k++) {

printf("matr[%d℄[[%d℄ = %d ",m, k, matr[m][k]);
}

}
printf("\n");

} // End: function sub_1()

70

4.3 – Programming details

Table 4.3: Matrix handling program with dynamic array allocation.

int main()
{

int ∗vec; // line a
int ∗∗matr; // line b
int m, k, row, col, total = 0;

printf("\n\nRead in number of rows = "); // line c
scanf("%d",&row);
printf("\n\nRead in number of
olumn = ");
scanf("%d", &col);

vec =new int [col]; // line d
matr = (int ∗∗)matrix(row, col,sizeof(int)); // line e
for (k = 0; k < col; k++) vec[k] = k; // store data in vector[]
for (m = 0; m< row; m++) { // store data in array[][]

for (k = 0; k < col; k++) matr[m][k] = m + 10∗ k;
}
printf("\n\nVe
tor data in main():\n"); // print vector data
for (k = 0; k < col; k++) printf("ve
tor[%d℄ = %d ",k,vec[k]);
printf("\n\nArray data in main():");
for (m = 0; m< row; m++) {

printf("\n");
for (k = 0; k < col; k++) {

printf("matrix[%d℄[[%d℄ = %d ",m, k, matr[m][k]);
}

}
printf("\n");
for (m = 0; m< row; m++) { // access the array

for (k = 0; k < col; k++) total += matr[m][k];
}
printf("\n\nTotal = %d\n",total);
sub_1(row, col, vec, matr);
free_matrix((void ∗∗)matr); // line f
delete[] vec; // line g
return 0;

} // End: function main()

void sub_1(int row, int col, int vec[], int ∗∗matr) // line h
{

int k,m;

printf("\n\nVe
tor data in sub_1():\n"); // print vector data
for (k = 0; k < col; k++) printf("ve
tor[%d℄ = %d ",k, vec[k]);
printf("\n\nMatrix data in sub_1():");
for (m = 0; m< row; m++) {

printf("\n");
for (k = 0; k < col; k++) {

printf("matrix[%d℄[[%d℄ = %d ",m,k,matr[m][k]);
}

}
printf("\n");

} // End: function sub_1()

71

Linear algebra

done automatically.
In line g the same procedure is performed for vec[]. In this case the standard C++ library has the

necessary function.
Next, in line h an important difference from the previous case occurs. First, the vector declaration is

the same, but the matr declaration is quite different. The corresponding parameter in the call to sub_1[]
in line g is a double pointer. Consequently, matr inline h must be a double pointer.

Except for this difference sub_1() is the same as before. Thenew feature in Table 4.3 is the call to the
user-defined functionsmatrix and free_matrix. These functions are defined in the library filelib.cpp.
The code for the dynamic memory allocation is given below.http://www.fys.uio.no/
ompphys/
p/programs/FYS3150/
pp/
pluspluslibrary/lib.
pp

/∗
∗ The f u n c t i o n
∗ vo id ∗∗m a t r i x ()
∗ r e s e r v e s dynamic memory f o r a two−d i m e n s i o n a l m a t r i x
∗ u s i n g t h e C++ command new . No i n i t i a l i z a t i o n o f t h e e l e m e n t s.
∗ I n p u t da ta :
∗ i n t row − number o f rows
∗ i n t c o l − number o f co lumns
∗ i n t num_bytes− number o f b y t e s f o r each
∗ e lemen t
∗ Retu rns a vo id ∗∗ p o i n t e r t o t h e r e s e r v e d memory l o c a t i o n .
∗ /

vo id ∗∗m a t r i x (i n t row , i n t co l , i n t num_bytes)
{
i n t i , num ;
char ∗∗ p o i n t e r , ∗ p t r ;

p o i n t e r = new(nothrow) char∗ [row] ;
i f (! p o i n t e r) {

cou t << "Ex
eption handling: Memory allo
ation failed" ;
cou t << " for "<< row << "row addresses !" << end l ;
re turn NULL;

}
i = (row ∗ c o l ∗ num_bytes) /s i z e o f(char) ;
p o i n t e r [0] = new(nothrow) char [i] ;
i f (! p o i n t e r [0]) {

cou t << "Ex
eption handling: Memory allo
ation failed" ;
cou t << " for address to " << i << "
hara
ters !" << end l ;
re turn NULL;

}
p t r = p o i n t e r [0] ;
num = c o l ∗ num_bytes ;
f o r (i = 0 ; i < row ; i ++ , p t r += num) {

p o i n t e r [i] = p t r ;
}
re turn (vo id ∗∗) p o i n t e r ;
} / / end : f u n c t i o n vo id ∗∗m a t r i x ()

As an alternative, you could write your own allocation and deallocation of matrices. This can be
done rather straightforwardly with the following statements. Recall first that a matrix is represented by

72

http://www.fys.uio.no/compphys/cp/programs/FYS3150/cpp/cplusplus library/lib.cpp

4.3 – Programming details

double ∗ ∗A =⇒ double ∗A[0 . . . 3]

A[0][0] A[0][1] A[0][2] A[0][3]

A[1][0] A[1][1] A[1][2] A[1][3]

A[2][0] A[2][1] A[2][2] A[2][3]

A[3][0] A[3][1] A[3][2] A[3][3]

A[0]

A[1]

A[2]

A[2]

Figure 4.2: Conceptual representation of the allocation ofa matrix in C++.

a double pointer that points to a contiguous memory segment holding a sequence of double* pointers in
case our matrix is a double precision variable. Then each double* pointer points to a row in the matrix.
A declaration likedouble∗∗ A; means that A[i] is a pointer to thei + 1-th row A[i] and A[i][j] is matrix
entry(i, j). The way we would allocate memory for such a matrix of dimensionalityn×n is for example
using the following piece of code

i n t n ;
double ∗∗ A;

A = new double∗ [n]
f o r (i = 0 ; i < n ; i ++)

A[i] = new double[N] ;

When we declare a matrix (a two-dimensional array) we must first declare an array of double variables.
To each of this variables we assign an allocation of a single-dimensional array. A conceptual picture on
how a matrixA is stored in memory is shown in Fig. 4.2.

Allocated memory should always be deleted when it is no longer needed. We free memory using the
statements

f o r (i = 0 ; i < n ; i ++)
d e l e t e [] A[i] ;

d e l e t e [] A;

delete [] A; , which frees an array of pointers to matrix rows.

73

Linear algebra

However, including a library like Blitz++http://www.oonumeri
s.org makes life much easier
when dealing with matrices. This is discussed in the appendix.

4.3.3 Matrix operations and C++ and Fortran features of matrix handling

Many program libraries for scientific computing are writtenin Fortran, often also in older version such as
Fortran 77. When using functions from such program libraries, there are some differences between C++
and Fortran encoding of matrices and vectors worth noticing. Here are some simple guidelines in order
to avoid some of the most common pitfalls.

First of all, when we think of ann× n matrix in Fortran and C++, we typically would have a mental
picture of a two-dimensional block of stored numbers. The computer stores them however as sequential
strings of numbers. The latter could be stored as row-major order or column-major order. What do
we mean by that? Recalling that for our matrix elementsaij, i refers to rows andj to columns, we
could store a matrix in the sequencea11a12 . . . a1na21a22 . . . a2n . . . ann if it is row-major order (we go
along a given rowi and pick up all column elementsj) or it could be stored in column-major order
a11a21 . . . an1a12a22 . . . an2 . . . ann.

Fortran stores matrices in the latter way, i.e., by column-major, while C++ stores them by row-major.
It is crucial to keep this in mind when we are dealing with matrices, because if we were to organize the
matrix elements in the wrong way, important properties likethe transpose of a real matrix or the inverse
can be wrong, and obviously yield wrong physics. Fortran subscripts begin typically with1, although
it is no problem in starting with zero, while C++ starts with0 for the first element. This means that
A(1, 1) in Fortran is equivalent toA[0][0] in C++. Moreover, since the sequential storage in memory
means that nearby matrix elements are close to each other in the memory locations (and thereby easier to
fetch) , operations involving e.g., additions of matrices may take more time if we do not respect the given
ordering.

To see this, consider the following coding of matrix addition in C++ and Fortran. We haven × n
matricesA, B andC and we wish to evaluateA = B + C according to Eq. (4.2). In C++ this would be
coded like

f o r (i =0 ; i < n ; i ++) {
f o r (j =0 ; j < n ; j ++) {

a [i] [j]= b [i] [j]+ c [i] [j]
}

}

while in Fortran we would have

DO j =1 , n
DO i =1 , n

a (i , j) =b (i , j) +c (i , j)
ENDDO

ENDDO

Fig. 4.3 shows how a3× 3 matrixA is stored in both row-major and column-major ways.
Interchanging the order ofi andj can lead to a considerable enhancement in process time. In Fortran

we write the above statements in a much simpler waya=b+c. However, the addition still involves∼ n2 op-
erations. Matrix multiplication or taking the inverse requires∼ n3 operations. The matrix multiplication
of Eq. (4.4) of two matricesA = BC could then take the following form in C++

f o r (i =0 ; i < n ; i ++) {
f o r (j =0 ; j < n ; j ++) {

74

http://www.oonumerics.org

4.3 – Programming details

a11 a12 a13

a21 a22 a23

a31 a32 a33

=⇒⇐=

a11

a12

a13

a21

a22

a23

a31

a32

a33

a11

a21

a31

a12

a22

a32

a13

a23

a33

Figure 4.3: Row-major storage of a matrix to the left (C++ way) and column-major to the right (Fortran
way).

75

Linear algebra

f o r (k=0 ; k < n ; k++) {
a [i] [j]+=b [i] [k] ∗ c [k] [j]

}
}

}

and in Fortran we have

DO j =1 , n
DO i =1 , n

DO k = 1 , n
a (i , j) =a (i , j) +b (i , k)∗c (k , j)

ENDDO
ENDDO

ENDDO

However, Fortran has an intrisic function called MATMUL, and the above three loops can be coded in
a single statementa=MATMUL(b,c). Fortran contains several array manipulation statements,such as dot
product of vectors, the transpose of a matrix etc etc. The outer product of two vectors is however not
included in Fortran. The coding of Eq. (4.6) takes then the following form in C++

f o r (i =0 ; i < n ; i ++) {
f o r (j =0 ; j < n ; j ++) {

a [i] [j]+=x [i] ∗ y [j]
}

}

and in Fortran we have

DO j =1 , n
DO i =1 , n

a (i , j) =a (i , j) +x (j)∗y (i)
ENDDO

ENDDO

A matrix-matrix multiplication of a generaln× n matrix with

a(i, j) = a(i, j) + b(i, k) ∗ c(k, j),

in its inner loops requires a multiplication and an addition. We define now a flop (floating point operation)
as one of the following floating point arithmetic operations, viz addition, subtraction, multiplication and
division. The above two floating point operations (flops) aredonen3 times meaning that a general matrix
multiplication requires2n3 flops if we have a square matrix. If we assume that our computerperforms
109 flops per second, then to perform a matrix multiplication of a1000 × 1000 case should take two
seconds. This can be reduced if we multiply two matrices which are upper triangular such as

A =





a11 a12 a13 a14

0 a22 a23 a24

0 0 a33 a34

0 0 0 a44



 .

The multiplication of two upper triangular matricesBC yields another upper triangular matrixA, result-
ing in the following C++ code

76

4.3 – Programming details

f o r (i =0 ; i < n ; i ++) {
f o r (j = i ; j < n ; j ++) {

f o r (k= i ; k < j ; k++) {
a [i] [j]+=b [i] [k] ∗ c [k] [j]

}
}

}

The fact that we have the constrainti ≤ j leads to the requirement for the computation ofaij of 2(j−i+1)
flops. The total number of flops is then

n∑

i=1

n∑

j=1

2(j − i+ 1) =
n∑

i=1

n−i+1∑

j=1

2j ≈
n∑

i=1

2(n− i+ 1)2

2
,

where we used that
∑n

j=1 j = n(n+ 1)/2 ≈ n2/2 for largen values. Using in addition that
∑n

j=1 j
2 ≈

n3/3 for largen values, we end up with approximatelyn3/3 flops for the multiplication of two upper
triangular matrices. This means that if we deal with matrix multiplication of upper triangular matrices,
we reduce the number of flops by a factor six if we code our matrix multiplication in an efficient way.

It is also important to keep in mind that computers are finite,we can thus not store infinitely large
matrices. To calculate the space needed in memory for ann× n matrix with double precision, 64 bits or
8 bytes for every matrix element, one needs simply computen × n × 8 bytes . Thus, ifn = 10000, we
will need close to 1GB of storage. Decreasing the precision to single precision, only halves our needs.

A further point we would like to stress, is that one should in general avoid fixed (at compilation
time) dimensions of matrices. That is, one could always specify that a given matrixA should have size
A[100][100], while in the actual execution one may use onlyA[10][10]. If one has several such matrices,
one may run out of memory, while the actual processing of the program does not imply that. Thus, we
will always recommend that you use dynamic memory allocation, and deallocation of arrays when they
are no longer needed. In Fortran one uses the intrisic functions ALLOCATE and DEALLOCATE ,
while C++ employs the functionsnew anddelete.

Fortran allocate statement and mathematical operations onarrays

An array is declared in the declaration section of a program,module, or procedure using the dimension
attribute. Examples include

REAL , DIMENSION (1 0) : : x , y
REAL , DIMENSION (1 : 1 0) : : x , y
INTEGER , DIMENSION (−10:10) : : prob
INTEGER , DIMENSION (1 0 , 1 0) : : s p i n

The default value of the lower bound of an array is 1. For this reason the first two statements are equivalent
to the first. The lower bound of an array can be negative. The last two statements are examples of two-
dimensional arrays.

Rather than assigning each array element explicitly, we canuse an array constructor to give an array
a set of values. An array constructor is a one-dimensional list of values, separated by commas, and
delimited by "(/" and "/)". An example is

a (1 : 3) = (/ 2 . 0 , −3.0 , −4.0 /)

77

Linear algebra

is equivalent to the separate assignments

a (1) = 2 .0
a (2) = −3.0
a (3) = −4.0

One of the better features of Fortran is dynamic storage allocation. That is, the size of an array can
be changed during the execution of the program. To see how thedynamic allocation works in Fortran,
consider the following simple example where we set up a4× 4 unity matrix.

.
IMPLICIT NONE

! The d e f i n i t i o n o f t h e mat r ix , u s i n g dynamic a l l o c a t i o n
REAL , ALLOCATABLE , DIMENSION (: , :) : : u n i t y

! The s i z e o f t h e m a t r i x
INTEGER : : n

! Here we s e t t h e dim n=4
n=4

! A l l o c a t e now p l a c e i n memory f o r t h e m a t r i x
ALLOCATE (u n i t y (n , n))

! a l l e l e m e n t s are s e t equa l ze ro
u n i t y =0 .

! s e t u p i d e n t i t y m a t r i x
DO i =1 , n

u n i t y (i , i) =1 .
ENDDO
DEALLOCATE (u n i t y)
.

We always recommend to use the deallocation statement, since this frees space in memory. If the matrix
is transferred to a function from a calling program, one can transfer the dimensionalityn of that matrix
with the call. Another possibility is to determine the dimensionality with theSIZE function. Writing a
statement liken=SIZE(unity,DIM=1) gives the number of rows, while using DIM=2 gives the number of
columns. Note however that this involves an extra call to a function. If speed matters, one should avoid
such calls.

4.4 Linear Systems

In this section we outline some of the most used algorithms tosolve sets of linear equations. These
algorithms are based on Gaussian elimination [27, 30] and will allow us to catch several birds with a
stone. We will show how to rewrite a matrixA in terms of an upper and a lower triangular matrix,
from which we easily can solve linear equation, compute the inverse ofA and obtain the determinant.
We start with Gaussian elimination, move to the more efficient LU-algorithm, which forms the basis
for many linear algebra applications, and end the discussion with special cases such as the Cholesky
decomposition and linear system of equations with a tridiagonal matrix.

We begin however with an example which demonstrates the importance of being able to solve linear
equations. Suppose we want to solve the following boundary value equation

−d
2u(x)

dx2
= f(x, u(x)),

78

4.4 – Linear Systems

with x ∈ (a, b) and with boundary conditionsu(a) = u(b) = 0. We assume thatf is a continuous
function in the domainx ∈ (a, b). Since, except the few cases where it is possible to find analytic
solutions, we will seek approximate solutions, we choose torepresent the approximation to the second
derivative from the previous chapter

f ′′ =
fh − 2f0 + f−h

h2
+O(h2).

We subdivide our intervalx ∈ (a, b) into n subintervals by settingxi = a+ ih, with i = 0, 1, . . . , n+ 1.
The step size is then given byh = (b−a)/(n+1) with n ∈ N. For the internal grid pointsi = 1, 2, . . . n
we replace the differential operator with the above formularesulting in

u′′(xi) ≈
u(xi + h)− 2u(xi) + u(xi − h)

h2
,

which we rewrite as

u
′′

i ≈
ui+1 − 2ui + ui−i

h2
.

We can rewrite our original differential equation in terms of a discretized equation with approximations
to the derivatives as

−ui+1 − 2ui + ui−i

h2
= f(xi, u(xi)),

with i = 1, 2, . . . , n. We need to add to this system the two boundary conditionsu(a) = u0 and
u(b) = un+1. If we define a matrix

A =
1

h2





2 −1
−1 2 −1

−1 2 −1
.

−1 2 −1
−1 2





and the corresponding vectorsu = (u1, u2, . . . , un)T andf(u) = f(x1, x2, . . . , xn, u1, u2, . . . , un)T we
can rewrite the differential equation including the boundary conditions as a system of linear equations
with a large number of unknowns

Au = f(u). (4.7)

We assume that the solutionu exists and is unique for the exact differential equation, viz that the boundary
value problem has a solution. But the discretization of the above differential equation leads to several
questions, such as how well does the approximate solution resemble the exact one ash → 0, or does a
given small value ofh allow us to establish existence and uniqueness of the solution.

Here we specialize to two particular cases. Assume first thatthe functionf does not depend onu(x).
Then our linear equation reduces to

Au = f , (4.8)

which is nothing but a simple linear equation with a tridiagonal matrixA. We will solve such a system
of equations in subsection 4.4.3.

If we assume that our boundary value problem is that of a quantum mechanical particle confined by
a harmonic oscillator potential, then our functionf takes the form (assuming that all constantsm = ~ =

79

Linear algebra

ω = 1) f(xi, u(xi)) = −x2
iu(xi)+2λu(xi) with λ being the eigenvalue. Inserting this into our equation,

we define first a new matrixA as

A =





2
h2 + x2

1 − 1
h2

− 1
h2

2
h2 + x2

2 − 1
h2

− 1
h2

2
h2 + x2

3 − 1
h2

.
− 1

h2
2
h2 + x2

n−1 − 1
h2

− 1
h2

2
h2 + x2

n




, (4.9)

which leads to the following eigenvalue problem




2
h2 + x2

1 − 1
h2

− 1
h2

2
h2 + x2

2 − 1
h2

− 1
h2

2
h2 + x2

3 − 1
h2

.
− 1

h2
2
h2 + x2

n−1 − 1
h2

− 1
h2

2
h2 + x2

n









u1

u2

un




= 2λ





u1

u2

un




.

We will solve this type of equations in chapter 12. These lecture notes contain however several other
examples of rewriting mathematical expressions into matrix problems. In chapter 7 we show how a set of
linear integral equation when discretized can be transformed into a simple matrix inversion problem. The
specific example we study in that chapter is the rewriting of Schrödinger’s equation for scattering prob-
lems. Other examples of linear equations will appear in our discussion of ordinary and partial differential
equations.

4.4.1 Gaussian elimination

Any discussion on the solution of linear equations should start with Gaussian elimination. This text is no
exception. We start with the linear set of equations

Ax = w.

We assume also that the matrixA is non-singular and that the matrix elements along the diagonal satisfy
aii 6= 0. We discuss later how to handle such cases. In the discussionwe limit ourselves again to a matrix
A ∈ R

4×4, resulting in a set of linear equations of the form




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44









x1

x2

x3

x4



 =





w1

w2

w3

w4



 .

or

a11x1 + a12x2 + a13x3 + a14x4 = w1

a21x1 + a22x2 + a23x3 + a24x4 = w2

a31x1 + a32x2 + a33x3 + a34x4 = w3

a41x1 + a42x2 + a43x3 + a44x4 = w4.

The basic idea of Gaussian elimination is to use the first equation to eliminate the first unknownx1 from
the remainingn−1 equations. Then we use the new second equation to eliminate the second unknownx2

80

4.4 – Linear Systems

from the remainingn− 2 equations. Withn− 1 such eliminations we obtain a so-called upper triangular
set of equations of the form

b11x1 + b12x2 + b13x3 + b14x4 = y1

b22x2 + b23x3 + b24x4 = y2

b33x3 + b34x4 = y3

b44x4 = y4.

We can solve this system of equations recursively starting from xn (in our casex4) and proceed with
what is called a backward substitution. This process can be expressed mathematically as

xm =
1

bmm

(

ym −
n∑

k=m+1

bmkxk

)

m = n− 1, n − 2, . . . , 1.

To arrive at such an upper triangular system of equations, westart by eliminating the unknownx1 for
j = 2, n. We achieve this by multiplying the first equation byaj1/a11 and then subtract the result from
the jth equation. We assume obviously thata11 6= 0 and thatA is not singular. We will come back to
this problem below.

Our actual4× 4 example reads after the first operation





a11 a12 a13 a14

0 (a22 − a21a12
a11

) (a23 − a21a13
a11

) (a24 − a21a14
a11

)

0 (a32 − a31a12
a11

) (a33 − a31a13
a11

) (a34 − a31a14
a11

)

0 (a42 − a41a12
a11

) (a43 − a41a13
a11

) (a44 − a41a14
a11

)









x1

x2

x3

x4



 =





y1

w
(2)
2

w
(2)
3

w
(2)
4




.

or

b11x1 + b12x2 + b13x3 + b14x4 = y1

a
(2)
22 x2 + a

(2)
23 x3 + a

(2)
24 x4 = w

(2)
2

a
(2)
32 x2 + a

(2)
33 x3 + a

(2)
34 x4 = w

(2)
3

a
(2)
42 x2 + a

(2)
43 x3 + a

(2)
44 x4 = w

(2)
4 ,

(4.10)

with the new coefficients
b1k = a

(1)
1k k = 1, . . . , n,

where eacha(1)
1k is equal to the originala1k element. The other coefficients are

a
(2)
jk = a

(1)
jk −

a
(1)
j1 a

(1)
1k

a
(1)
11

j, k = 2, . . . , n,

with a new right-hand side given by

y1 = w
(1)
1 , w

(2)
j = w

(1)
j −

a
(1)
j1 w

(1)
1

a
(1)
11

j = 2, . . . , n.

81

Linear algebra

We have also setw(1)
1 = w1, the original vector element. We see that the system of unknownsx1, . . . , xn

is transformed into an(n− 1)× (n− 1) problem.
This step is called forward substitution. Proceeding with these substitutions, we obtain the general

expressions for the new coefficients

a
(m+1)
jk = a

(m)
jk −

a
(m)
jm a

(m)
mk

a
(m)
mm

j, k = m+ 1, . . . , n,

with m = 1, . . . , n − 1 and a right-hand side given by

w
(m+1)
j = w

(m)
j −

a
(m)
jm w

(m)
m

a
(m)
mm

j = m+ 1, . . . , n.

This set ofn−1 elimations leads us to Eq. (4.10), which is solved by back substitution. If the arithmetics
is exact and the matrixA is not singular, then the computed answer will be exact. However, as discussed
in the two preceeding chapters, computer arithmetics is notexact. We will always have to cope with
truncations and possible losses of precision. Even though the matrix elements along the diagonal are not
zero, numerically small numbers may appear and subsequent divisions may lead to large numbers, which,
if added to a small number may yield losses of precision. Suppose for example that our first division in
(a22 − a21a12/a11) results in−107, that isa21a12/a11. Assume also thata22 is one. We are then adding
107 +1. With single precision this results in107. Already at this stage we see the potential for producing
wrong results.

The solution to this set of problems is called pivoting, and we distinguish between partial and full
pivoting. Pivoting means that if small values (especially zeros) do appear on the diagonal we remove
them by rearranging the matrix and vectors by permuting rowsand columns. As a simple example, let us
assume that at some stage during a calculation we have the following set of linear equations





1 3 4 6
0 10−8 198 19
0 −91 51 9
0 7 76 541









x1

x2

x3

x4



 =





y1

y2

y3

y4



 .

The element at rowi = 2 and column2 is 10−8 and may cause problems for us in the next forward
substitution. The elementi = 2, j = 3 is the largest in the second row and the elementi = 3, j = 2 is
the largest in the third row. The small element can be removedby rearranging the rows and/or columns
to bring a larger value into thei = 2, j = 2 element.

In partial or column pivoting, we rearrange the rows of the matrix and the right-hand side to bring the
numerically largest value in the column onto the diagonal. For our example matrix the largest value of
column two is in elementi = 3, j = 2 and we interchange rows 2 and 3 to give





1 3 4 6
0 −91 51 9
0 10−8 198 19
0 7 76 541









x1

x2

x3

x4



 =





y1

y3

y2

y4



 .

Note that our unknown variablesxi remain in the same order which simplifies the implementationof
this procedure. The right-hand side vector, however, has been rearranged. Partial pivoting may be im-
plemented for every step of the solution process, or only when the diagonal values are sufficiently small

82

4.4 – Linear Systems

as to potentially cause a problem. Pivoting for every step will lead to smaller errors being introduced
through numerical inaccuracies, but the continual reordering will slow down the calculation.

The philosophy behind full pivoting is much the same as that behind partial pivoting. The main
difference is that the numerically largest value in the column or row containing the value to be replaced.
In our example above the magnitude of elementi = 2, j = 3 is the greatest in row 2 or column 2. We
could rearrange the columns in order to bring this element onto the diagonal. This will also entail a
rearrangement of the solution vectorx. The rearranged system becomes, interchanging columns twoand
three, 



1 6 3 4
0 198 10−8 19
0 51 −91 9
0 76 7 541









x1

x3

x2

x4



 =





y1

y2

y3

y4



 .

The ultimate degree of accuracy can be provided by rearranging both rows and columns so that the
numerically largest value in the submatrix not yet processed is brought onto the diagonal. This process
may be undertaken for every step, or only when the value on thediagonal is considered too small relative
to the other values in the matrix. In our case, the matrix element ati = 4, j = 4 is the largest. We could
here interchange rows two and four and then columns two and four to bring this matrix element at the
diagonal positioni = 2, j = 2. When interchanging columns and rows, one needs to keep track of all
permutations performed. Partial and full pivoting are discussed in most texts on numerical linear algebra.
For an in depth discussion we recommend again the text of Golub and Van Loan [27], in particular chapter
three. See also the discussion of chapter two in Ref. [36]. The library functions you end up using, be it
via Matlab, the library included with this text or other ones, do all include pivoting.

If it is not possible to rearrange the columns or rows to remove a zero from the diagonal, then the
matrix A is singular and no solution exists.

Gaussian elimination requires however many floating point operations. Ann× n matrix requires for
the simultaneous solution of a set ofr different right-hand sides, a total ofn3/3 + rn2 − n/3 multi-
plications. Adding the cost of additions, we end up with2n3/3 + O(n2) floating point operations, see
Kress [30] for a proof. Ann × n matrix of dimensionaltyn = 103 requires, on a modern PC with a
processor that allows for something like109 floating point operations per second (flops), approximately
one second. If you increase the size of the matrix ton = 104 you need 1000 seconds, or roughly 16
minutes.

Although the direct Gaussian elmination algorithm allows you to compute the determinant ofA via
the product of the diagonal matrix elements of the triangular matrix, it is seldomly used in normal ap-
plications. The more practical elimination is provided by what is called lower and upper decomposition.
Once decomposed, one can use this matrix to solve many other linear systems which use the same matrix
A, viz with different right-hand sides. With an LU decomposedmatrix, the number of floating point
operations for solving a set of linear equations scales asO(n2). One should however note that to obtain
the LU decompsed matrix requires roughlyO(n3) floating point operations. Finally, LU decomposition
allows for an efficient computation of the inverse ofA.

4.4.2 LU decomposition of a matrix

A frequently used form of Gaussian elimination is L(ower)U(pper) factorisation also known as LU De-
composition or Crout or Dolittle factorisation. In this section we describe how one can decompose a
matrixA in terms of a matrixL with elements only below the diagonal (and thereby the naming lower)
and a matrixU which contains both the diagonal and matrix elements above the diagonal (leading to the
labelling upper). Consider again the matrixA given in Eq. (4.1). The LU decomposition method means

83

Linear algebra

that we can rewrite this matrix as the product of two matricesL andU where

A = LU =





a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44



 =





1 0 0 0
l21 1 0 0
l31 l32 1 0
l41 l42 l43 1









u11 u12 u13 u14

0 u22 u23 u24

0 0 u33 u34

0 0 0 u44



 . (4.11)

LU decomposition forms the backbone of other algorithms in linear algebra, such as the solution of
linear equations given by

a11x1 + a12x2 + a13x3 + a14x4 = w1

a21x1 + a22x2 + a23x3 + a24x4 = w2

a31x1 + a32x2 + a33x3 + a34x4 = w3

a41x1 + a42x2 + a43x3 + a44x4 = w4.

The above set of equations is conveniently solved by using LUdecomposition as an intermediate step see
the next subsection for more details on how to solve linear equations with an LU decomposed matrix.

The matrixA ∈ R
n×n has an LU factorization if the determinant is different fromzero. If the LU

factorization exists andA is non-singular, then the LU factorization is unique and thedeterminant is
given by

det{A} = u11u22 . . . unn.

For a proof of this statement, see chapter 3.2 of Ref. [27].
The algorithm for obtainingL andU is actually quite simple. We start always with the first column.

In our simple (4× 4) case we obtain then the following equations for the first column

a11 = u11

a21 = l21u11

a31 = l31u11

a41 = l41u11,

which determine the elementsu11, l21, l31 andu41 in L andU. Writing out the equations for the second
column we get

a12 = u12

a22 = l21u12 + u22

a32 = l31u12 + l32u22

a42 = l41u12 + l42u22.

Here the unknowns areu12, u22, l32 andl42 which can all be evaluated by means of the results from
the first column and the elements ofA. Note an important feature. When going from the first to the
second column we do not need any further information from thematrix elementsai1. This is a general
property throughout the whole algorithm. Thus the memory locations for the matrixA can be used to
store the calculated matrix elements ofL andU. This saves memory.

We can generalize this procedure into three equations

i < j : li1u1j + li2u2j + · · ·+ liiuij = aij

i = j : li1u1j + li2u2j + · · ·+ liiujj = aij

i > j : li1u1j + li2u2j + · · ·+ lijujj = aij

which gives the following algorithm:
Calculate the elements inL andU columnwise starting with column one. For each column(j):

84

4.4 – Linear Systems

– Compute the first elementu1j by
u1j = a1j .

– Next, we calculate all elementsuij , i = 2, . . . , j − 1

uij = aij −
i−1∑

k=1

likukj.

– Then calculate the diagonal elementujj

ujj = ajj −
j−1∑

k=1

ljkukj. (4.12)

– Finally, calculate the elementslij , i > j

lij =
1

ujj

(

aij −
i−1∑

k=1

likukj

)

, (4.13)

The algorithm is known as Doolittle’s algorithm since the diagonal matrix elements ofL are1. For the
case where the diagonal elements ofU are1, we have what is called Crout’s algorithm. For the case
whereU = LT so thatuii = lii for 1 ≤ i ≤ n we can use what is called the Cholesky factorization
algorithm. In this case the matrixA has to fulfil several features; namely, it should be real, symmetric
and positive definite. A matrix is positive definite if the quadratic formxTAx > 0. Establishing this
feature is not easy since it implies the use of an arbitrary vector x 6= 0. If the matrix is positive definite
and symmetric, its eigenvalues are always real and positive. We discuss the Cholesky factorization below.

A crucial point in the LU decomposition is obviously the casewhereujj is close to or equals zero,
a case which can lead to serious problems. Consider the following simple2 × 2 example taken from
Ref. [29]

A =

(
0 1
1 1

)
.

The algorithm discussed above fails immediately, the first step simple states thatu11 = 0. We could
change slightly the above matrix by replacing0 with 10−20 resulting in

A =

(
10−20 1

1 1

)
,

yielding
u11 = 10−20

l21 = 1020

andu12 = 1 and
u22 = a11 − l21 = 1− 1020,

we obtain

L =

(
1 0

1020 1

)
,

and

U =

(
10−20 1

0 1− 1020

)
,

85

Linear algebra

With the change from 0 to a small number like10−20 we see that the LU decomposition is now stable,
but it is not backward stable. What do we mean by that? First wenote that the matrixU has an element
u22 = 1 − 1020. Numerically, since we do have a limited precision, which for double precision is
approximatelyǫM ∼ 10−16 it means that this number is approximated in the machine asu22 ∼ −1020

resulting in a machine representation of the matrix as

U =

(
10−20 1

0 −1020

)
.

If we multiply the matricesLU we have
(

1 0
1020 1

)(
10−20 1

0 −1020

)
=

(
10−20 1

1 0

)
6= A.

We do not get back the original matrixA!
The solution is pivoting (interchanging rows in this case) around the largest element in a columnj.

Then we are actually decomposing a rowwise permutation of the original matrixA. The key point to
notice is that Eqs. (4.12) and (4.13) are equal except for thecase that we divide byujj in the latter one.
The upper limits are always the samek = j − 1(= i − 1). This means that we do not have to choose
the diagonal elementujj as the one which happens to fall along the diagonal in the firstinstance. Rather,
we could promote one of the undividedlij ’s in the columni = j + 1, . . . N to become the diagonal of
U . The partial pivoting in Crout’s or Doolittle’s methods means then that we choose the largest value
for ujj (the pivot element) and then do the divisions by that element. Then we need to keep track of all
permutations performed. For the above matrixA it would have sufficed to interchange the two rows and
start the LU decomposition with

A =

(
1 1
0 1

)
.

The error which is done in the LU decomposition of ann×nmatrix if no zero pivots are encountered
is given by, see chapter 3.3 of Ref. [27],

LU = A + H,

with
|H| ≤ 3(n − 1)u (|A|+ |L||U|) +O(u2),

with |H| being the absolute value of a matrix andu is the error done in representing the matrix elements
of the matrixA as floating points in a machine with a given precisionǫM , viz. every matrix element ofu
is

|fl(aij)− aij| ≤ uij,

with |uij | ≤ ǫM resulting in
|fl(A)−A| ≤ u|A|.

The programs which perform the above described LU decomposition are called as follows

C++: ludcmp(double∗∗a, int n, int∗indx, double∗d)
Fortran: CALL lu_decompose(a, n, indx, d)

Both the C++ and Fortran 90/95 programs receive as input the matrix to be LU decomposed. In C++ this
is given by the double pointer∗∗a. Further, both functions need the size of the matrixn. It returns the
variabled, which is±1 depending on whether we have an even or odd number of row interchanges, a
pointerindx that records the row permutation which has been effected andthe LU decomposed matrix.
Note that the original matrix is destroyed.

86

4.4 – Linear Systems

Cholesky’s factorization

If the matrixA is real, symmetric and positive definite, then it has a uniquefactorization (called Cholesky
factorization)

A = LU = LLT

whereLT is the upper matrix, implying that

LT
ij = Lji.

The algorithm for the Cholesky decomposition is a special case of the general LU-decomposition algo-
rithm. The algorithm of this decomposition is as follows

– Calculate the diagonal elementLii by setting up a loop fori = 0 to i = n − 1 (C++ indexing of
matrices and vectors)

Lii =

(

Aii −
i−1∑

k=0

L2
ik

)1/2

.

– within the loop overi, introduce a new loop which goes fromj = i+ 1 to n− 1 and calculate

Lji =
1

Lii

(
Aij −

i−1∑

k=0

Likljk

)
.

For the Cholesky algorithm we have always thatLii > 0 and the problem with exceedingly large matrix
elements does not appear and hence there is no need for pivoting.

To decide whether a matrix is positive definite or not needs some careful analysis. To find criteria
for positive definiteness, one needs two statements from matrix theory, see Golub and Van Loan [27] for
examples. First, the leading principal submatrices of a positive definite matrix are positive definite and
non-singular and secondly a matrix is positive definite if and only if it has anLDLT factorization with
positive diagonal elements only in the diagonal matrixD. A positive definite matrix has to be symmetric
and have only positive eigenvalues.

The easiest way therefore to test whether a matrix is positive definite or not is to solve the eigenvalue
problemAx = λx and check that all eigenvalues are positive.

4.4.3 Solution of linear systems of equations

With the LU decomposition it is rather simple to solve a system of linear equations

a11x1 + a12x2 + a13x3 + a14x4 = w1

a21x1 + a22x2 + a23x3 + a24x4 = w2

a31x1 + a32x2 + a33x3 + a34x4 = w3

a41x1 + a42x2 + a43x3 + a44x4 = w4.

This can be written in matrix form as
Ax = w.

whereA andw are known and we have to solve forx. Using the LU dcomposition we write

Ax ≡ LUx = w. (4.14)

87

Linear algebra

This equation can be calculated in two steps

Ly = w; Ux = y. (4.15)

To show that this is correct we use to the LU decomposition to rewrite our system of linear equations as

LUx = w,

and since the determinat ofL is equal to 1 (by construction since the diagonals ofL equal 1) we can use
the inverse ofL to obtain

Ux = L−1w = y,

which yields the intermediate step

L−1w = y

and multiplying withL on both sides we reobtain Eq. (4.15). As soon as we havey we can obtainx
throughUx = y.

For our four-dimentional example this takes the form

y1 = w1

l21y1 + y2 = w2

l31y1 + l32y2 + y3 = w3

l41y1 + l42y2 + l43y3 + y4 = w4.

and

u11x1 + u12x2 + u13x3 + u14x4 = y1

u22x2 + u23x3 + u24x4 = y2

u33x3 + u34x4 = y3

u44x4 = y4

This example shows the basis for the algorithm needed to solve the set ofn linear equations. The algo-
rithm goes as follows

88

4.4 – Linear Systems

– Set up the matrixA and the vectorw with their correct dimensions. This determines
the dimensionality of the unknown vectorx.

– Then LU decompose the matrixA through a call to the function

C++: ludcmp(double a, int n, int indx, double &d)
Fortran: CALL lu_decompose(a, n, indx, d)

This functions returns the LU decomposed matrixA, its determinant and the vector
indx which keeps track of the number of interchanges of rows.If the determinant is
zero, the solution is malconditioned.

– Thereafter you call the function

C++: lubksb(double a, int n, int indx, double w)
Fortran: CALL lu_linear_equation(a, n, indx, w)

which uses the LU decomposed matrixA and the vectorw and returnsx in the same
place asw. Upon exit the original content inw is destroyed. If you wish to keep this
information, you should make a backup of it in your calling function.

4.4.4 Inverse of a matrix and the determinant

The basic definition of the determinant ofA is

det{A} =
∑

p

(−1)pa1p1 · a2p2 · · · anpn ,

where the sum runs over all permutationsp of the indices1, 2, . . . , n, altogethern! terms. To calculate
the inverse ofA is a formidable task. Here we have to calculatethe complementary cofactoraij of each
elementaij which is the(n − 1)determinant obtained by striking out the rowi and columnj in which
the elementaij appears. The inverse ofA is then constructed as the transpose a matrix with the elements
(−)i+jaij. This involves a calculation ofn2 determinants using the formula above. A simplified method
is highly needed.

With the LU decomposed matrixA in Eq. (4.11) it is rather easy to find the determinant

det{A} = det{L} × det{U} = det{U},

since the diagonal elements ofL equal 1. Thus the determinant can be written

det{A} =
N∏

k=1

ukk.

The inverse is slightly more difficult to obtain from the LU decomposition. It is formally defined as

A−1 = U−1L−1.

89

Linear algebra

We use this form since the computation of the inverse goes through the inverse of the matricesL and
U. The reason is that the inverse of a lower (upper) triangularmatrix is also a lower (upper) triangular
matrix. If we callD for the inverse ofL , we can determine the matrix elements ofD through the equation





1 0 0 0
l21 1 0 0
l31 l32 1 0
l41 l42 l43 1









1 0 0 0
d21 1 0 0
d31 d32 1 0
d41 d42 d43 1



 =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 ,

which gives the following general algorithm

dij = −lij −
i−1∑

k=j+1

likdkj , (4.16)

which is valid fori > j. The diagonal is 1 and the upper matrix elements are zero. We solve this equation
column by column (increasing order ofj). In a similar way we can define an equation which gives us the
inverse of the matrixU, labelledE in the equation below. This contains only non-zero matrix elements
in the upper part of the matrix (plus the diagonal ones)





e11 e12 e13 e14
0 e22 e23 e24
0 0 e33 e34
0 0 0 e44









u11 u12 u13 u14

0 u22 u23 u24

0 0 u33 u34

0 0 0 u44



 =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 ,

with the following general equation

eij = − 1

ujj

j−1∑

k=1

eikukj. (4.17)

for i ≤ j.
A calculation of the inverse of a matrix could then be implemented in the following way:

– Set up the matrix to be inverted.

– Call the LU decomposition function.

– Check whether the determinant is zero or not.

– Then solve column by column Eqs. (4.16, 4.17).

The following codes compute the inverse of a matrix using either C++ or Fortran as programming lan-
guages. They are both included in the library packages, but we include them explicitely here as well as
two distinct programs. We list first the C++ codehttp://www.fys.uio.no/
ompphys/
p/programs/FYS3150/
hapter04/
pp/program1.
pp
/∗ The f u n c t i o n
∗∗ i n v e r s e ()

90

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter04/cpp/program1.cpp

4.4 – Linear Systems

∗∗ per fo rm a mtx i n v e r s i o n o f t h e i n p u t m a t r i x a [] [] w i th
∗∗ d imens ion n .
∗ /
vo id i n v e r s e (double ∗∗a , i n t n)
{

i n t i , j , ∗ i ndx ;
double d , ∗ co l , ∗∗y ;

/ / a l l o c a t e space i n memory
i ndx = new i n t [n] ;
c o l = new double[n] ;
y = (double ∗∗) m a t r i x (n , n , s i z e o f(double)) ;
/ / f i r s t we need t o LU decompose t h e m a t r i x
ludcmp (a , n , indx , &d) ;
/ / f i n d i n v e r s e o f a [] [] by co lumns
f o r (j = 0 ; j < n ; j ++) {

/ / i n i t i a l i z e r i g h t−s i d e o f l i n e a r e q u a t i o n s
f o r (i = 0 ; i < n ; i ++) c o l [i] = 0 . 0 ;
c o l [j] = 1 . 0 ;
l ubksb (a , n , indx , c o l) ;
/ / save r e s u l t i n y [] []
f o r (i = 0 ; i < n ; i ++) y [i] [j] = c o l [i] ;

}
/ / r e t u r n t h e i n v e r s e m a t r i x i n a [] []

f o r (i = 0 ; i < n ; i ++) {
f o r (j = 0 ; j < n ; j ++) a [i] [j] = y [i] [j] ;

}
f r e e _ m a t r i x ((vo id ∗∗) y) ; / / r e l e a s e l o c a l memory
d e l e t e [] c o l ;
d e l e t e [] indx ;

} / / End : f u n c t i o n i n v e r s e ()

We first need to LU decompose the matrix. Thereafter we solve Eqs. (4.16) and (4.17) by using the back
substitution method calling the functionlubksb and obtain finally the inverse matrix.

An example of a C++ function which calls this function is alsogiven in the program and readshttp://www.fys.uio.no/
ompphys/
p/programs/FYS3150/
hapter04/
pp/program1.
pp
/ / S imp le m a t r i x i n v e r s i o n example
inc lude < ios t ream >
inc lude <new>
inc lude < c s t d i o >
inc lude < c s t d l i b >
inc lude <cmath >
inc lude < c s t r i n g >
inc lude "lib.h"
us ing namespace s t d ;

/∗ f u n c t i o n d e c l a r a t i o n s ∗ /

vo id i n v e r s e (double ∗∗ , i n t) ;

91

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter04/cpp/program1.cpp

Linear algebra

/∗
∗∗ Th is program s e t s up a s i m p l e 3x3 symmet r i c m a t r i x
∗∗ and f i n d s i t s d e t e r m i n a n t and i n v e r s e
∗ /

i n t main ()
{

i n t i , j , k , r e s u l t , n = 3 ;
double ∗∗matr , sum ,

a [3] [3] = { { 1 . 0 , 3 . 0 , 4 . 0 } ,
{ 3 . 0 , 4 . 0 , 6 . 0 } ,
{ 4 . 0 , 6 . 0 , 8 . 0 } } ;

/ / memory f o r i n v e r s e m a t r i x
matr = (double ∗∗) m a t r i x (n , n , s i z e o f(double)) ;
/ / v a r i o u s p r i n t s t a t e m e n t s i n t h e o r i g i n a l code are o m i t t e d

i n v e r s e (matr , n) ; / / c a l c u l a t e and r e t u r n i n v e r s e m a t r i x
. . . .
re turn 0 ;

} / / End : f u n c t i o n main ()

In order to use the program library you need to include thelib.h file using the#include "lib.h"
statement. This function utilizes the library functionmatrix andfree_matrix to allocate and free memory
during execution. The matrixa[3][3] is set at compilation time. The corresponding Fortran program for
the inverse of a matrix readshttp://www.fys.uio.no/
ompphys/
p/programs/FYS3150/f90library/f90lib.f90

!
! R o u t i n e s t o do mtx i n v e r s i o n , from Numer ica l
! Rec ipes , T e u k o l s k y e t a l . R o u t i n e s i n c l u d e d
! below are MATINV , LUDCMP and LUBKSB . See chap 2
! o f Numer ica l Rec ipes f o r f u r t h e r d e t a i l s
!
SUBROUTINE mat inv (a , n , indx , d)

IMPLICIT NONE
INTEGER , INTENT (IN) : : n
INTEGER : : i , j
REAL (DP) , DIMENSION (n , n) , INTENT (INOUT) : : a
REAL (DP) , ALLOCATABLE : : y (: , :)
REAL (DP) : : d
INTEGER , , INTENT (INOUT) : : indx (n)

ALLOCATE (y (n , n))
y =0 .
! s e t u p i d e n t i t y m a t r i x
DO i =1 , n

y (i , i) =1 .
ENDDO
! LU decompose t h e m a t r i x j u s t once
CALL lu_decompose (a , n , indx , d)

! Find i n v e r s e by co lumns
DO j =1 , n

92

http://www.fys.uio.no/compphys/cp/programs/FYS3150/f90 library/f90lib.f90

4.4 – Linear Systems

CALL l u _ l i n e a r _ e q u a t i o n (a , n , indx , y (: , j))
ENDDO
! The o r i g i n a l m a t r i x a was des t royed , now we equa te i t w i th t he

i n v e r s e y
a=y
DEALLOCATE (y)

END SUBROUTINE mat inv

The Fortran programmatinv receives as input the same variables as the C++ program and calls the func-
tion for LU decompositionlu_decomposeand the function to solve sets of linear equationslu_linear_equation.
The program listed under programs/chapter4/program1.f90performs the same action as the C++ listed
above. In order to compile and link these programs it is convenient to use a so-calledmakefile. Examples
of these are found under the same catalogue as the above programs.

Inverse of the Vandermonde matrix

In chapter 6 we discuss how to interpolate a functionf which is known only atn+1 pointsx0, x1, x2, . . . , xn

with corresponding valuesf(x0), f(x1), f(x2), . . . , f(xn). The latter is often a typical outcome of a
large scale computation or from an experiment. In most casesin the sciences we do not have a closed
form expressions for a functionf . The function is only known at specific points.

We seek a functional form for a functionf which passes through the above pairs of values

(x0, f(x0)), (x1, f(x1)), (x2, f(x2)), . . . , (xn, f(xn)).

This is normally achieved by expanding the functionf(x) in terms of well-known polynomialsφi(x),
such as Legendre, Chebyshev, Laguerre etc. The function is then approximated by a polynomial of degree
n pn(x)

f(x) ≈ pn(x) =

n∑

i=0

aiφi(x),

whereai are unknown coefficients andφi(x) are a priori well-known functions. The simplest possible
case is to assume thatφi(x) = xi, resulting in an approximation

f(x) ≈ a0 + a1x+ a2x
2 + · · ·+ anx

n.

Our function is known at the pointsn+1 pointsx0, x1, x2, . . . , xn, leading ton+1 equations of the type

f(xi) ≈ a0 + a1xi + a2x
2
i + · · ·+ anx

n
i .

We can then obtain the unknown coefficients by rewriting our problem as




1 x0 x2
0 xn

0

1 x1 x2
1 xn

1

1 x2 x2
2 xn

2

1 x3 x2
3 xn

3

.
1 xn x2

n xn
n









a0

a1

a2

a3

. . .
an




=





f(x0)
f(x1)
f(x2)
f(x3)
. . .
f(xn)




,

an expression which can be rewritten in a more compact form as

Xa = f ,

93

Linear algebra

with

X =





1 x0 x2
0 xn

0

1 x1 x2
1 xn

1

1 x2 x2
2 xn

2

1 x3 x2
3 xn

3

.
1 xn x2

n xn
n




.

. This matrix is called a Vandermonde matrix and is by definition non-singular since all pointsxi are
different. The inverse exists and we can obtain the unknown coefficients by invertingX, resulting in

a = X−1f .

Although this algorithm for obtaining an interpolating polynomial which approximates our data set
looks very simple, it is an inefficient algorithm since the computation of the inverse requiresO(n3) flops.
The methods we will discuss in chapter 6 are much more effective from a numerical point of view. There
is also another subtle point. Although we have a data set withn+1 points, this does not necessarily mean
that our functionf(x) is well represented by a polynomial of degreen. On the contrary, our function
f(x) may be a parabola (second-order inn), meaning that we have a large excess of data points. In such
cases a least-square fit or a spline interpolation may be better approaches to represent the function. These
techniques are discussed in chapter 6.

4.4.5 Tridiagonal systems of linear equations

We start with the linear set of equations from Eq. (4.8), viz

Au = f ,

whereA is a tridiagonal matrix which we rewrite as

A =





b1 c1 0
a2 b2 c2

a3 b3 c3
.

an−2 bn−1 cn−1

an bn





wherea, b, c are one-dimensional arrays of length1 : n. In the example of Eq. (4.8) the arraysa andc
are equal, namelyai = ci = −1/h2. We can rewrite Eq. (4.8) as

A =





b1 c1 0
a2 b2 c2

a3 b3 c3
.

an−2 bn−1 cn−1

an bn









u1

u2

. . .

. . .

. . .
un




=





f1

f2

. . .

. . .

. . .
fn




.

A tridiagonal matrix is a special form of banded matrix whereall the elements are zero except for those
on and immediately above and below the leading diagonal. Theabove tridiagonal system can be written
as

aiui−1 + biui + ciui+1 = fi,

94

4.4 – Linear Systems

for i = 1, 2, . . . , n. We see thatu−1 andun+1 are not required and we can seta1 = cn = 0. In many
applications the matrix is symmetric and we haveai = ci. The algorithm for solving this set of equations
is rather simple and requires two steps only, a forward substitution and a backward substitution. These
steps are also common to the algorithms based on Gaussian elimination that we will discussed previously.
However, due to its simplicity, the number of floating point operations is in this case proportional with
O(n) while Gaussian elimination requires2n3/3 +O(n2) floating point operations. In case your system
of equations leads to a tridiagonal matrix, it is clearly an overkill to employ Gaussian elimination or the
standard LU decomposition. You will encounter several applications involving tridiagonal matrices in
our discussion of partial differential equations in chapter 15.

Our algorithm starts with forward substitution with a loop over of the elementsi and can be expressed
via the following piece of code taken from the Numerical Recipe text of Teukolskyet al [36]

btemp = b [1] ;
u [1] = f [1] / btemp ;
f o r (i =2 ; i <= n ; i ++) {

temp [i] = c [i −1]/ btemp ;
btemp = b [i]−a [i] ∗ temp [i] ;
u [i] = (f [i] − a [i] ∗u [i −1]) / btemp ;

}

Note that you should avoid cases withb1 = 0. If that is the case, you should rewrite the equations as a set
of ordern− 1 with u2 eliminated. Finally we perform the backsubstitution leading to the following code

f o r (i =n−1 ; i >= 1 ; i−−) {
u [i] −= temp [i +1]∗u [i + 1] ;

}

Note that our sums start withi = 1 and that one should avoid cases withb1 = 0. If that is the case, you
should rewrite the equations as a set of ordern − 1 with u2 eliminated. However, a tridiagonal matrix
problem is not a guarantee that we can find a solution. The matrix A which rephrases a second derivative
in a discretized form

A =





2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0
0 0 0 −1 2 −1
0 0 0 0 −1 2




,

fulfills the condition of a weak dominance of the diagonal, with |b1| > |c1|, |bn| > |an| and |bk| ≥
|ak| + |ck| for k = 2, 3, . . . , n − 1. This is a relevant but not sufficient condition to guaranteethat the
matrix A yields a solution to a linear equation problem. The matrix needs also to be irreducible. A
tridiagonal irreducible matrix means that all the elementsai andci are non-zero. If these two conditions
are present, thenA is nonsingular and has a unique LU decomposition.

We can obviously extend our boundary value problem to include a first derivative as well

−d
2u(x)

dx2
+ g(x)

du(x)

dx
+ h(x)u(x) = f(x),

with x ∈ [a, b] and with boundary conditionsu(a) = u(b) = 0. We assume thatf , g andh are continuous
functions in the domainx ∈ [a, b] and thath(x) ≥ 0. Then the differential equation has a unique solution.
We subdivide our intervalx ∈ [a, b] into n subintervals by settingxi = a+ ih, with i = 0, 1, . . . , n+ 1.

95

Linear algebra

The step size is then given byh = (b−a)/(n+1) with n ∈ N. For the internal grid pointsi = 1, 2, . . . n
we replace the differential operators with

u
′′

i ≈
ui+1 − 2ui + ui−i

h2
.

for the second derivative while the first derivative is givenby

u
′

i ≈
ui+1 − ui−i

2h
.

We rewrite our original differential equation in terms of a discretized equation as

−ui+1 − 2ui + ui−i

h2
+ gi

ui+1 − ui−i

2h
+ hiui = fi,

with i = 1, 2, . . . , n. We need to add to this system the two boundary conditionsu(a) = u0 and
u(b) = un+1. This equation can again be rewritten as a tridiagonal matrix problem. We leave it as
an exercise to the reader to find the matrix elements, find the conditions for having weakly dominant
diagonal elements and that the matrix is irreducible.

4.5 Exercises and projects

Exercise 2.1: Write your own Gaussian elimination code

(a) Consider the linear system of equations

a11x1 + a12x2 + a13x3 = w1

a21x1 + a22x2 + a23x3 = w2

a31x1 + a32x2 + a33x3 = w3.

This can be written in matrix form as

Ax = w.

We specialize here to the following case

− x1 + x2 − 4x3 = 0

2x1 + 2x2 = 1

3x1 + 3x2 + 2x3 = 1
2 .

Obtain the solution (by hand) of this system of equations by doing Gaussian elimination.

(b) Write therafter a program which implements Gaussian elimination (with pivoting) and solve the
above system of linear equations. How many floating point operations are involved in the solu-
tion via Gaussian elimination without pivoting? Can you estimate the number of floating point
operations with pivoting?

96

4.5 – Exercises and projects

Exercise 4.2: Cholesky factorization

If the matrixA is real, symmetric and positive definite, then it has a uniquefactorization (called Cholesky
factorization)

A = LU = LLT

whereLT is the upper matrix, implying that

LT
ij = Lji.

The algorithm for the Cholesky decomposition is a special case of the general LU-decomposition algo-
rithm. The algorithm of this decomposition is as follows

– Calculate the diagonal elementLii by setting up a loop fori = 0 to i = n − 1 (C++ indexing of
matrices and vectors)

Lii =

(

Aii −
i−1∑

k=0

L2
ik

)1/2

. (4.18)

– within the loop overi, introduce a new loop which goes fromj = i+ 1 to n− 1 and calculate

Lji =
1

Lii

(
Aij −

i−1∑

k=0

Likljk

)
. (4.19)

For the Cholesky algorithm we have always thatLii > 0 and the problem with exceedingly large matrix
elements does not appear and hence there is no need for pivoting. Write a function which performs the
Cholesky decomposition. Test your program against the standard LU decomposition by using the matrix

A =




6 3 2
3 2 1
2 1 1



 (4.20)

Finally, use the Cholesky method to solve

0.05x1 + 0.07x2 + 0.06x3 + 0.05x4 = 0.23

0.07x1 + 0.10x2 + 0.08x3 + 0.07x4 = 0.32

0.06x1 + 0.08x2 + 0.10x3 + 0.09x4 = 0.33

0.05x1 + 0.07x2 + 0.09x3 + 0.10x4 = 0.31

You can also use the LU codes for linear equations to check theresults.

Project 4.1: The one-dimensional Poisson equation

(a) We are going to solve the one-dimensional Poisson equation with Dirichlet boundary conditions
by rewriting it as a set of linear equations.

The three-dimensional Poisson equation is a partial differential equation,

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= −ρ(x, y, z)

ǫ0
,

97

Linear algebra

whose solution we will discuss in chapter 15. The functionρ(x, y, z) is the charge density andφ
is the electrostatic potential. In this project we considerthe one-dimensional case since there are a
few situations, possessing a high degree of symmetry, whereit is possible to find analytic solutions.
Let us discuss some of these solutions.

Suppose, first of all, that there is no variation of the various quantities in they- andz-directions.
In this case, Poisson’s equation reduces to an ordinary differential equation inx, the solution of
which is relatively straightforward. Consider for examplea vacuum diode, in which electrons are
emitted from a hot cathode and accelerated towards an anode.The anode is held at a large positive
potentialV0 with respect to the cathode. We can think of this as an essentially one-dimensional
problem. Suppose that the cathode is atx = 0 and the anode atx = d. Poisson’s equation takes
the form

d2φ

dx2
= −ρ(x)

ǫ0
,

whereφ(x) satisfies the boundary conditionsφ(0) = 0 andφ(d) = V0. By energy conservation,
an electron emitted from rest at the cathode has anx-velocity v(x) which satisfies

1

2
mev

2(x)− eφ(x) = 0.

Furthermore, we assume that the currentI is independent ofx between the anode and cathode,
otherwise, charge will build up at some points. From electromagnetism one can then show that
the currentI is given byI = −ρ(x)v(x)A, whereA is the cross-sectional area of the diode. The
previous equations can be combined to give

d2φ

dx2
=

I

ǫ0A

(me

2e

)1/2
φ−1/2.

The solution of the above equation which satisfies the boundary conditions is

φ = V0

(x
d

)4/3
,

with

I =
4

9

ǫ0A

d2

(
2e

me

)1/2

V
3/2
0 .

This relationship between the current and the voltage in a vacuum diode is called the Child-
Langmuir law.

Another physics example in one dimension is the famous Thomas-Fermi model, widely used as a
mean-field model in simulations of quantum mechanical systems [37, 38], see Lieb for a newer and
updated discussion [39]. Thomas and Fermi assumed the existence of an energy functional, and
derived an expression for the kinetic energy based on the density of electrons,ρ(r) in an infinite
potential well. For a large atom or molecule with a large number of electrons. Schrödinger’s equa-
tion, which would give the exact density and energy, cannot be easily handled for large numbers
of interacting particles. Since the Poisson equation connects the electrostatic potential with the
charge density, one can derive the following equation for potentialV

d2V

dx2
=
V 3/2

√
x
,

98

4.5 – Exercises and projects

with V (0) = 1.

In our case we will rewrite Poisson’s equation in terms of dimensionless variables. We can then
rewrite the equation as

−u′′(x) = f(x), x ∈ (0, 1), u(0) = u(1) = 0.

and we define the discretized approximation tou asvi with grid pointsxi = ih in the interval from
x0 = 0 to xn+1 = 1. The step length or spacing is defined ash = 1/(n + 1). We have then the
boundary conditionsv0 = vn+1 = 0. We approximate the second derivative ofu with

−vi+1 + vi−1 − 2vi

h2
= fi for i = 1, . . . , n,

wherefi = f(xi). Show that you can rewrite this equation as a linear set of equations of the form

Av = b̃,

whereA is ann× n tridiagonal matrix which we rewrite as

A =





2 −1 0 0
−1 2 −1 0
0 −1 2 −1 0 . . .

.
0 . . . −1 2 −1
0 . . . 0 −1 2





andb̃i = h2fi.

In our case we will assume thatf(x) = (3x + x2)ex, and keep the same interval and boundary
conditions. Then the above differential equation has an analytic solution given byu(x) = x(1 −
x)ex (convince yourself that this is correct by inserting the solution in the Poisson equation). We
will compare our numerical solution with this analytic result in the next exercise.

(b) We can rewrite our matrixA in terms of one-dimensional vectorsa, b, c of length1 : n. Our linear
equation reads

A =





b1 c1 0
a2 b2 c2

a3 b3 c3
.

an−2 bn−1 cn−1

an bn









v1
v2
. . .
. . .
. . .
vn




=





b̃1
b̃2
. . .
. . .
. . .

b̃n




.

A tridiagonal matrix is a special form of banded matrix whereall the elements are zero except for
those on and immediately above and below the leading diagonal. The above tridiagonal system can
be written as

aivi−1 + bivi + civi+1 = b̃i,

for i = 1, 2, . . . , n. The algorithm for solving this set of equations is rather simple and requires
two steps only, a decomposition and forward substitution and finally a backward substitution.

99

Linear algebra

Your first task is to set up the algorithm for solving this set of linear equations. Find also the
number of operations needed to solve the above equations. Show that they behave likeO(n) with
n the dimensionality of the problem. Compare this with standard Gaussian elimination.

Then you should code the above algorithm and solve the problem for matrices of the size10× 10,
100 × 100 and1000 × 1000. That means that you choosen = 10, n = 100 andn = 1000 grid
points.

Compare your results (make plots) with the analytic resultsfor the different number of grid points
in the intervalx ∈ (0, 1). The different number of grid points corresponds to different step lengths
h.

Compute also the maximal relative error in the data seti = 1, . . . , n,by setting up

ǫi = log10

(∣∣∣∣
vi − ui

ui

∣∣∣∣

)
,

as function oflog10(h) for the function valuesui andvi. For each step length extract the max value
of the relative error. Try to increasen to n = 10000 andn = 105. Comment your results.

(c) Compare your results with those from the LU decomposition codes for the matrix of size1000 ×
1000. Use for example the unix functiontime when you run your codes and compare the time
usage between LU decomposition and your tridiagonal solver. Can you run the standard LU de-
composition for a matrix of the size105 × 105? Comment your results.

Solution to exercise b)

The program listed below encodes a possible solution to partb) of the above project. Note that we have
employed Blitz++ as library and that the range of the variousvectors are now shifted from their default
ranges(0 : n − 1) to (1 : n) and that we access vector elements asa(i) instead of the standard C++
declarationa[i].

The program reads from screen the name of the ouput file and thedimension of the problem, which in
our case corresponds to the number of mesh points as well, in addition to the two endpoints. The function
f(x) = (3x + x2) exp (x) is included explicitely in the code. An obvious change is to define a separate
function, allowing thereby for a generalization to other functionf(x).

/∗
Program t o s o l v e t h e one−d i m e n s i o n a l Po isson e q u a t i o n
−u ’ ’ (x) = f (x) r e w r i t t e n as a s e t o f l i n e a r e q u a t i o n s
A u = f where A i s an n x n mat r ix , and u and f a re 1 x n v e c t o r s
In t h i s prob lem f (x) = (3 x+x∗x) exp (x) w i th s o l u t i o n u (x) = x(1−x) exp (x)
The program reads from s c r e e n t h e name o f t h e o u t p u t f i l e .
B l i t z ++ i s used here , w i th a r r a y s s t a r t i n g from 1 t o n

∗ /
inc lude < iomanip >
inc lude < fs t r eam >
inc lude < b l i t z / a r r a y . h>
inc lude < ios t ream >
us ing namespace s t d ;
us ing namespace b l i t z ;

o f s t r e a m o f i l e ;
/ / Main program only , no o t h e r f u n c t i o n s

100

4.5 – Exercises and projects

i n t main (i n t argc , char∗ argv [])
{

char ∗ o u t f i l e n a m e ;
i n t i , j , n ;
double h , btemp ;
/ / Read i n o u t p u t f i l e , a b o r t i f t h e r e are too few command− l i n e arguments
i f (a rgc <= 1) {

cou t << "Bad Usage: " << argv [0] <<" read also output file on same line" << end l ;
e x i t (1) ;

}
e l s e{

o u t f i l e n a m e=argv [1] ;
}
o f i l e . open (o u t f i l e n a m e) ;
cou t << "Read in number of mesh points" << end l ;
c i n >> n ;
h = 1 . 0 / ((double) n +1) ;
/ / Use B l i t z t o a l l o c a t e a r r a y s
/ / Use range t o change d e f a u l t a r r a y s from 0: n−1 t o 1 : n
Range r (1 , n) ;
Array <double ,1 > a (r) , b (r) , c (r) , y (r) , f (r) , temp (r) ;
/ / s e t up t h e m a t r i x d e f i n e d by t h r e e ar rays , d iagona l , upperand lower

d iagona l band
b = 2 . 0 ; a = −1.0 ; c = −1.0;
/ / Then d e f i n e t h e v a l u e o f t h e r i g h t hand s i d e f (m u l t i p l i e d by h∗h)
f o r (i =1 ; i <= n ; i ++) {

/ / E x p l i c i t e x p r e s s i o n f o r f , cou ld code as s e p a r a t e f u n c t i on
f (i) = h∗h∗ (i ∗h∗3 .0+ (i∗h) ∗ (i ∗h))∗exp (i∗h) ;

}
/ / s o l v e t h e t r i d i a g o n a l sys tem , f i r s t fo rward s u b s t i t u t i on
btemp = b (1) ;
f o r (i = 2 ; i <= n ; i ++) {

temp (i) = c (i−1) / btemp ;
btemp = b (i) − a (i) ∗ temp (i) ;
y (i) = (f (i) − a (i) ∗ y (i −1)) / btemp ;

}
/ / t hen backward s u b s t i t u t i o n , t h e s o l u t i o n i s i n y ()
f o r (i = n−1; i >= 1 ; i−−) {

y (i) −= temp (i +1) ∗ y (i +1) ;
}
/ / w r i t e r e s u l t s t o t h e o u t p u t f i l e
f o r (i = 1 ; i <= n ; i ++) {

o f i l e << s e t i o s f l a g s (i o s : : showpo in t | i o s : : u p p e r c a s e) ;
o f i l e << setw (1 5) << s e t p r e c i s i o n (8) << i∗h ;
o f i l e << setw (1 5) << s e t p r e c i s i o n (8) << y (i) ;
o f i l e << setw (1 5) << s e t p r e c i s i o n (8) << i∗h∗ (1.0− i ∗h)∗exp (i∗h) << end l ;

}
o f i l e . c l o s e () ;

}

The program writes also the exact solution to file. In Fig. 4.4we show the results obtained withn = 10.
Even with so few points, the numerical solution is very closeto the analytic answer. Withn = 100 it is

101

Linear algebra

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

u(x)

x

Numerical solution
Analytical solution

Figure 4.4: Numerical solution obtained withn = 10 compared with the analytical solution.

almost impossible to distinguish the numerical solution from the analytical one, as shown in Fig. 4.5. It
is therefore instructive to study the relative error, whichwe display in Table 4.4 as function of the step
lengthh = 1/(n + 1).

Table 4.4:log10 values for the relative error and the step lengthh computed atx = 0.5.
n log10(h) ǫi = log10 (|(vi − ui)/ui|)

10 -1.04 -2.29
100 -2.00 -4.19

1000 -3.00 -6.18
104 -4.00 -8.18
105 -5.00 -9.19
106 -6.00 -6.08

The mathematical truncation we made when computing the second derivative goes likeO(h2). Our
results forn from n = 10 to somewhere betweenn = 104 andn = 105 result in a slope which is
almost exactly equal2,in good agreement with the mathematical truncation made. Beyondn = 105

the relative error becomes bigger, telling us that there is no point in increasingn. For most practical
application a relative error between10−6 and10−8 is more than sufficient, meaning thatn = 104 may
be an acceptable number of mesh points. Beyondn = 105, numerical round off errors take over, as
discussed in the previous chapter as well.

102

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

u(x)

x

Numerical solution
Analytical solution

Figure 4.5: Numerical solution obtained withn = 10 compared with the analytical solution.

