Chapter 4

Linear algebra

In the training of programming for scientific computatiore ttmphasis has historically
been on squeezing out every drop of floating point performdaca given algorithm.
This practice, however, leads to highly tuned racecarlidwsare codes: delicate, easily
broken and difficult to maintain, but capable of outperfargiimore user-friendly family
cars.Smith, Bjorstad and Gropp, An introduction to MPI [16]

4.1 Introduction

In this chapter we deal with basic matrix operations, sudh@&solution of linear equations, calculate the
inverse of a matrix, its determinant etc. The solution ofdinequations is an important part of numerical
mathematics and arises in many applications in the sciertdese we focus in particular on so-called
direct or elimination methods, which are in principle detared through a finite number of arithmetic
operations. Iterative methods will be discussed in conoeatith eigenvalue problems in chapked 12.

This chapter serves also the purpose of introducing impbpeogramming details such as handling
memory allocation for matrices and the usage of the libsanibich follow these lectures. Classes and
pertinent programming aspects are relegated to the appendi

The algorithms we describe and their original source codesaken from the widely used software
package LAPACK [25], which follows two other popular packagleveloped in the 1970s, namely EIS-
PACK and LINPACK. The latter was developed for linear equadi and least square problems while
the former was developed for solving symmetric, unsymrmedrid generalized eigenvalue problems.
From LAPACK'’s websitehttp: //www.netlib.orglit is possible to download for free all source codes
from this library. Both C++ and Fortran versions are avddald\nother important library is BLAS [26],
which stands for Basic Linear Algebra Subprogram. It corstafficient codes for algebraic operations
on vectors, matrices and vectors and matrices. Basicdlm@dern supercomputer include this library,
with efficient algorithms. Else, Matlab offers a very effidiggrogramming environment for dealing with
matrices. The classic text from where we have taken mosteofdimalism exposed here is the book
on matrix computations by Golub and Van Loan [27]. Good reastnoductory texts are Kincaid and
Cheney [24] and Datta [28]. For more advanced ones see fiegfetnd Bau Il [29], Kress [30] and
Demmel [31]. Ref. [27] contains an extensive list of textk®on eigenvalue problems and linear alge-
bra. LAPACK [25] contains also extensive listings to thesiagh literature on matrix computations. For
the introduction of the auxiliary library Blitz++ [32], wbh allows for a very efficient way of handling
arrays in C++ we refer to the online manuahatp://www.oonumerics.org and the appendix.

63

http://www.netlib.org
http://www.oonumerics.org

Linear algebra

4.2 Mathematical intermezzo

The matrices we will deal with are primarily sauare real syetmia or hermitian ones, assuming thereby
that ann x n matrix A € R™*" for a real matrix and A € C"*" for a complex matrix. For the sake of
simplicity, we take a matriA € R*** and a corresponding identity matdix

ailr ai2 a13 ai4
as]y a2z az a4
A= 3 I=
azr a3z a3z a4
aq1 Q42 a43 Q44

, (4.1)

o O O =
O O = O
O = O O
_ o O O

wherea;; € R. The inverse of a matrix, if it exists, is defined by
ATl A=

In the following discussion, matrices are always two-digienal arrays while vectors are one-dimensional
arrays. In our nomenclature we will restrict boldfaced talpiletters such a& to represent a general
matrix, which is a two-dimensional array, whilg; refers to a matrix element with row numbeand
column numbeyj. Similarly, a vector being a one-dimensional array, is llablex and represented as (for
a real vector)

z1

xeR" «— | "2 |,
x3
T4

with pertinent vector elements € R. Note that this notation implies; € R**! and that the members
of x are column vectors. The elementsipfe R1** are row vectors.
Table[4.2 lists some essential features of various typesatfices one may encounter. Some of the

Table 4.1: Matrix properties

Relations Name matrix elements

A=AT symmetric aij = aji

A= (AT)_1 real orthogonal >, aiajr = >, ariar; = i
A=Ar real matrix aij = a;;

A=AT hermitian aij = aj;

A= (AN | unitary Dok ik = Dp G = O

matrices we will encounter are listed here

1. Diagonal ifa;; = 0 for i # j,

A reminder on mathematical symbols may be appropriate fdre symbolR is the set of real numbers. Correspondingly,
N, Z and C represent the set of natural, integer and complex numbespectively. A symbol likeR™ stands for am-
dimensional real Euclidean space, whilga, b] is the space of real or complex-valued continuous functmmshe interval
[a, b], where the latter is a closed interval. Similaley" [a, b] is the space ofn-times continuously differentiable functions on
the interval[a, b]. For more symbols and notations, see the main text.

64

4.2 — Mathematical intermezzo

a1

0
0
0

. Lower triangular ifa;; = 0 for i < j

ail
az1
asi
a41

a12

a22
0
0

0
a22
as2
42

ai3
a3

ass
0

0
0
ass
a43

. Upper triangular it;; = 0 for ¢ > 5, which for a4 x 4 matrix is of the form

aiq
Qg4
a34

ann

O O O

44

Upper Hessenbergdf; = 0 for ¢ > j + 1, which is similar to a upper triangular except that it has
non-zero elements for the first subdiagonal row

a11

ag1
0
0

. Lower Hessenberg if;; = 0fori < j + 1

ail
az1
asi
a41

. Tridiagonal ifa;; = 0 for |i — j| > 1

ail
az1

0

a2
az2

a32
0

a2
az2
as2
Q42

a2
a22

as2
0

ai3
a3
ass
a43

az3
ass
a43

0
a23
ass
a43

a4
a24
a3zq
Q44

as4
a44

0
0
as4
ay4

There are many more examples, such as lower banded with lmdthgwior a;; = 0 for ¢ > j + p, upper
banded with bandwidtp for a;; = 0 for 7 < j + p, block upper triangular, block lower triangular etc.
For arealn x n matrix A the following properties are all equivalent

o & w0 nNoE

If the inverse ofA exists,A is nonsingular.

The equatiolAx = 0 impliesx = 0.
The rows ofA from a basis ofR".
The columns ofA from a basis oR™.

A is a product of elementary matrices.

65

Linear algebra

6. 0 is not an eigenvalue oA.
The basic matrix operations that we will deal with are additand subtraction
A:BiCﬁaij:bijicij, (42)

scalar-matrix multiplication
A =B = a;; = by,

vector-matrix multiplication

n
y = Ax = Y; = Zaijxj, (43)
j=1
matrix-matrix multiplication
n
A =BC — Q5 = Z bikckj, (44)
k=1

transposition
A= BT — Qjj = bji,

and if A € C™*"™, conjugation results in
_T —
A=B — az-j = bji,

where a variable = x — 1y denotes the complex conjugatezof x + wy. In a similar way we have the
following basic vector operations, namely addition andisadtion

X=ytz—z; =y; + 2,

scalar-vector multiplication
X =7y = T = VYi,

vector-vector multiplication (called Hadamard multigiiion)
X=Yz2 — T = YiZi,
the inner or so-called dot product

n
c:yTz — Cc= Zyjzj, (45)
j=1

with a ¢ a constant and the outer product, which yields a matrix,
A=yl — aij = YiZj, (4.6)

Other important operations are vector and matrix norms. aS<bf vector norms are the so-called
norms)
Ixllp = (|21 + [zl + - + [z]?) 7,

wherep > 1. The most important are the 1, 2 andnorms given by
[[x|[1 = |z1] + |z2| + - - + |znl,
1 1
1x[|2 = (Jz1]* + |22 + - + |2a?)? = (xTx)2,

66

4.3 — Programming details

and
|[%[[oo = max [a],

for 1 < i < n. From these definitions, one can derive several importdaioas, of which the so-called
Cauchy-Schwartz inequality is of great importance for malgprithms. For ank andy in a real or
complex, the inner product space satisfies

xTy| < [lxll2llyl2,

and the equality is obeyed onlyifandy are linearly dependent. An important relation which folsow
from the Cauchy-Schwartz relation is the famous trianglatien, which states that for anyandy in a
real or complex, the inner product space satisfies

[+ yll2 < [[x[[2 + [lyll2-

Proofs can be found in for example Ref. [27]. As discussedhmpted®, the analysis of the relative
error is important in our studies of loss of numerical precis Using a vector norm we can define the
relative error for the machine representation of a vegtowWe assume thafi(x) € R" is the machine
representation of a vectar € R”. If x # 0, we define the relative error as

Using theco-norm one can define a relative error that can be translatedaistatement on the correct
significant digits off(x),
l _
17169 = xlos 11
[1%[foo
where the largest component ff(x) has roughlyi correct significant digits.
We can define similar matrix norms as well. The most freqyamked are the Frobenius norm

and thep-norms

assuming thak # 0. We refer the reader to the text of Golub and Van Loan [27] flurther discussion
of these norms.

The way we implement these operations will be discussedwhel® it depends on the programming
language we opt for.

4.3 Programming details
Many programming problems arise from improper treatmenarodys. In this section we will dis-
cuss some important points such as array declaration, nyeallocation and array transfer between

functions. We distinguish between two cases: (a) arrayatdaitbns where the array size is given at

67

Linear algebra

compilation time, and (b) where the array size is determihaihg the execution of the program, so-
called dymanic memory allocation. Useful references on @tggramming details, in particular on
the use of pointers and memory allocation, are Reek’s te3{t & pointers in C, Berryhil’'s mono-
graph [34] on scientific programming in C++ and finally Fraedkxt [35] on memory as a program-
ming concept in C and C++. Good allround texts on C++ prograrmgrm engineering and science are
the books by Flowers [19] and Barton and Nackman [20]. See taks online lecture notes on C++
athttp://heim.ifi.uio.no/~hpl/INF-VERK4830. For Fortran we recommend the online lectures
athttp://folk.uio.no/gunnarw/INF-VERK4820. These web pages contain extensive references to
other C++ and Fortran resources. Both web pages contairgbnoaterial, lecture notes and exercises,
in order to serve as material for own studies.

SEGMENTATION
FAULT.

Figure 4.1: Segmentation fault, again and again! Alas, ithes situation you must likely will end up

in, unless you initialize, access, allocate and deallopadperly your arrays. Many program develop-
ment environments such as Dev C+{wai . bloodshed . net! provide debugging possibilities. Another
possibility, discussed in append¥ A, is to use the debu@jeB within the text editor emacs. Beware
however that there may be segmentation errors which ocoritaerrors in libraries of the operating
system. (Drawing: courtesy by Victoria Popsueva 2003.)

4.3.1 Declaration of fixed-sized vectors and matrices

Table[4.2 presents a small program which treats essendialréss of vector and matrix handling where
the dimensions are declared in the program code.

In line a we have a standard C++ declaration of a vector. The comperves memory to store
five integers. The elements are vec[0], vec[1].....,ved¥te that the numbering of elements starts with
zero. Declarations of other data types are similar, indgditructure data.

68

http://heim.ifi.uio.no/~hpl/INF-VERK4830
http://folk.uio.no/gunnarw/INF-VERK4820
www.bloodshed.net

4.3 — Programming details

The symbol vec is an element in memory containing the addeetg first element vec[0] and is a
pointer to a vector of five integer elements.

In line b we have a standard fixed-size C++ declaration of a matrix.irAtjee elements start with
zero, matr[0][0], matr[O][1], , matr[0][4], matr[[q],.... . This sequence of elements also shows how
data are stored in memory. For example, the element mdi}[tllows matr[0][4]. This is important in
order to produce an efficient code and avoid memory stride.

There is one further important point concerning matrix destion. In a similar way as for the symbol
vec matr is an element in memory which contains an address to a vefdfore® elements, but now these
elements are not integers. Each element is a vector of figgens. This is the correct way to understand
the declaration idine b. With respect to pointers this means that matpdgnter-to-a-pointer-to-an-
integerwhich we can writesxmatr. Furthermoresmatr is a-pointer-to-a-pointeof five integers. This
interpretation is important when we want to transfer vestord matrices to a function.

In line ¢ we transfer vec[] and matr[][] to the function sub_1(). To $mecific, we transfer the
addresses of vec[] and matr[][] to sub_1().

In line d we have the function definition of sub_1(). Time vec]] is a pointer to an integer. Alterna-
tively we could writeint «vec. The first version is better. It shows that it is a vectoseferal integers,
but not how many. The second version could equally well bal usdransfer the address to a single
integer element. Such a declaration does not distinguiskeas the two cases.

The next definition ignt matr[][5]. This is a pointer to a vector of five elements and tdompiler
must be told that each vector element contains five integdese an alternative version could be int
(xmatr)[5] which clearly specifies that matr is a pointer to atge of five integers.

There is at least one drawback with such a matrix declaratiowe want to change the dimension
of the matrix and replace 5 by something else we have to dcatine €hange in all functions where this
matrix occurs.

There is another point to note regarding the declarationacfibles in a function which includes
vectors and matrices. When the execution of a function teatas, the memory required for the variables
is released. In the present case memory for all variablesin(nare reserved during the whole program
execution, but variables which are declared in sub_1()elemsed when the execution returns to main().

4.3.2 Runtime declarations of vectors and matrices in C++

As mentioned in the previous subsection a fixed size de®aralf vectors and matrices before com-
pilation is in many cases bad. You may not know beforehanchtiieally needed sizes of vectors and
matrices. In large projects where memory is a limited fagtoould be important to reduce memory re-
quirement for matrices which are not used any more. In C aniGs-possible and common to postpone
size declarations of arrays untill you really know what yaed and also release memory reservations
when it is not needed any more. The details are shown in T2Ble 4

In line a we declare a pointer to an integer which later will be useddoesan address to the first
element of a vector. Similarilfjine b declares a pointer-to-a-pointer which will contain the redd to
a pointer of row vectors, each with col integers. This wiknhbecome a matrix with dimensionality
[col][col]

In line c we read in the size of vec[] and matr[][] through the numbexg and col.

Next we reserve memory for the vectorline d. In line e we use a user-defined function to reserve
necessary memory for matrix[row][col] and again matr corstahe address to the reserved memory
location.

The remaining part of the function main() are as in the previcase down tbine f. Here we have a
call to a user-defined function which releases the resenadary of the matrix. In this case this is not

69

Linear algebra

Table 4.2: Matrix handling program where arrays are definempilation time

int main()

{

}

int k,m, row = 3, col =5;

int vec[5]; /I line a

int matr[3][5]; /I line b

for(k = 0; k < col; k++) vec[k] = k; /I data into vector[]

for(m = 0; m< row; m++) { /I data into matr[][]
for(k = 0; k < col ; k++) matr[m][k] = m + 10x k;

}

printf("\n\nVector data in main():\n"); /I print vector data

for(k = 0; k < col; k++) printf("vector [%d] = %d "k, vec[K]);
printf("\n\nMatrix data in main():");
for(m = 0; m< row; m++) {
printf("\n");
for(k = 0; k < col; k++)
printf("matr [%d] [[4d] = %d ",m.kmatrm][k]);
}

}

printf("\n");

sub_1(row, col, vec, matr); /I line ¢
return O;

/I End: function main()

void sub_1{nt row, int col, int vec(], int matr[][5]) /I line d

{

}

int k,m;

printf("\n\nVector data in sub_1():\n"); /I print vector data
for(k = 0; k < col; k++) printf("vector [%d] = %d "k, veclk]);
printf("\n\nMatrix data in sub_1():");

for(m = 0; m< row; m++) {

printf("\n");

for(k = 0; k < col; k++) {

printf("matr [%d] [[%d] = %d ".m, k, matr[m][K]);
}

}
printf("\n");
/I End: function sub_1()

70

4.3 — Programming details

Table 4.3: Matrix handling program with dynamic array a¢loon.

int main()

{
int xvec; /I line a
int xxmatr; /I line b

int m, k, row, col, total = 0;

printf("\n\nRead in number of rows = "); /Il 'line ¢
scanf('%d",&row);

printf("\n\nRead in number of column = ");

scanf('%d", &col);

vec =new int [col]; /I line d

matr = (nt «x)matrix(row, col,sizeofint)); /I line e

for(k = 0; k < col; k++) vec[k] = k; /I store data in vector(]

for(m = 0; m< row; m++) { /I store data in array[][]
for (k = 0; k < col; k++) matr[m][k] = m + 10« k;

}

printf("\n\nVector data in main():\n"); /I print vector data

for(k = 0; k < col; k++) printf("vector[%d] = %d "k,vec[k]);
printf("\n\nArray data in main():");
for(m = 0; m< row; m++) {
printf("\n");
for(k = 0; k < col; k++) {
printf("matrix [%d] [[%d] = %d ",m, k, matr[m][K]);

}

}

printf("\n");

for(m = 0; m< row; m++) { /I access the array
for (k = 0; k < col; k++) total += matr[m][K];

}

printf("\n\nTotal = %d\n",total);
sub_1(row, col, vec, matr);

free_matrix(yoid «x)matr); /I line f
delete[] vec; /I line g
return O;

} /I End: function main()

void sub_1{nt row, int col, int vec[], int x«xmatr) /I 'line h
{

int k,m;

printf("\n\nVector data in sub_1():\n"); /I print vector data

for(k = 0; k < col; k++) printf("*vector[%d] = %d "k, vec[K]);
printf("\n\nMatrix data in sub_1():");
for(m = 0; m< row; m++) {

printf("\n");

for(k = 0; k < col; k++) {

printf("matrix [%d] [[%d] = %d ",mk,matr[m][k]);

}
}
printf("\n");

} /I End: function sub_1()

71

Linear algebra

done automatically.

In line g the same procedure is performed for vec[]. In this case #edstrd C++ library has the
necessary function.

Next, inline h an important difference from the previous case occurst,kire vector declaration is
the same, but the matr declaration is quite different. Theesponding parameter in the call to sub_1]]
in line g is a double pointer. Consequently, mattiire h must be a double pointer.

Except for this difference sub_1() is the same as before.n€hefeature in Tablg4 3 is the call to the
user-defined functionmatrix andfree_matrix. These functions are defined in the library filecpp.
The code for the dynamic memory allocation is given below.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/cpp/cpluspluslibrary/lib.cpp
[*

x The function
* void ssxmatrix ()
x reserves dynamic memory for a twdimensional matrix
x using the C++ command new . No initialization of the elements
x Input data:
x Int row — number of rows
x int col — number of columns
x int num_bytes number of bytes for each
* element
x Returns a void xxpointer to the reserved memory location.
x/
void xxmatrix(int row, int col, int num_bytes)
{ |
int i, num;
char xxpointer , xptr;

pointer =new(nothrow) charx [row];

if (!pointer) {
cout << "Exception handling: Memory allocation failed";
cout << " for "<< row << "row addresses !" << endl;
return NULL;

}

i = (row x col x num_bytes) kizeof(char);

pointer[0] = new(nothrow) char [i];

if (!pointer[0]) {
cout << "Exception handling: Memory allocation failed";
cout << " for address to " << | << " characters !" << endl;
return NULL;

}

ptr = pointer[0];

num = col x num_bytes;

for(i = 0; i < row; i++, ptr += num) {
pointer[i] = ptr;

}

return (void xx*)pointer;
} /1 end: function void xxmatrix ()

As an alternative, you could write your own allocation analtieation of matrices. This can be
done rather straightforwardly with the following statertserRecall first that a matrix is represented by

72

http://www.fys.uio.no/compphys/cp/programs/FYS3150/cpp/cplusplus library/lib.cpp

4.3 — Programming details

double * xA = double x A[0. .. 3]
Al0] A[OJ[OT | A[OJ[1] | Af0][2]| AfO][3]
All] A[LJ[o] | A[L[A] | A2]| A[1][3]
Al2] ALJ[OT | AR][1] | A[21[2]| Af21[3]
Al2] ABJ[OT| ABI[1]| A[3][2]| A[3][3]

Figure 4.2: Conceptual representation of the allocatioa miatrix in C++.

a double pointer that points to a contiguous memory segnmadiny a sequence of double* pointers in
case our matrix is a double precision variable. Then eacblddbpointer points to a row in the matrix.
A declaration likedoublexx A; means that A is a pointer to the + 1-th row A[i] and Ai][;] is matrix
entry (i, j). The way we would allocate memory for such a matrix of dimemnality n x n is for example
using the following piece of code

int n;
double *xx A;

A = new doublex[n]
for (i = 0; i < n; i++)
A[i] = new double[N];

When we declare a matrix (a two-dimensional array) we musttdieclare an array of double variables.
To each of this variables we assign an allocation of a sidgtensional array. A conceptual picture on
how a matrixA is stored in memory is shown in Fig_#.2.

Allocated memory should always be deleted when it is no longeded. We free memory using the
statements

for (i = 0; i < n; i++)
delete[] A[i];
delete[] A;

delete [] A;, which frees an array of pointers to matrix rows.

73

Linear algebra

However, including a library like Blitz+-http://www.oonumerics.org makes life much easier
when dealing with matrices. This is discussed in the appendi

4.3.3 Matrix operations and C++ and Fortran features of matnandling

Many program libraries for scientific computing are writtariFortran, often also in older version such as
Fortran 77. When using functions from such program libsarieere are some differences between C++
and Fortran encoding of matrices and vectors worth noticihgre are some simple guidelines in order
to avoid some of the most common pitfalls.

First of all, when we think of am x n matrix in Fortran and C++, we typically would have a mental
picture of a two-dimensional block of stored numbers. Thagoter stores them however as sequential
strings of numbers. The latter could be stored as row-majderoor column-major order. What do
we mean by that? Recalling that for our matrix elements i refers to rows ang to columns, we
could store a matrix in the sequenggais ... a1,a21a22 ... Aoy . . . any if it is row-major order (we go
along a given rowi and pick up all column element§ or it could be stored in column-major order
110421 ...0Ap10A120922 ... AR ... Appy-

Fortran stores matrices in the latter way, i.e., by colurajem while C++ stores them by row-major.
It is crucial to keep this in mind when we are dealing with ntas, because if we were to organize the
matrix elements in the wrong way, important properties & transpose of a real matrix or the inverse
can be wrong, and obviously yield wrong physics. Fortrarsstipts begin typically withl, although
it is no problem in starting with zero, while C++ starts wiitfor the first element. This means that
A(1,1) in Fortran is equivalent te1[0][0] in C++. Moreover, since the sequential storage in memory
means that nearby matrix elements are close to each other mémory locations (and thereby easier to
fetch) , operations involving e.g., additions of matricesyrtake more time if we do not respect the given
ordering.

To see this, consider the following coding of matrix additio C++ and Fortran. We have x n
matricesA, B andC and we wish to evaluatA = B + C according to Eq[{4]12). In C++ this would be
coded like

for (i=0 ; i < n ; i++) {
for(j=0 ; j < n ; j++) {
} ali]lil=bli][jl+c[i][]]

}

while in Fortran we would have

DO j=1, n

DO i=1, n
a(i,j)=b(i,j)+c(i,j)

ENDDO

ENDDO

Fig.[£3 shows how & x 3 matrix A is stored in both row-major and column-major ways.

Interchanging the order éfand; can lead to a considerable enhancement in process timerthatro
we write the above statements in a much simpler szhytc However, the addition still involves n? op-
erations. Matrix multiplication or taking the inverse ré@gs ~ n* operations. The matrix multiplication
of Eq. (£3) of two matriceA = BC could then take the following form in C++

for(i=0 ; i < n ; i++) {
for(j=0 ; j <n ; j++) {

74

http://www.oonumerics.org

4.3 — Programming details

al ai a2 a3 a1
a2 21 22 23 a21
— —
ais a3 asz2 ass as1
21 a12
a9 22
23 a32
asq a3
aso 23
ass as3

Figure 4.3: Row-major storage of a matrix to the left (C++ vayd column-major to the right (Fortran
way).

75

Linear algebra

for (k=0 ; k < n ; k++) {
ali]ljl+=b[i][k] xc[K][]]
}
}
and in Fortran we have
DO j=1, n
DO i=1, n
DO k =1, n
a(i,j)=a(i,j)+b(i,k)xc(k,j)
ENDDO
ENDDO
ENDDO

However, Fortran has an intrisic function called MATMUL ,catihe above three loops can be coded in
a single statemer#=MATMUL(b,c). Fortran contains several array manipulation statementd) as dot
product of vectors, the transpose of a matrix etc etc. Therqubduct of two vectors is however not
included in Fortran. The coding of E@._{#.6) takes then thieviong form in C++

for(i=0 ; i < n ; i++) {
for(j=0 ; j < n ; j++) {
} afi][jl+=x[i] =y[j]
}

and in Fortran we have

DO j=1, n
DO i=1, n
a(i,j)=a(i,j)+x(j)=y(i)
ENDDO
ENDDO

A matrix-matrix multiplication of a general x n matrix with
al(i,j) = a(i, j) + (i, k) * c(k, j),

in its inner loops requires a multiplication and an additidv'e define now a flop (floating point operation)
as one of the following floating point arithmetic operatioviz addition, subtraction, multiplication and
division. The above two floating point operations (flops)@waen? times meaning that a general matrix
multiplication require2n? flops if we have a square matrix. If we assume that our commggorms
10 flops per second, then to perform a matrix multiplication dfo0 x 1000 case should take two
seconds. This can be reduced if we multiply two matrices lvhie upper triangular such as

ailp a2 a13 ai4
0 az azz axn
0 0 azs3 asa
0 0 0 aqq

A=

The multiplication of two upper triangular matricBC yields another upper triangular mati, result-
ing in the following C++ code

76

4.3 — Programming details

for(i=0 ; i < n ; i++) {
for(j=i ; j <n ; j++) {
for (k=i ; k < j ; k++) {

ali][jl+=b[i][k] *c[k][]j]

}

The fact that we have the constraint j leads to the requirement for the computation gfof 2(j —i+1)
flops. The total number of flops is then

n n—i+l

S 2 it = 222j~z

i=1 j=1 i=1 j=1

where we used that?_, j = n(n +1)/2 = n? /2 for largen values. Using in addition thaﬁjgf:lj? ~
n3/3 for largen values, we end up with approximately /3 flops for the multiplication of two upper
triangular matrices. This means that if we deal with matrixitiplication of upper triangular matrices,
we reduce the number of flops by a factor six if we code our matriltiplication in an efficient way.

It is also important to keep in mind that computers are finite,can thus not store infinitely large
matrices. To calculate the space needed in memory farsam matrix with double precision, 64 bits or
8 bytes for every matrix element, one needs simply computen x 8 bytes . Thus, ifr = 10000, we
will need close to 1GB of storage. Decreasing the precigigirtgle precision, only halves our needs.

A further point we would like to stress, is that one should @ngral avoid fixed (at compilation
time) dimensions of matrices. That is, one could alwaysifp#tat a given matrixA should have size
A[100][100], while in the actual execution one may use oAl 0][10]. If one has several such matrices,
one may run out of memory, while the actual processing of tbgnam does not imply that. Thus, we
will always recommend that you use dynamic memory allocatimd deallocation of arrays when they
are no longer needed. In Fortran one uses the intrisic mEAALLOCATE and DEALLOCATE ,
while C++ employs the functionsew anddelete

Fortran allocate statement and mathematical operations omrrays

An array is declared in the declaration section of a progmawdule, or procedure using the dimension
attribute. Examples include

REAL, DIMENSION (10) :: x,y

REAL, DIMENSION (1:10) :: X,y
INTEGER , DIVENSION (—10:10) :: prob
INTEGER , DIMENSION (10,10) :: spin

The default value of the lower bound of an array is 1. For #éson the first two statements are equivalent
to the first. The lower bound of an array can be negative. T$teileo statements are examples of two-
dimensional arrays.

Rather than assigning each array element explicitly, weusaran array constructor to give an array
a set of values. An array constructor is a one-dimensiosalofi values, separated by commas, and
delimited by "(/* and "/)". An example is

a(1:3) = (/ 2.0, —3.0, —4.0 /)

77

Linear algebra

is equivalent to the separate assignments

a(l) = 2.0
a(2) = -3.0
a(3) = —-4.0

One of the better features of Fortran is dynamic storageatilon. That is, the size of an array can
be changed during the execution of the program. To see howhythemic allocation works in Fortran,
consider the following simple example where we set dp-a4 unity matrix.

IMPLICIT NONE
! The definition of the matrix, using dynamic allocation
REAL, ALLOCATABLE , DIMENSION (:,:) :: unity
! The size of the matrix
INTEGER :: n
! Here we set the dim n=4
n=4

I Allocate now place in memory for the matrix
ALLOCATE (unity(n,n))
I all elements are set equal zero
unity =0.
! setup identity matrix
DO i=1,n
unity (i,i)=1.
ENDDO
DEALLOCATE (unity)

We always recommend to use the deallocation statemeng girgfrees space in memory. If the matrix
is transferred to a function from a calling program, one candfer the dimensionality of that matrix
with the call. Another possibility is to determine the dirsemality with theSIZE function. Writing a
statement liken=SIZE (unity,DIM=1) gives the number of rows, while using DIM=2 gives the numkfer o
columns. Note however that this involves an extra call torefion. If speed matters, one should avoid
such calls.

4.4 Linear Systems

In this section we outline some of the most used algorithmsotge sets of linear equations. These
algorithms are based on Gaussian elimination [27, 30] atidalow us to catch several birds with a
stone. We will show how to rewrite a matriX in terms of an upper and a lower triangular matrix,
from which we easily can solve linear equation, compute tiverse ofA and obtain the determinant.
We start with Gaussian elimination, move to the more efficldd-algorithm, which forms the basis
for many linear algebra applications, and end the discossith special cases such as the Cholesky
decomposition and linear system of equations with a triatad) matrix.

We begin however with an example which demonstrates theriapee of being able to solve linear
equations. Suppose we want to solve the following boundalyevequation

_dzu(x)
dx?

= [z, u(x)),

78

4.4 — Linear Systems

with z € (a,b) and with boundary conditions(a) = u(b) = 0. We assume thaf is a continuous
function in the domain: € (a,b). Since, except the few cases where it is possible to find aoaly
solutions, we will seek approximate solutions, we chooseepoesent the approximation to the second
derivative from the previous chapter

fn=2fo+ f-n
= gt O(h?).
We subdivide our intervat € (a, b) into n subintervals by setting; = a + ih, withi =0,1,... ., n+ 1.
The step size is then given ly= (b—a)/(n+ 1) with n € N. For the internal grid points=1,2,...n

we replace the differential operator with the above formrakulting in

u(z; + h) — 2u(z;) + u(z; — h)
h? ’

'U,”(.Z'i) ~

which we rewrite as

no Uil = 2Up Ui
ui ~ h2 .
We can rewrite our original differential equation in ternisaaliscretized equation with approximations

to the derivatives as
Uit — 2ui + Ui

> = f(zi;u(z:)),

with i« = 1,2,...,n. We need to add to this system the two boundary conditiglag = u(and
u(b) = un41. If we define a matrix

2 -1
-1 2 -1
1 -1 2 -1
A=
-1 2 -1
-1 2
and the corresponding vectas= (u1, us, ..., u,)" andf(u) = f(x1,29,...,Tn, uy, Uz, . .. ,u,)" We

can rewrite the differential equation including the bourydeonditions as a system of linear equations
with a large number of unknowns
Au = f(u). 4.7)

We assume that the solutiarexists and is unique for the exact differential equation tivat the boundary
value problem has a solution. But the discretization of theva differential equation leads to several
questions, such as how well does the approximate solutsemble the exact one as— 0, or does a
given small value oh allow us to establish existence and uniqueness of the soluti
Here we specialize to two particular cases. Assume firstitiesfunctionf does not depend o).
Then our linear equation reduces to
Au=f, (4.8)

which is nothing but a simple linear equation with a tridingbmatrix A. We will solve such a system
of equations in subsectidn 4.4.3.

If we assume that our boundary value problem is that of a gmambechanical particle confined by
a harmonic oscillator potential, then our functigtiakes the form (assuming that all constamts= =

79

Linear algebra

w=1) f(xi,u(r;)) = —2?u(x;) + 2 u(z;) with A being the eigenvalue.

%

we define first a new matriA as

Inserting this into our equation,

2 2 1
G
_1 2 42 1
h2 h2 2 h2
_LT 2 g2 L
2 2
A= BRIk ; (4.9)
1 2 2 1
2 et o TR
-4 2 4+ a2
h2 h2 n
which leads to the following eigenvalue problem
2 1
754—:13% —7Z U1 U1
1 2 2 1
52 ﬁ‘l‘(ﬂz 52 u9 ug
_ 1 2 42 1
2 RT3 TR —9)
1 2 2 1
o W—Hf”_l 2 2,
—7z 7z T Ty, Unp, Unp,

We will solve this type of equations in chapfed 12. Theseulechotes contain however several other
examples of rewriting mathematical expressions into matoblems. In chaptéll 7 we show how a set of
linear integral equation when discretized can be trangédrinto a simple matrix inversion problem. The
specific example we study in that chapter is the rewritingair8dinger’s equation for scattering prob-
lems. Other examples of linear equations will appear in @oussion of ordinary and partial differential
equations.

4.4.1 Gaussian elimination

Any discussion on the solution of linear equations showdd stith Gaussian elimination. This text is no
exception. We start with the linear set of equations

Ax =w.

We assume also that the mateis non-singular and that the matrix elements along the dialggatisfy
a;; # 0. We discuss later how to handle such cases. In the discussitimit ourselves again to a matrix
A € R**4 resulting in a set of linear equations of the form

a1l a2 a3 a4 T w1
a1 G2 G23 Q24 T3 N
a3l as2 a33 Q34 3 w3
a41 Q42 Q43 Q44 T4 Wy
or
a1121 + a12T2 + a1323 + a14T4 = W1
a21x1 + a22T2 + A23%3 + A24T4 = W2
a31T1 + a3z2T2 + a33xs + a34ry = w3
a41T1 + a49T9 + aq3x3 + 444 = Wy4.

The basic idea of Gaussian elimination is to use the firsttémjuto eliminate the first unknowsn; from
the remaining: — 1 equations. Then we use the new second equation to elimhmsztond unknown,

80

4.4 — Linear Systems

from the remaining: — 2 equations. Wit — 1 such eliminations we obtain a so-called upper triangular
set of equations of the form

bi1w1 + biowa + bisws + buurs = Y1
boowa + bagws + baay = Yo

b3zws + baawy = Y3

baary = ya.

We can solve this system of equations recursively startiom fz,, (in our caser,) and proceed with
what is called a backward substitution. This process canxpeessed mathematically as

1 n
:Em:—<ym— Z bmkxk> m=n—1n—-2...,1.

b
mm k=m+1

To arrive at such an upper triangular system of equationsster¢ by eliminating the unknows; for
J = 2,n. We achieve this by multiplying the first equation &) /a1, and then subtract the result from
the jth equation. We assume obviously that # 0 and thatA is not singular. We will come back to
this problem below.

Our actualk x 4 example reads after the first operation

a11 ai2 a3 a4 1 Y1
0 (az— 942) (ayy — M) (gpy — mza) | [g || W
0 (asp — “U82) (agg — W) (g — by || gy | T | 0
0 (as2 —*5752) (a3 — “5E) (aus — “9) 4 wi?
or
biiz1 + bigxe + bigzs + bura = Y

a%)xg + a%)wg + aéi) Ty = wéz)

b ol o= ol

ag)xg + ai?wg + aﬁ) Ty = wf),

(4.10)

with the new coefficients
blk:a&) k=1,...,n,

where eachz%j is equal to the originad,;, element. The other coefficients are

(2) (1) a(-ll)a&)
Qi = Q0 — j(l) I k=2,...,n,

agy

with a new right-hand side given by

W, (1

1 2 1 a1 Wy
y1:w§)7w](): J()_ j(l)]:27 ,
agy

81

Linear algebra

We have also sab@ = wi, the original vector element. We see that the system of umkea,, ..., z,
is transformed into an — 1) x (n — 1) problem.

This step is called forward substitution. Proceeding whthse substitutions, we obtain the general
expressions for the new coefficients

(m) (m)
(m+1) _ (m) Yjm Gk .
ajk - ajk: -]a(m) Js k=m+ 17 y T

withm =1,...,n — 1 and a right-hand side given by

(m), (m)

(m+1) _ (m) Ljm Wm

v A O
Amm

j=m-+1,...,n.

This set ofn — 1 elimations leads us to Eq.{4110), which is solved by baclstiuition. If the arithmetics

is exact and the matriA is not singular, then the computed answer will be exact. Wewas discussed

in the two preceeding chapters, computer arithmetics iseratt. We will always have to cope with
truncations and possible losses of precision. Even thduglimtatrix elements along the diagonal are not
zero, numerically small numbers may appear and subseqesiods may lead to large numbers, which,
if added to a small number may yield losses of precision. Ss@or example that our first division in
(a2a — as1ar2/azr) results in—107, that isasia12/a11. Assume also thats, is one. We are then adding
107 + 1. With single precision this results ir)?. Already at this stage we see the potential for producing
wrong results.

The solution to this set of problems is called pivoting, arel distinguish between partial and full
pivoting. Pivoting means that if small values (especiaklyas) do appear on the diagonal we remove
them by rearranging the matrix and vectors by permuting @wescolumns. As a simple example, let us
assume that at some stage during a calculation we have towifay set of linear equations

1 3 4 6 T1 U1
0 1078 198 19 o || v
0 —-91 51 9 T3 a Y3
0 7 76 541 Ty Ya

The element at row = 2 and column2 is 10~% and may cause problems for us in the next forward
substitution. The elemerit= 2,5 = 3 is the largest in the second row and the elemest3,j = 2 is
the largest in the third row. The small element can be rembyeearranging the rows and/or columns
to bring a larger value into the= 2, j = 2 element.

In partial or column pivoting, we rearrange the rows of thearirand the right-hand side to bring the
numerically largest value in the column onto the diagonalt ¢ur example matrix the largest value of
column two is in element = 3, j = 2 and we interchange rows 2 and 3 to give

1 3 4 6 1 Y1
0 -91 51 9 o | | ws
0 1078 198 19 s | | we
0 7 76 541 Ty Ya

Note that our unknown variables remain in the same order which simplifies the implementatibn
this procedure. The right-hand side vector, however, has bearranged. Partial pivoting may be im-
plemented for every step of the solution process, or onlynathe diagonal values are sufficiently small

82

4.4 — Linear Systems

as to potentially cause a problem. Pivoting for every stelplead to smaller errors being introduced
through numerical inaccuracies, but the continual reamdewill slow down the calculation.

The philosophy behind full pivoting is much the same as thedtild partial pivoting. The main
difference is that the numerically largest value in the nwoiwr row containing the value to be replaced.
In our example above the magnitude of element 2, j = 3 is the greatest in row 2 or column 2. We
could rearrange the columns in order to bring this elemetd tme diagonal. This will also entail a
rearrangement of the solution vectarThe rearranged system becomes, interchanging columnartaio
three,

1 6 3 4 1 Y1
0 198 10% 19 z3 | | e
0 51 —-91 9) - Y3
0 76 7 541 T4 Yaq

The ultimate degree of accuracy can be provided by reamgnigoth rows and columns so that the
numerically largest value in the submatrix not yet procgssérought onto the diagonal. This process
may be undertaken for every step, or only when the value odittgonal is considered too small relative
to the other values in the matrix. In our case, the matrix elemat; = 4, j = 4 is the largest. We could
here interchange rows two and four and then columns two amdtéobring this matrix element at the
diagonal position = 2,j = 2. When interchanging columns and rows, one needs to keep dfeal
permutations performed. Partial and full pivoting are dgged in most texts on numerical linear algebra.
For an in depth discussion we recommend again the text ofd@old Van Loan [27], in particular chapter
three. See also the discussion of chapter two in Ref. [36¢ libinary functions you end up using, be it
via Matlab, the library included with this text or other onde all include pivoting.

If it is not possible to rearrange the columns or rows to reenazero from the diagonal, then the
matrix A is singular and no solution exists.

Gaussian elimination requires however many floating pgietrations. Am x n matrix requires for
the simultaneous solution of a setoflifferent right-hand sides, a total af /3 + rn? — n/3 multi-
plications. Adding the cost of additions, we end up wik¥ /3 + O(n?) floating point operations, see
Kress [30] for a proof. Am x n matrix of dimensionaltyn = 103 requires, on a modern PC with a
processor that allows for something like® floating point operations per second (flops), approximately
one second. If you increase the size of the matrix te- 10* you need 1000 seconds, or roughly 16
minutes.

Although the direct Gaussian elmination algorithm allowesi yo compute the determinant Af via
the product of the diagonal matrix elements of the trianguiatrix, it is seldomly used in normal ap-
plications. The more practical elimination is provided blyawis called lower and upper decomposition.
Once decomposed, one can use this matrix to solve many athar bystems which use the same matrix
A, viz with different right-hand sides. With an LU decomposudtrix, the number of floating point
operations for solving a set of linear equations scale@(@&). One should however note that to obtain
the LU decompsed matrix requires rouglkiln?) floating point operations. Finally, LU decomposition
allows for an efficient computation of the inverseAf

4.4.2 LU decomposition of a matrix

A frequently used form of Gaussian elimination is L(owemppr) factorisation also known as LU De-
composition or Crout or Dolittle factorisation. In this iea we describe how one can decompose a
matrix A in terms of a matrixl. with elements only below the diagonal (and thereby the ngriawer)
and a matrixJ which contains both the diagonal and matrix elements aldlmveiagonal (leading to the
labelling upper). Consider again the matAxgiven in Eq. [41l). The LU decomposition method means

83

Linear algebra

that we can rewrite this matrix as the product of two matricesxdU where

a1l a2 a13 a4 1 0 0 0 U1l U2 U3 Ul4

_ | a1 ax a3 ax | | 1 1 0 O 0 uoe wg3z wus
A=LU= - . (4.12)

az1 aszy asz a4 l31 I3 1 0 0 0 ‘ugz us

(41 Q42 Q43 Q44 lyr lag luz 1 0 0 0 uu

LU decomposition forms the backbone of other algorithmsriadr algebra, such as the solution of
linear equations given by

a1171 + @122 + a13%3 + 01474 = W1
(2171 + G22%2 + G23%3 + A24T4 = W2
a31%1 + 3272 + 3373 + A34T4 = W3
a41T1 + a49x9 + aq3x3 + @444 = W4.

The above set of equations is conveniently solved by usingiétbmposition as an intermediate step see
the next subsection for more details on how to solve lineaaggns with an LU decomposed matrix.
The matrixA € R™*" has an LU factorization if the determinant is different fraero. If the LU
factorization exists and\ is non-singular, then the LU factorization is unique and dieéerminant is
given by
det{A} = U11U22 ... Unpn-
For a proof of this statement, see chapter 3.2 of Ref. [27].

The algorithm for obtainind. andU is actually quite simple. We start always with the first cofum
In our simple ¢ x 4) case we obtain then the following equations for the firsticoi

a;r = un

as; = layun
a1 = lzun
ayr = lgua,

which determine the elemenis, l»1, l3; anduy; in L andU. Writing out the equations for the second
column we get

app = u12

agy = la1uiz + ug2
azy = lz1uiz + l32u00
agpg = lyuiz + lypuss.

Here the unknowns arng s, us9, l32 andlss which can all be evaluated by means of the results from
the first column and the elements Af Note an important feature. When going from the first to the
second column we do not need any further information fromntlagrix elementsy;;. This is a general
property throughout the whole algorithm. Thus the memoocaiions for the matriXA can be used to
store the calculated matrix elementsd.odndU. This saves memory.

We can generalize this procedure into three equations

1< j : l,-lulj + li2u2j + o+ liiuij = aj
) :j : l,-lulj + li2u2j +---+ l“-ujj = Qi
1>g 1 w4 Logugy + - + lijug = aq;

which gives the following algorithm:
Calculate the elements InandU columnwise starting with column one. For each colufn

84

4.4 — Linear Systems

— Compute the first element; ; by
ulj = alj.

— Next, we calculate all elements;,i =2,...,j — 1
i—1
Uij = Qi — Zlikukzj-
k=1
— Then calculate the diagonal element
J—1
Ujj = Qg5 — Z Ljkuk;- (4.12)
k=1
— Finally, calculate the elementg,i > j

i—1
1
lij = - CLij — Z likukj s (413)
Uy
k=1

The algorithm is known as Doolittle’s algorithm since thagtnal matrix elements df are1. For the
case where the diagonal elementstdfare 1, we have what is called Crout’s algorithm. For the case
whereU = LT so thatu; = I;; for 1 < i < n we can use what is called the Cholesky factorization
algorithm. In this case the matriX has to fulfil several features; namely, it should be real, ragtnic
and positive definite. A matrix is positive definite if the guatic formx” Ax > 0. Establishing this
feature is not easy since it implies the use of an arbitracgorex # 0. If the matrix is positive definite
and symmetric, its eigenvalues are always real and posifieediscuss the Cholesky factorization below.

A crucial point in the LU decomposition is obviously the cagigerew;; is close to or equals zero,
a case which can lead to serious problems. Consider thevialjpsimple2 x 2 example taken from

Ref. [29]
0 1
A:<1 1).

The algorithm discussed above fails immediately, the fiegp simple states that;; = 0. We could
change slightly the above matrix by replacigvith 10-2° resulting in

10720 1
A=("0)

U1 = 1020
Iy = 10%

yielding

andu; = 1 and

Ugy = ayy — Iy = 1 — 10%

1 0
L_<1020 1)7

10720 1
U_< 0 1—1020>’

we obtain

and

85

Linear algebra

With the change from 0 to a small number like=2" we see that the LU decomposition is now stable,
but it is not backward stable. What do we mean by that? Firstete that the matri¥J has an element
uge = 1 — 10%°. Numerically, since we do have a limited precision, which double precision is
approximatelye,; ~ 10716 it means that this number is approximated in the maching,as- —102%°
resulting in a machine representation of the matrix as

10~20 1
U‘(0 —1020>‘

If we multiply the matriced.U we have

1 0 10720 1 10720 1
(1020 1>< 0 —1020>_< 1 0>#A'

We do not get back the original matrix!

The solution is pivoting (interchanging rows in this casejuad the largest element in a columin
Then we are actually decomposing a rowwise permutation ebtiginal matrixA. The key point to
notice is that Eqs[{4.12) and (4113) are equal except focdlse that we divide by;; in the latter one.
The upper limits are always the sarhe= j — 1(= ¢ — 1). This means that we do not have to choose
the diagonal element;; as the one which happens to fall along the diagonal in theifissaince. Rather,
we could promote one of the undividégd’s in the columni = j 4 1,... N to become the diagonal of
U. The partial pivoting in Crout’'s or Doolittle’s methods nmsathen that we choose the largest value
for u;; (the pivot element) and then do the divisions by that elemé&hen we need to keep track of all
permutations performed. For the above matixt would have sufficed to interchange the two rows and
start the LU decomposition with

11
A= (bl) |

The error which is done in the LU decomposition ofrar n matrix if no zero pivots are encountered
is given by, see chapter 3.3 of Ref. [27],

LU =A+H,
with
H| < 3(n — Du(JA| + [LI[U]) + O(u?),
with |H| being the absolute value of a matrix ands the error done in representing the matrix elements

of the matrixA as floating points in a machine with a given precisign viz. every matrix element ai
is

[fl(ais) — aij| < waj,
with |u; ;| < epr resulting in
[f1(A) — A| < ulA].
The programs which perform the above described LU deconiposire called as follows

C++: ludcmp(double«xa, int n, intxindx, doublexd)
Fortran: CALL lu_decompose(a, n, indx, d)

Both the C++ and Fortran 90/95 programs receive as input #igxato be LU decomposed. In C++ this
is given by the double pointekxa. Further, both functions need the size of the matri®t returns the
variabled, which is+1 depending on whether we have an even or odd number of rowclaeges, a
pointerindz that records the row permutation which has been effectedrantdU decomposed matrix.
Note that the original matrix is destroyed.

86

4.4 — Linear Systems

Cholesky'’s factorization

If the matrix A is real, symmetric and positive definite, then it has a unfgatrization (called Cholesky
factorization)
A=1LU=LL"

whereL” is the upper matrix, implying that
Ll = Lj.

The algorithm for the Cholesky decomposition is a speciaéaa the general LU-decomposition algo-
rithm. The algorithm of this decomposition is as follows

— Calculate the diagonal elemeht; by setting up a loop foi = 0toi = n — 1 (C++ indexing of
matrices and vectors)

i1 1/2
Lii = (A,—,- -y L§k> :
k=0

— within the loop ovet;, introduce a new loop which goes from= i + 1ton — 1 and calculate

i—1
1
Lji= 7 (Aij - ZLikljk> :
(3 k=0

For the Cholesky algorithm we have always thgt > 0 and the problem with exceedingly large matrix
elements does not appear and hence there is no need fongivoti

To decide whether a matrix is positive definite or not needsesoareful analysis. To find criteria
for positive definiteness, one needs two statements fromixnthéory, see Golub and Van Loan [27] for
examples. First, the leading principal submatrices of digesdefinite matrix are positive definite and
non-singular and secondly a matrix is positive definite d anly if it has anLDL” factorization with
positive diagonal elements only in the diagonal maixA positive definite matrix has to be symmetric
and have only positive eigenvalues.

The easiest way therefore to test whether a matrix is pegifinite or not is to solve the eigenvalue
problemAx = Ax and check that all eigenvalues are positive.

4.4.3 Solution of linear systems of equations

With the LU decomposition it is rather simple to solve a syst# linear equations

1171 + 1222 + 1323 + 1424 = W1
21%1 + Q2222 + A23%3 + A24T4 = W2
a31%1 + 3272 + a33%3 + A34T4 = W3
a41T1 + a49T9 + aq3x3 + 444 = W4.

This can be written in matrix form as
Ax =w.

whereA andw are known and we have to solve for Using the LU dcomposition we write

Ax=LUx = w. (4.14)

87

Linear algebra

This equation can be calculated in two steps

Ly = w; Ux =y. (4.15)

To show that this is correct we use to the LU decompositiomwerite our system of linear equations as

LUx =w,

and since the determinat &fis equal to 1 (by construction since the diagonal¥. @fqual 1) we can use
the inverse oL to obtain

Ux =L lw =y,

which yields the intermediate step

Llw=y

and multiplying withL: on both sides we reobtain E.{4115). As soon as we lyaw& can obtaink
throughUx = y.

For our four-dimentional example this takes the form

Yy1= wi

layi +y2 = wo

3191 + 3292 +y3 = w3

layr + lagys + lazys +ya = wa.

and

U11T1 + U222 + U13T3 + U14T4 = Y1
U22T2 + U3T3 + U24T4 = Y2

U33T3 + U34T4 = Y3

U44Tq = Y4

This example shows the basis for the algorithm needed t@ sbév set of: linear equations. The algo-
rithm goes as follows

88

4.4 — Linear Systems

— Set up the matriXA and the vectow with their correct dimensions. This determin
the dimensionality of the unknown vecter

— Then LU decompose the matixthrough a call to the function

C++: ludcmp(double a, int n, int indx, double &d)
Fortran: CALL lu_decompose(a, n, indx, d)

This functions returns the LU decomposed mafixits determinant and the vecto
indx which keeps track of the number of interchanges of rdivihe determinant is
zero, the solution is malconditioned.

— Thereafter you call the function

C++: lubksb(double a, int n, int indx, double w)
Fortran: CALL lu_linear_equation(a, n, indx, w)

which uses the LU decomposed matfixand the vectow and returnx in the same
place asv. Upon exit the original content iw is destroyed. If you wish to keep thi
information, you should make a backup of it in your callingdtion.

4.4.4 Inverse of a matrix and the determinant
The basic definition of the determinantAfis
det{A} = Z(_l)palm ©A2py " Anpy, s
p

where the sum runs over all permutatignef the indicesl, 2, .. . , n, altogethem! terms. To calculate
the inverse ofA is a formidable task. Here we have to calcultite complementary cofactat’ of each
elementa;j which is the(n — 1)determinant obtained by striking out the réwand columnj in which
the element;; appears. The inverse Afis then constructed as the transpose a matrix with the elsmen
(—)™*ia™. This involves a calculation of? determinants using the formula above. A simplified method
is highly needed.

With the LU decomposed matrik in Eq. (4.11) it is rather easy to find the determinant

det{A} = det{L} x det{U} = det{U},
since the diagonal elementslofequal 1. Thus the determinant can be written

N
th{A} = H Uk -

k=1

The inverse is slightly more difficult to obtain from the LUadenposition. It is formally defined as
Al=U"L7L

89

Linear algebra

We use this form since the computation of the inverse goesugfr the inverse of the matricésand
U. The reason is that the inverse of a lower (upper) triangulatrix is also a lower (upper) triangular
matrix. If we callD for the inverse of., we can determine the matrix element®athrough the equation

1 0 0 0 1 0 0 0 1 000
loy 1 0 0 di 1 0 0| (0100
l31 Il 1 0 d33 dy 1 0] |00 10|’
lar lao lyz 1 dy1 dag dyz 1 0001
which gives the following general algorithm
i—1
dij = —lij — > lLindj, (4.16)

k=j+1

which is valid fori > j. The diagonal is 1 and the upper matrix elements are zeroolWe this equation
column by column (increasing order gf In a similar way we can define an equation which gives us the
inverse of the matrixJ, labelledE in the equation below. This contains only non-zero matreaetnts

in the upper part of the matrix (plus the diagonal ones)

€11 €12 €13 €y Ul U2 U3 Ul4 1 000
0 e e23 e 0O wa wug wg | [0O 1 0 O
0 0 €33 €34 0 0 UuU33 U34 - 00 10 ’
0 0 0 €44 0 0 0 Uq4 0 0 0 1
with the following general equation
1 2
eij = —F Z eikukj. (417)

I =1

fori < j.
A calculation of the inverse of a matrix could then be implatee in the following way:

— Set up the matrix to be inverted.
— Call the LU decomposition function.

— Check whether the determinant is zero or not.

— Then solve column by column EqE(4.16.3.17).

The following codes compute the inverse of a matrix usingegitC++ or Fortran as programming lan-
guages. They are both included in the library packages, buhelude them explicitely here as well as
two distinct programs. We list first the C++ code

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter04/cpp/programl . cpp

/+ The function
*ok inverse ()

90

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter04/cpp/program1.cpp

4.4 — Linear Systems

x+x perform a mtx inversion of the input matrix a[][] with
x+ dimension n.

*/
void inverse (double xxa, int n)
{
int i,j, xindx;
double d, xcol, *xxy;

/Il allocate space in memory

indx = new int[n];
col = new double[n];
y = (double xx) matrix(n, n, sizeof(double));

/Il first we need to LU decompose the matrix
ludcmp(a, n, indx, &d);
/1 find inverse of a[][] by columns
for(j = 0; j <n; j++) {
/I initialize right—side of linear equations
for(i = 0; i < n; i++) col[i] = 0.0;
col[j] = 1.0;
lubksb(a, n, indx, col);
/1l save result in y[][]
for(i = 0; i <n; i++) y[i][j] = col[i];

}
/I return the inverse matrix in a[][]
for(i = 0; i < n; i++) {
for(j = 0; j <n; j++) alillj] = y[il[il;
}
free_matrix ((void xx*) y); /Il release local memory

delete [] col;
delete []indx;

} // End: function inverse()

We first need to LU decompose the matrix. Thereafter we sofye E.16) and(4.17) by using the back
substitution method calling the functidnbksb and obtain finally the inverse matrix.
An example of a C++ function which calls this function is atgeen in the program and reads

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter04/cpp/programl . cpp

/I Simple matrix inversion example
#include <iostream >

#include <new>

#include <cstdio>

#include <cstdlib >

#include <cmath>

#include <cstring>

#include "lib.h"

using namespacestd;

/+ function declarations */

void inverse(double xx, int);

91

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter04/cpp/program1.cpp

Linear algebra

[*
x+x This program sets up a simple 3x3 symmetric matrix
xx and finds its determinant and inverse

*/
int main()
{
int i, j, k, result, n= 3;
double sxmatr, sum,
a[3][3] ={ {1.0, 3.0, 4.0},

{3.0, 4.0, 6.0},
{4.0, 6.0, 8.0}};
/I memory for inverse matrix
matr = (double xx) matrix(n, n, sizeof(double));
/1 various print statements in the original code are omitted

inverse(matr, n); /Il calculate and return inverse matrix
return O;
} // End: function main()

In order to use the program library you need to include libé file using the#include "1ib.h"
statement. This function utilizes the library functioratrix andfree_matrix to allocate and free memory
during execution. The matrix[3][3] is set at compilation time. The corresponding Fortran aogfor
the inverse of a matrix reads

http://www.fys.uio.no/compphys/cp/programs/FYS3150/£901ibrary/f901ib.£90

I
! Routines to do mtx inversion, from Numerical

! Recipes, Teukolsky et al. Routines included

! below are MATINV, LUDCMP and LUBKSB. See chap 2
! of Numerical Recipes for further details

I

SUBROUTINE matinv(a,n, indx, d)

IMPLICIT NONE
INTEGER, INTENT (IN) :: n
INTEGER :: i, j
REAL (DP) , DIMENSION (n,n), INTENT (INOUT) :: a
REAL (DP) , ALLOCATABLE :: y(:,:)
REAL (DP) :: d
INTEGER, , INTENT (INOUT) :: indx(n)
ALLOCATE (y(n, n))
y=0.
! setup identity matrix
DO i=1,n
y(i,i)=1.
ENDDO

! LU decompose the matrix just once
CALL lu_decompose(a,n,indx,d)

! Find inverse by columns
DO j=1,n

92

http://www.fys.uio.no/compphys/cp/programs/FYS3150/f90 library/f90lib.f90

4.4 — Linear Systems

CALL lu_linear_equation(a,n,indx,y(:,j))

ENDDO

! The original matrix a was destroyed , now we equate it witheth
inverse y

a=y

DEALLOCATE (vy)

END SUBROUTINE matinv

The Fortran programmatinv receives as input the same variables as the C++ program Asthesfunc-

tion for LU decompositioiu_decomposeand the function to solve sets of linear equatitbndinear_equation.
The program listed under programs/chapter4/programX&tbrms the same action as the C++ listed
above. In order to compile and link these programs it is coierd to use a so-callanakefile. Examples

of these are found under the same catalogue as the abovamsogr

Inverse of the Vandermonde matrix

In chapteEb we discuss how to interpolate a functfamhich is known only at+1 pointszg, 1, €2, . . ., s
with corresponding valueg(xo), f(z1), f(x2),..., f(z,). The latter is often a typical outcome of a
large scale computation or from an experiment. In most ciasth®e sciences we do not have a closed
form expressions for a functiofi The function is only known at specific points.

We seek a functional form for a functighwhich passes through the above pairs of values

(l’o, f(xO))v (1’1, f($1))7 (1’2, f(l?))? SRR (:L'm f($n))

This is normally achieved by expanding the functiffx) in terms of well-known polynomialg; (x),
such as Legendre, Chebyshev, Laguerre etc. The functibansapproximated by a polynomial of degree

n pp(x)

f@) = pa() =) aidi(@),
=0

wherea; are unknown coefficients angti (=) are a priori well-known functions. The simplest possible
case is to assume thaf(z) = «*, resulting in an approximation

f(z) = ag + a1x + asx® + - - + apz™
Our function is known at the points+ 1 pointsxzg, z1, o, . . . , z,, leading ton 4+ 1 equations of the type
f(z) = ag + a1x; + agz? + - - + apx?.

We can then obtain the unknown coefficients by rewriting oobfem as

1w 22 ap ag f(xo)
1 oz 23 al a fx1)
1 a9 23 2% az | _ fx2)
1 a3 w% B 4 as flxs) |7
1z, 22 2" an flxn)

an expression which can be rewritten in a more compact form as

Xa="f,

93

Linear algebra

with

1 x x% T 1

1 = x% B A

X — 1 x x% B 1

= 2

1 x3 x5 @y

2 n

1 =z, = T,

. This matrix is called a Vandermonde matrix and is by debnithon-singular since all points; are
different. The inverse exists and we can obtain the unknavefficients by invertingX, resulting in

a=X"'f.

Although this algorithm for obtaining an interpolating pobmial which approximates our data set
looks very simple, it is an inefficient algorithm since thengutation of the inverse requiréxn?) flops.
The methods we will discuss in chapiér 6 are much more effeétbom a numerical point of view. There
is also another subtle point. Although we have a data setwith points, this does not necessarily mean
that our functionf(z) is well represented by a polynomial of degmee On the contrary, our function
f(x) may be a parabola (second-ordemin meaning that we have a large excess of data points. In such
cases a least-square fit or a spline interpolation may bertagiproaches to represent the function. These
techniques are discussed in chapier 6.

4.4.5 Tridiagonal systems of linear equations

We start with the linear set of equations from Hg.}(4.8), viz
Au="f,

whereA is a tridiagonal matrix which we rewrite as

bl C1 0
ax by ¢
a3 bz c3

Gp—2 bn—l Cpn—1
Gn by,

wherea, b, c are one-dimensional arrays of length n. In the example of Eq[{4.8) the arraysandc

are equal, namely; = ¢; = —1/h%. We can rewrite Eq[T418) as
bl C1 0 . e e ul fl
as bg C2 (05) f2
A _ CLS b3 CS _ PPN

an, by, Unp fn

A tridiagonal matrix is a special form of banded matrix whelighe elements are zero except for those
on and immediately above and below the leading diagonal.abloee tridiagonal system can be written
as

a;jui—1 + bju; + ciuip1 = fi,

94

4.4 — Linear Systems

fori =1,2,...,n. We see that._; andu,4; are not required and we can sgt= ¢, = 0. In many
applications the matrix is symmetric and we haye= ¢;. The algorithm for solving this set of equations
is rather simple and requires two steps only, a forward gubish and a backward substitution. These
steps are also common to the algorithms based on Gaussianation that we will discussed previously.
However, due to its simplicity, the number of floating poipeoations is in this case proportional with
O(n) while Gaussian elimination requirés? /3 + O(n?) floating point operations. In case your system
of equations leads to a tridiagonal matrix, it is clearly &er&ill to employ Gaussian elimination or the
standard LU decomposition. You will encounter several igpfibns involving tridiagonal matrices in
our discussion of partial differential equations in chafiig.

Our algorithm starts with forward substitution with a loogeo of the elementsand can be expressed
via the following piece of code taken from the Numerical Rediext of Teukolskyet al [36]

btemp = b[1];
ufl] = f[1]/btemp;
for(i=2 ; i <= n ; i++) {
temp[i] = c[i—1]/btemp;
btemp = b[il-a[i]«xtemp[i];
uli] = (f[i] — a[i]xu[i—=1])/btemp;

Note that you should avoid cases with= 0. If that is the case, you should rewrite the equations as a set
of ordern — 1 with us eliminated. Finally we perform the backsubstitution Ieadio the following code

for(i=n=1 ; i >= 1 ; i—-) {
uli] —= temp[i+1]xuli+1];
}

Note that our sums start with= 1 and that one should avoid cases with= 0. If that is the case, you
should rewrite the equations as a set of onder 1 with u, eliminated. However, a tridiagonal matrix
problem is not a guarantee that we can find a solution. ThexmAtwhich rephrases a second derivative
in a discretized form

o o0 o -1 2 -1

o 0 o 0 -1 2
fulfills the condition of a weak dominance of the diagonalthwb:| > |ci|, |bn| > |an| and|bg| >
lag| + |cx| for k = 2,3,...,n — 1. This is a relevant but not sufficient condition to guararttes the
matrix A yields a solution to a linear equation problem. The matrigdsealso to be irreducible. A
tridiagonal irreducible matrix means that all the elementandc; are non-zero. If these two conditions
are present, theA is nonsingular and has a unique LU decomposition.

We can obviously extend our boundary value problem to irekudirst derivative as well

_dzu(x)
dx?

du(z)
dz

+g(z) + h@)u(z) = f(2),

with z € [a, b] and with boundary conditions(a) = u(b) = 0. We assume that, g andh are continuous
functions in the domair € [a,b] and thath(x) > 0. Then the differential equation has a unique solution.
We subdivide our interval € [a, b] into n subintervals by setting; = a + ih, withi = 0,1,...,n + 1.

95

Linear algebra

The step size is then given y= (b—a)/(n + 1) with n € N. For the internal grid points=1,2,...n
we replace the differential operators with
N 2u; + Uivi

~

7 h2

for the second derivative while the first derivative is gilmn

/ Ui+1 — Uj—g
U, 8 —.

! 2h
We rewrite our original differential equation in terms ofiaaetized equation as

 Uit1 — 2ui + Ui n g,ui“ — U

i — + hiu; = fi,
h2 on T hivi=

with i« = 1,2,...,n. We need to add to this system the two boundary conditigfas = u and
u(b) = un4+1. This equation can again be rewritten as a tridiagonal mateblem. We leave it as
an exercise to the reader to find the matrix elements, find @dhelitons for having weakly dominant
diagonal elements and that the matrix is irreducible.

4.5 Exercises and projects

Exercise 2.1: Write your own Gaussian elimination code

(a) Consider the linear system of equations

a11x1 + a12r2 +a13r3 = Wi
ag1x1 + G292 + a23T3 = W
a3171 + a3a2 + az3xrz = ws.

This can be written in matrix form as

Ax =w.

We specialize here to the following case

— 21+ a9 — 43 =
2x1 + 229 =
3x1 + 3x0 + 223 =

S A

Obtain the solution (by hand) of this system of equationsdipgl Gaussian elimination.

(b) Write therafter a program which implements Gaussiamiaktion (with pivoting) and solve the
above system of linear equations. How many floating pointaijms are involved in the solu-
tion via Gaussian elimination without pivoting? Can youireste the number of floating point
operations with pivoting?

96

4.5 — Exercises and projects

Exercise 4.2: Cholesky factorization

If the matrix A is real, symmetric and positive definite, then it has a unfgatrization (called Cholesky
factorization)
A=LU=LL"

whereL” is the upper matrix, implying that
Ll = Lj;.

The algorithm for the Cholesky decomposition is a speciaéaa the general LU-decomposition algo-
rithm. The algorithm of this decomposition is as follows

— Calculate the diagonal elemeht; by setting up a loop foi = 0to¢ = n — 1 (C++ indexing of
matrices and vectors)

i—1 1/2
L = (An' - Z L22k> . (4.18)
k=0

— within the loop ovet, introduce a new loop which goes from= i + 1ton — 1 and calculate

i—1
(Aij = Likzjk> . (4.19)
k=0

1

i

For the Cholesky algorithm we have always thgt > 0 and the problem with exceedingly large matrix
elements does not appear and hence there is no need fongivitirite a function which performs the
Cholesky decomposition. Test your program against thelatan_U decomposition by using the matrix

6 3 2
A= 3 21 (4.20)
2 11
Finally, use the Cholesky method to solve

0.05z1 + 0.07z2 4 0.06z3 + 0.05z4 = 0.23
0.07z1 4+ 0.10z2 4 0.08z3 + 0.07z4 = 0.32
0.06z1 + 0.08z2 + 0.10z3 + 0.0924 = 0.33
0.05z1 4+ 0.07z2 4+ 0.0923 + 0.10z4 = 0.31

You can also use the LU codes for linear equations to checiethdts.

Project 4.1: The one-dimensional Poisson equation

(&) We are going to solve the one-dimensional Poisson eguatith Dirichlet boundary conditions
by rewriting it as a set of linear equations.

The three-dimensional Poisson equation is a partial @iffiesl equation,

¢ %9 0% p(z,y,2)

W 8y2 022 N €0 ’

97

Linear algebra

whose solution we will discuss in chapfen 15. The functign, y, =) is the charge density angl

is the electrostatic potential. In this project we consitierone-dimensional case since there are a
few situations, possessing a high degree of symmetry, whisngossible to find analytic solutions.
Let us discuss some of these solutions.

Suppose, first of all, that there is no variation of the vagiquantities in the- and z-directions.
In this case, Poisson’s equation reduces to an ordinargrdiftial equation in:, the solution of
which is relatively straightforward. Consider for examplgacuum diode, in which electrons are
emitted from a hot cathode and accelerated towards an ambdenode is held at a large positive
potential V; with respect to the cathode. We can think of this as an esdlgndine-dimensional
problem. Suppose that the cathode igat 0 and the anode at = d. Poisson’s equation takes

the form)

()

dx2 €0 ’
where¢(z) satisfies the boundary conditiop$0) = 0 and¢(d) = V. By energy conservation,
an electron emitted from rest at the cathode has-gelocity v(x) which satisfies

1
imevz(w) —ep(z) = 0.

Furthermore, we assume that the curréns independent of between the anode and cathode,
otherwise, charge will build up at some points. From elenagnetism one can then show that
the currentl is given byl = —p(z)v(z)A, whereA is the cross-sectional area of the diode. The
previous equations can be combined to give

e _ I (2e) " g
dz?2 A \ 2¢ '
The solution of the above equation which satisfies the bayrztanditions is

o (2)"

p o deod (2N Ly
9 d?2 \m, o

This relationship between the current and the voltage incawa diode is called the Child-
Langmuir law.

with

Another physics example in one dimension is the famous Tkeareami model, widely used as a
mean-field model in simulations of quantum mechanical syst@7, 38], see Lieb for a newer and
updated discussion [39]. Thomas and Fermi assumed thersésbf an energy functional, and
derived an expression for the kinetic energy based on thsitgesf electronsp(r) in an infinite
potential well. For a large atom or molecule with a large nandf electrons. Schrddinger’s equa-
tion, which would give the exact density and energy, caneotdsily handled for large numbers
of interacting particles. Since the Poisson equation cctsrghe electrostatic potential with the
charge density, one can derive the following equation foeiptal V

v V32
a2z

98

4.5 — Exercises and projects

(b)

with V' (0) = 1.
In our case we will rewrite Poisson’s equation in terms of @lisionless variables. We can then
rewrite the equation as

—u"(z) = f(z), =z€(0,1), u(0)=u(l)=0.

and we define the discretized approximatiom @sv; with grid pointsz; = ih in the interval from
xg = 0to z,+1 = 1. The step length or spacing is definedhas- 1/(n + 1). We have then the
boundary conditionsy = v, 11 = 0. We approximate the second derivativeuofith

Uiyl +vi-1 — 204
72

=f; fori=1,...,n,
wheref; = f(x;). Show that you can rewrite this equation as a linear set cditeans of the form
Av = b,

whereA is ann x n tridiagonal matrix which we rewrite as

2 -1 0 0
-1 2 -1 0

A — 0o -1 2 -1 O
0 -1 2 -1
0 0o -1 2

andl;i = hzfl

In our case we will assume thd{x) = (3z + x2)e”, and keep the same interval and boundary
conditions. Then the above differential equation has atyaaolution given byu(z) = z(1 —
x)e® (convince yourself that this is correct by inserting theutioh in the Poisson equation). We
will compare our numerical solution with this analytic réésn the next exercise.

We can rewrite our matriA in terms of one-dimensional vectassh, ¢ of length1 : n. Our linear
equation reads

bl C1 0 (%1} b1
a9 b2 Co (%) b2
az by 3

an, by, Un by,

A tridiagonal matrix is a special form of banded matrix whallehe elements are zero except for
those on and immediately above and below the leading didgbha above tridiagonal system can
be written as

a;vi—1 + bjv; + c;vip1 = b,

fori = 1,2,...,n. The algorithm for solving this set of equations is rathene and requires
two steps only, a decomposition and forward substitutiahfarally a backward substitution.

99

Linear algebra

()

Your first task is to set up the algorithm for solving this sétfimear equations. Find also the
number of operations needed to solve the above equationsv tBat they behave lik&(n) with
n the dimensionality of the problem. Compare this with staddaaussian elimination.

Then you should code the above algorithm and solve the profde matrices of the siz&0 x 10,
100 x 100 and1000 x 1000. That means that you choose= 10, n = 100 andn = 1000 grid
points.

Compare your results (make plots) with the analytic redaltshe different number of grid points
in the intervalx € (0,1). The different number of grid points corresponds to diffiérgtep lengths
h.

Compute also the maximal relative error in the data setl, . . ., n,by setting up

).

as function ofog;o(h) for the function values,; andv;. For each step length extract the max value
of the relative error. Try to increaseto n = 10000 andn = 10°. Comment your results.

V; — Ujg

€; = logio (

)

Compare your results with those from the LU decompasitodes for the matrix of siz&)00 x
1000. Use for example the unix functiotime when you run your codes and compare the time
usage between LU decomposition and your tridiagonal sol@an you run the standard LU de-
composition for a matrix of the size)® x 10°? Comment your results.

Solution to exercise b)

The program listed below encodes a possible solution toly)ast the above project. Note that we have
employed Blitz++ as library and that the range of the varieerstors are now shifted from their default
ranges(0 : n — 1) to (1 : n) and that we access vector elements:@$ instead of the standard C++
declaratioru|[].

The program reads from screen the name of the ouput file ardirttension of the problem, which in
our case corresponds to the number of mesh points as wetlditian to the two endpoints. The function

f(x)

= (3x + 22) exp (z) is included explicitely in the code. An obvious change isefintk a separate

function, allowing thereby for a generalization to othemdtion f(z).

[

*/

#inc
#inc
#inc
#inc
usin
usin

/1

100

ofstream ofile;

Program to solve the onedimensional Poisson equation

—u’’(x) = f(x) rewritten as a set of linear equations

Au=f where A is an n x n matrix, and u and f are 1 x n vectors
In this problem f(x) = (3x+x%x)exp(x) with solution u(x) = x(&x)exp(x)
The program reads from screen the name of the output file.

Blitz++ is used here, with arrays starting from 1 to n

lude <iomanip>

lude <fstream>

lude <blitz/array.h>
lude <iostream >

g nhamespacestd;

g namespaceblitz;

Main program only, no other functions

4.5 — Exercises and projects

int main(int argc, charx argv([])
{
char xoutfilename;
int i, j, n;
double h, btemp;
/I Read in output file, abort if there are too few commaithe arguments
if (argec <=1){

cout << "Bad Usage: " << argv[0] <<
" read also output file on same line" << endl;
exit(1);
}
else{
outfilename=argv|[1];
}

ofile .open(outfilename);

cout << "Read in number of mesh points" << endl;

cin >> n;

h = 1.0/((double) n+1);

/I Use Blitz to allocate arrays

/I Use range to change default arrays from 0:h to 1:n

Range r(1,n);

Array<double,1> a(r), b(r), c(r), y(r), f(r), temp(r);

I/l set up the matrix defined by three arrays, diagonal, uppamd lower
diagonal band

b=20;, a=-10 ; c=-1.0;
/I Then define the value of the right hand side f (multiplied hxh)
for(i=1; i <= n; i++){

/Il Explicit expression for f, could code as separate funatio
f(i) = hxhx(i*hx3.0+(ixh)*(ixh))xexp(ixh);
}
/I solve the tridiagonal system, first forward substitutio
btemp = b(1);
for(i = 2; i <= n; i++) {
temp (i) c(i—1) / btemp;

btemp b(i)— a(i) x temp(i);
y(i) = (f(i) —a(i) = y(i—-1)) / btemp;
}
/Il then backward substitution , the solution is in y()
for(i = n=1; i >= 1; i—) {
y(i) —= temp(i+1) = y(i+1);
}
/Il write results to the output file
for(i = 1; i <= n; i++){

ofile << setiosflags(ios::showpoint | ios::uppercase);

ofile << setw(15) << setprecision (8) <<xh;

ofile << setw(15) << setprecision (8) << y(i);

ofile << setw(15) << setprecision (8) <<xhx(1.0—ixh)xexp(ixh) <<endl;

ofile.close ();

}

The program writes also the exact solution to file. In Eigl wWedshow the results obtained with= 10.
Even with so few points, the numerical solution is very claséhe analytic answer. With = 100 it is

101

Linear algebra

1
Il\lumer_ical sollut_ion
Analytical solution- - - - -
0.8 _
0.6 _
u(x)
04r 1
0.2 _
0 - L | | |

Figure 4.4: Numerical solution obtained with= 10 compared with the analytical solution.

almost impossible to distinguish the numerical solutianfrthe analytical one, as shown in Hig.]4.5. It
is therefore instructive to study the relative error, whieh display in Tabl€ 414 as function of the step
lengthh = 1/(n + 1).

Table 4.4:]og; values for the relative error and the step lengttomputed at: = 0.5.
n logio(h) € =logio (|(vi —w;)/uil)
10 -1.04 -2.29

100 -2.00 -4.19
1000 -3.00 -6.18
10* -4.00 -8.18
10° -5.00 -9.19
106 -6.00 -6.08

The mathematical truncation we made when computing thensegerivative goes lik€(h?). Our
results forn from n = 10 to somewhere betweem = 10* andn = 10° result in a slope which is
almost exactly equad,in good agreement with the mathematical truncation madeyoBdn = 10°
the relative error becomes bigger, telling us that thereoipaint in increasing:. For most practical
application a relative error betwe@f—% and10~8 is more than sufficient, meaning that= 10* may
be an acceptable number of mesh points. Beyend 10°, numerical round off errors take over, as
discussed in the previous chapter as well.

102

Il\lumer_ical sc;lut_ion—
Analytical solution- - - - -
0.8 _
0.6 - _
u(x)
0.4r |
0.2 _
N\,
\\\
0 ! | | |
0 0.2 0.4 0.6 0.8 1

Figure 4.5: Numerical solution obtained with= 10 compared with the analytical solution.

