
Chapter 3

Numerical differentiation

3.1 Introduction

Numerical integration and differentiation are some of the most frequently needed methods in compu-
tational physics. Quite often we are confronted with the need of evaluating eitherf ′ or an integral∫
f(x)dx. The aim of this chapter is to introduce some of these methodswith a critical eye on numerical

accuracy, following the discussion in the previous chapter.
The next section deals essentially with topics from numerical differentiation. There we present also

the most commonly used formulae for computing first and second derivatives, formulae which in turn find
their most important applications in the numerical solution of ordinary and partial differential equations.
This section serves also the scope of introducing some more advanced C++-programming concepts, such
as call by reference and value, reading and writing to a file and the use of dynamic memory allocation.

3.2 Numerical differentiation

The mathematical definition of the derivative of a functionf(x) is

df(x)

dx
= lim

h→0

f(x+ h)− f(x)

h

whereh is the step size. If we use a Taylor expansion forf(x) we can write

f(x+ h) = f(x) + hf ′(x) +
h2f ′′(x)

2
+ . . .

We can then set the computed derivativef ′c(x) as

f ′(x) ≈ f(x+ h)− f(x)

h
≈ f ′(x) +

hf ′′(x)
2

+ . . .

Assume now that we will employ two points to represent the functionf by way of a straight line between
x andx+ h. Fig. 3.1 illustrates this subdivision.

This means that we can represent the derivative with

f ′2(x) =
f(x+ h)− f(x)

h
+O(h),

45

Numerical differentiation

where the suffix2 refers to the fact that we are using two points to define the derivative and the dominating
error goes likeO(h). This is the forward derivative formula. Alternatively, wecould use the backward
derivative formula

f ′2(x) =
f(x)− f(x− h)

h
+O(h).

If the second derivative is close to zero, this simple two point formula can be used to approximate the
derivative. If we however have a function likef(x) = a+ bx2, we see that the approximated derivative
becomes

f ′2(x) = 2bx+ bh,

while the exact answer is2bx. Unlessh is made very small, andb is not too large, we could approach the
exact answer by choosing smaller and smaller and values forh. However, in this case, the subtraction in
the numerator,f(x+ h)− f(x) can give rise to roundoff errors and eventually a loss of precision.

A better approach in case of a quadratic expression forf(x) is to use a 3-step formula where we
evaluate the derivative on both sides of a chosen pointx0 using the above forward and backward two-step
formulae and taking the average afterward. We perform againa Taylor expansion but now aroundx0±h,
namely

f(x = x0 ± h) = f(x0)± hf ′ +
h2f ′′

2
± h3f ′′′

6
+O(h4), (3.1)

which we rewrite as

f±h = f0 ± hf ′ +
h2f ′′

2
± h3f ′′′

6
+O(h4).

Calculating bothf±h and subtracting we obtain that

f ′3 =
fh − f−h

2h
− h2f ′′′

6
+O(h3),

and we see now that the dominating error goes likeh2 if we truncate at the scond derivative. We call
the termh2f ′′′/6 the truncation error. It is the error that arises because at some stage in the derivation,
a Taylor series has been truncated. As we will see below, truncation errors and roundoff errors play an
important role in the numerical determination of derivatives.

For our expression with a quadratic functionf(x) = a + bx2 we see that the three-point formula
f ′3 for the derivative gives the exact answer2bx. Thus, if our function has a quadratic behavior inx in
a certain region of space, the three-point formula will result in reliable first derivatives in the interval
[−h, h]. Using the relation

fh − 2f0 + f−h = h2f ′′ +O(h4),

we can define the second derivative as

f ′′ =
fh − 2f0 + f−h

h2
+O(h2).

We could also define five-points formulae by expanding to two steps on each side ofx0. Using a
Taylor expansion aroundx0 in a region[−2h, 2h] we have

f±2h = f0 ± 2hf ′ + 2h2f ′′ ± 4h3f ′′′

3
+O(h4). (3.2)

Using Eqs. (3.1) and (3.2), multiplyingfh andf−h by a factor of8 and subtracting(8fh−f2h)−(8f−h−
f−2h) we arrive at a first derivative given by

f ′5c =
f−2h − 8f−h + 8fh − f2h

12h
+O(h4),

46

3.2 – Numerical differentiation

-

f(x)

x

6

x0 − 2h x0 − h x0 x0 + h x0 + 2h

Figure 3.1: Demonstration of the subdivision of thex-axis into small stepsh. Each point corresponds to
a set of valuesx, f(x). The value ofx is incremented by the step lengthh. If we use the pointsx0 and
x0 + h we can draw a straight line and use the slope at this point to determine an approximation to the
first derivative. See text for further discussion.

47

Numerical differentiation

with a dominating error of the order ofh4 at the price of only two additional function evaluations. This
formula can be useful in case our function is represented by afourth-order polynomial inx in the region
[−2h, 2h]. Note however that this function includes two additional function evaluations, implying a more
time-consuming algorithm. Furthermore, the two additional subtraction can lead to a larger risk of loss of
numerical precision whenh becomes small. Solving for example a differential equationwhich involves
the first derivative, one needs always to strike a balance between numerical accurary and the time needed
to achieve a given result.

It is possible to show that the widely used formulae for the first and second derivatives of a function
can be written as

fh − f−h

2h
= f ′0 +

∞∑

j=1

f
(2j+1)
0

(2j + 1)!
h2j , (3.3)

and
fh − 2f0 + f−h

h2
= f ′′0 + 2

∞∑

j=1

f
(2j+2)
0

(2j + 2)!
h2j , (3.4)

and we note that in both cases the error goes likeO(h2j). These expressions will also be used when we
evaluate integrals.

To show this for the first and second derivatives starting with the three pointsf−h = f(x0 − h),
f0 = f(x0) andfh = f(x0 + h), we have that the Taylor expansion aroundx = x0 gives

a−hf−h + a0f0 + ahfh = a−h

∞∑

j=0

f
(j)
0

j!
(−h)j + a0f0 + ah

∞∑

j=0

f
(j)
0

j!
(h)j , (3.5)

wherea−h, a0 andah are unknown constants to be chosen so thata−hf−h + a0f0 + ahfh is the best
possible approximation forf ′0 andf ′′0 . Eq. (3.5) can be rewritten as

a−hf−h + a0f0 + ahfh = [a−h + a0 + ah] f0

+ [ah − a−h] hf ′0 + [a−h + ah]
h2f ′′0

2
+

∞∑

j=3

f
(j)
0

j!
(h)j

[
(−1)ja−h + ah

]
.

To determinef ′0, we require in the last equation that

a−h + a0 + ah = 0,

−a−h + ah =
1

h
,

and
a−h + ah = 0.

These equations have the solution

a−h = −ah = − 1

2h
,

and
a0 = 0,

yielding
fh − f−h

2h
= f ′0 +

∞∑

j=1

f
(2j+1)
0

(2j + 1)!
h2j .

48

3.2 – Numerical differentiation

To determinef ′′0 , we require in the last equation that

a−h + a0 + ah = 0,

−a−h + ah = 0,

and

a−h + ah =
2

h2
.

These equations have the solution

a−h = −ah = − 1

h2
,

and

a0 = − 2

h2
,

yielding

fh − 2f0 + f−h

h2
= f ′′0 + 2

∞∑

j=1

f
(2j+2)
0

(2j + 2)!
h2j .

3.2.1 The second derivative ofex

As an example, let us calculate the second derivatives ofexp (x) for various values ofx. Furthermore, we
will use this section to introduce three important C++-programming features, namely reading and writing
to a file, call by reference and call by value, and dynamic memory allocation. We are also going to split
the tasks performed by the program into subtasks. We define one function which reads in the input data,
one which calculates the second derivative and a final function which writes the results to file.

Let us look at a simple case first, the use ofprintf andscanf. If we wish to print a variable defined as
double speed_of_sound;we could for example writeprintf (‘‘ speed_of_sound = %lf\n ’’, speed_of_sound);.

In this case we say that we transfer the value of this specific variable to the functionprintf . The
function printf can however not change the value of this variable(there is no need to do so in this case).
Such a call of a specific function is calledcall by value. The crucial aspect to keep in mind is that the
value of this specific variable does not change in the called function.

When do we use call by value? And why care at all? We do actuallycare, because if a called function
has the possibility to change the value of a variable when this is not desired, calling another function with
this variable may lead to totally wrong results. In the worstcases you may even not be able to spot where
the program goes wrong.

We do however use call by value when a called function simply receives the value of the given variable
without changing it.

If we however wish to update the value of say an array in a called function, we refer to this call as
call by reference. What is transferred then is the address of the first element of the array, and the called
function has now access to where that specific variable ’lives’ and can thereafter change its value.

The functionscanf is then an example of a function which receives the address ofa variable and is
allowed to modify it. Afterall, when callingscanfwe are expecting a new value for a variable. A typical
call could bescanf(‘‘%lf \n ’’, &speed_of_sound);.

Consider now the following program

//
// This program module
// demonstrates memory allocation and data transfer in

49

Numerical differentiation

// between functions in C++
//#inlude<stdio.h> // Standard ANSI-C++ include files#inlude<stdlib.h>

int main(int argc,char ∗argv[])
{

int a: // line 1
int ∗b; // line 2

a = 10; // line 3
b = new int[10]; // line 4
for (i = 0; i < 10; i++) {

b[i] = i; // line 5
}
func(a,b); // line 6

return 0;
} // End: function main()

void func(int x, int ∗y) // line 7
{

x += 7; // line 8
∗y += 10; // line 9
y[6] += 10; // line 10
return ; // line 11

} // End: function func()

There are several features to be noted.

– Lines 1,2: Declaration of two variables a and b. The compilerreserves two locations in memory.
The size of the location depends on the type of variable. Two properties are important for these
locations – the address in memory and the content in the

– Line 3: The value of a is now 10.

– Line 4: Memory to store 10 integers is reserved. The address to the first location is stored in b. The
address of element number 6 is given by the expression (b + 6).

– Line 5: All 10 elements of b are given values: b[0] = 0, b[1] = 1,....., b[9] = 9;

– Line 6: The main() function calls the function func() and theprogram counter transfers to the first
statement in func(). With respect to data the following happens. The content of a (= 10) and the
content of b (a memory address) are copied to a stack (new memory location) associated with the
function func()

– Line 7: The variable x and y are local variables in func(). They have the values – x = 10, y =
address of the first element in b in the main() program.

– Line 8: The local variable x stored in the stack memory is changed to 17. Nothing happens with
the value a in main().

50

3.2 – Numerical differentiation

– Line 9: The value of y is an address and the symbol *y stands forthe position in memory which
has this address. The value in this location is now increasedby 10. This means that the value of
b[0] in the main program is equal to 10. Thus func() has modified a value in main().

– Line 10: This statement has the same effect as line 9 except that it modifies element b[6] in main()
by adding a value of 10 to what was there originally, namely 6.

– Line 11: The program counter returns to main(), the next expression afterfunc(a,b);. All data on
the stack associated with func() are destroyed.

– The value of a is transferred to func() and stored in a new memory location called x. Any modi-
fication of x in func() does not affect in any way the value of a in main(). This is calledtransfer
of data by value. On the other hand the next argument in func() is an address which is transferred
to func(). This address can be used to modify the corresponding value in main(). In the program-
ming language C it is expressed as a modification of the value which y points to, namely the first
element of b. This is calledtransfer of data by referenceand is a method to transfer data back to
the calling function, in this case main().

C++ allows however the programmer to use solely call by reference (note that call by reference is
implemented as pointers). To see the difference between C and C++, consider the following simple
examples. In C we would write

i n t n ; n =8 ;
func (&n) ; /∗ &n i s a p o i n t e r t o n ∗ /
. . . .
vo id func (i n t ∗ i)
{
∗ i = 10 ; /∗ n i s changed t o 10∗ /
. . . .

}

whereas in C++ we would write

i n t n ; n =8 ;
func (n) ; / / j u s t t r a n s f e r n i t s e l f
. . . .
vo id func (i n t & i)
{

i = 10 ; / / n i s changed t o 10
. . . .

}

Note well that the way wex have defined the input to the function func(int & i) or func(int ∗i) decides
how we transfer variables to a specific function. The reason why we emphasize the difference between
call by value and call by reference is that it allows the programmer to avoid pitfalls like unwanted changes
of variables. However, many people feel that this reduces the readability of the code. It is more or less
common in C++ to use call by reference, since it gives a much cleaner code. Recall also that behind the
curtain references are usually implemented as pointers. When we transfer large objects such a matrices
and vectors one should always use call by reference. Copyingsuch objects to a called function slows
down considerably the execution. If you need to keep the value of a call by reference object, you should
use theconstdeclaration.

51

Numerical differentiation

In programming languages like Fortran one uses only call by reference, but you can flag whether
a called function or subroutine is allowed or not to change the value by declaring for example an in-
teger value asINTEGER, INTENT(IN):: i. The local function cannot change the value ofi. Declaring a
transferred values asINTEGER, INTENT(OUT):: i. allows the local function to change the variablei.

Initialisations and main program

In every program we have to define the functions employed. Thestyle chosen here is to declare these
functions at the beginning, followed thereafter by the mainprogram and the detailed task performed by
each function. Another possibility is to include these functions and their statements before the main
program, meaning that the main program appears at the very end. I find this programming style less read-
able however since I prefer to read a code from top to bottom. Afurther option, specially in connection
with larger projects, is to include these function definitions in a user defined header file. The following
program shows also (although it is rather unnecessary in this case due to few tasks) how one can split
different tasks into specialized functions. Such a division is very useful for larger projects and programs.

In the first version of this program we use a more C-like style for writing and reading to file. At the
end of this section we include also the corresponding C++ andFortran files.http://www.fys.uio.no/ompphys/p/programs/FYS3150/hapter03/pp/program1.pp
/∗
∗∗ Program t o compute t h e second d e r i v a t i v e o f exp (x) .
∗∗ Three c a l l i n g f u n c t i o n s are i n c l u d e d
∗∗ i n t h i s v e r s i o n . In one f u n c t i o n we read i n t h e da ta from screen ,
∗∗ t h e n e x t f u n c t i o n computes t h e second d e r i v a t i v e
∗∗ w h i l e t h e l a s t f u n c t i o n p r i n t s ou t da ta t o s c r e e n .
∗ /
us ing namespace s t d ;
inc lude < ios t ream >

vo id i n i t i a l i s e (double ∗ , double ∗ , i n t ∗) ;
vo id s e c o n d _ d e r i v a t i v e (i n t , double , double , double ∗ , double ∗) ;
vo id o u t p u t (double ∗ , double ∗ , double , i n t) ;

i n t main ()
{

/ / d e c l a r a t i o n s o f v a r i a b l e s
i n t number_o f_s teps ;
double x , i n i t i a l _ s t e p ;
double ∗ h_step , ∗ c o m p u t e d _ d e r i v a t i v e ;
/ / read i n i n p u t da ta from s c r e e n
i n i t i a l i s e (& i n i t i a l _ s t e p , &x , &number_o f_s teps) ;
/ / a l l o c a t e space i n memory f o r t h e one−d i m e n s i o n a l a r r a y s
/ / h _ s t e p and c o m p u t e d _ d e r i v a t i v e
h _ s t e p = new double[number_o f_s teps] ;
c o m p u t e d _ d e r i v a t i v e =new double[number_o f_s teps] ;
/ / compute t h e second d e r i v a t i v e o f exp (x)
s e c o n d _ d e r i v a t i v e (number_o f_s teps , x , i n i t i a l _ s t e p , h_step ,

c o m p u t e d _ d e r i v a t i v e) ;
/ / Then we p r i n t t h e r e s u l t s t o f i l e
o u t p u t (h_step , c o m p u t e d _ d e r i v a t i ve , x , number_o f_s teps) ;
/ / f r e e memory

52

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter03/cpp/program1.cpp

3.2 – Numerical differentiation

d e l e t e [] h _ s t e p ;
d e l e t e [] c o m p u t e d _ d e r i v a t i v e ;
re turn 0 ;

} / / end main program

We have defined three additional functions, one which reads in from screen the value ofx, the initial step
lengthh and the number of divisions by 2 ofh. This function is called initialise . To calculate the second
derivatives we define the functionsecond_derivative. Finally, we have a function which writes our results
together with a comparison with the exact value to a given file. The results are stored in two arrays, one
which contains the given step lengthh and another one which contains the computed derivative.

These arrays are defined as pointers through the statement

double ∗ h_step , ∗ c o m p u t e d _ d e r i v a t i v e ;

A call in the main function to the functionsecond_derivativelooks then like this

s e c o n d _ d e r i v a t i v e (number_o f_s teps , x , i n t i a l _ s t e p , h_step ,
c o m p u t e d _ d e r i v a t i v e) ;

while the called function is declared in the following way

vo id s e c o n d _ d e r i v a t i v e (i n t number_o f_s teps ,double x , double ∗ h_step ,double
∗ c o m p u t e d _ d e r i v a t i v e) ;

indicating thatdouble∗h_step,double∗computed_derivative;are pointers and that we transfer the address
of the first elements. The other variablesint number_of_steps,double x; are transferred by value and are
not changed in the called function.

Another aspect to observe is the possibility of dynamical allocation of memory through thenew
function. In the included program we reserve space in memoryfor these three arrays in the following way
h_step =new double[number_of_steps];andcomputed_derivative =new double[number_of_steps];When we
no longer need the space occupied by these arrays, we free memory through the declarationsdelete []
h_step;anddelete [] computed_derivative ;

The function initialise

/ / Read i n from s c r e e n t h e i n i t i a l s tep , t h e number o f s t e p s
/ / and t h e v a l u e o f x

vo id i n i t i a l i s e (double ∗ i n i t i a l _ s t e p , double ∗x , i n t ∗ number_o f_s teps)
{

p r i n t f ("Read in from sreen initial step, x and number of steps\n") ;
s c a n f ("%lf %lf %d" , i n i t i a l _ s t e p , x , number_o f_s teps) ;
re turn ;

} / / end o f f u n c t i o n i n i t i a l i s e

This function receives the addresses of the three variablesdouble∗ initial_step , double ∗x, int ∗
number_of_steps;and returns updated values by reading from screen.

The function second_derivative

53

Numerical differentiation

/ / Th i s f u n c t i o n computes t h e second d e r i v a t i v e

vo id s e c o n d _ d e r i v a t i v e (i n t number_o f_s teps ,double x ,
double i n i t i a l _ s t e p , double ∗ h_step ,
double ∗ c o m p u t e d _ d e r i v a t i v e)

{
i n t c o u n t e r ;
double h ;
/ / c a l c u l a t e t h e s t e p s i z e
/ / i n i t i a l i s e t h e d e r i v a t i v e , y and x (i n m inu tes)
/ / and i t e r a t i o n c o u n t e r
h = i n i t i a l _ s t e p ;
/ / s t a r t comput ing f o r d i f f e r e n t s t e p s i z e s
f o r (c o u n t e r =0 ; c o u n t e r < number_o f_s teps ; c o u n t e r ++)
{

/ / s e t u p a r r a y s w i th d e r i v a t i v e s and s t e p s i z e s
h _ s t e p [c o u n t e r] = h ;
c o m p u t e d _ d e r i v a t i v e [c o u n t e r] =

(exp (x+h)−2.∗exp (x) +exp (x−h)) / (h∗h) ;
h = h∗0 . 5 ;

} / / end o f do loop
re turn ;

} / / end o f f u n c t i o n second d e r i v a t i v e

The loop over the number of steps serves to compute the secondderivative for different values ofh.
In this function the step is halved for every iteration (you could obviously change this to larger or
smaller step variations). The step values and the derivatives are stored in the arraysh_stepanddouble
computed_derivative.

The output function

This function computes the relative error and writes to a chosen file the results.
The last function here illustrates how to open a file, write and read possible data and then close it.

In this case we have fixed the name of file. Another possibilityis obviously to read the name of this file
together with other input parameters. The way the program ispresented here is slightly unpractical since
we need to recompile the program if we wish to change the name of the output file.

An alternative is represented by the following program C program. This program reads from screen
the names of the input and output files.http://www.fys.uio.no/ompphys/p/programs/FYS3150/hapter03/pp/program2.pp
1 # i n c l u d e < s t d i o . h>
2 # i n c l u d e < s t d l i b . h>
3 i n t c o l :
4
5 i n t main (i n t argc , char ∗ argv [])
6 {
7 FILE ∗ in , ∗ ou t ;
8 i n t c ;
9 i f (a rgc < 3) {
10 p r i n t f ("You have to read in :\n") ;
11 p r i n t f ("in_file and out_file \n") ;

54

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter03/cpp/program2.cpp

3.2 – Numerical differentiation

12 e x i t (1) ;
13 i n = fopen (argv [1] , "r") ; } / / r e t u r n s p o i n t e r t o t h e i n _ f i l e
14 i f (i nn == NULL) { / / can ’ t f i n d i n _ f i l e
15 p r i n t f ("Can't find the input file %s\n" , a rgv [1]) ;
16 e x i t (1) ;
17 }
18 ou t = fopen (argv [2] , "w") ; / / r e t u r n s a p o i n t e r t o t h e o u t _ f i l e
19 i f (u t == NULL) { / / can ’ t f i n d o u t _ f i l e
20 p r i n t f ("Can't find the output file %s\n" , a rgv [2]) ;
21 e x i t (1) ;
22 }

. . . program s t a t e m e n t s

23 f c l o s e (i n) ;
24 f c l o s e (ou t) ;
25 re turn 0 ;
}

This program has several interesting features.

Line Program comments

5 • main() takes three arguments, given by argc. argv points to the following:
the name of the program, the first and second arguments, in this case file
names to be read from screen.

7 • C++ has adata type calledFILE. The pointersin andout point to spe-
cific files. They must be of the typeFILE.

10 • The command line has to contain 2 filenames as parameters.
13–17 • The input file has to exit, else the pointer returns NULL. It has only read

permission.
18–22 • Same for the output file, but now with write permission only.
23–24 • Both files are closed before the main program ends.

The above represents a standard procedure in C for reading file names. C++ has its own class for
such operations.http://www.fys.uio.no/ompphys/p/programs/FYS3150/hapter03/pp/program3.pp
/∗
∗∗ Program t o compute t h e second d e r i v a t i v e o f exp (x) .
∗∗ In t h i s v e r s i o n we use C++ o p t i o n s f o r read ing and
∗∗ w r i t i n g f i l e s and da ta . The r e s t o f t h e code i s as i n
∗∗ programs / chap te r3 / program1 . cpp
∗∗ Three c a l l i n g f u n c t i o n s are i n c l u d e d
∗∗ i n t h i s v e r s i o n . In one f u n c t i o n we read i n t h e da ta from screen ,
∗∗ t h e n e x t f u n c t i o n computes t h e second d e r i v a t i v e
∗∗ w h i l e t h e l a s t f u n c t i o n p r i n t s ou t da ta t o s c r e e n .
∗ /
us ing namespace s t d ;
inc lude < ios t ream >
inc lude < fs t r eam >
inc lude <iomanip >
inc lude <cmath >
vo id i n i t i a l i s e (double ∗ , double ∗ , i n t ∗) ;

55

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter03/cpp/program3.cpp

Numerical differentiation

vo id s e c o n d _ d e r i v a t i v e (i n t , double , double , double ∗ , double ∗) ;
vo id o u t p u t (double ∗ , double ∗ , double , i n t) ;

o f s t r e a m o f i l e ;

i n t main (i n t argc , char∗ argv [])
{

/ / d e c l a r a t i o n s o f v a r i a b l e s
char ∗ o u t f i l e n a m e ;
i n t number_o f_s teps ;
double x , i n i t i a l _ s t e p ;
double ∗ h_step , ∗ c o m p u t e d _ d e r i v a t i v e ;
/ / Read i n o u t p u t f i l e , a b o r t i f t h e r e are too few command− l i n e

arguments
i f (a rgc <= 1) {

cou t << "Bad Usage: " << argv [0] <<" read also output file on same line" << end l ;
e x i t (1) ;

}
e l s e{

o u t f i l e n a m e= argv [1] ;
}
o f i l e . open (o u t f i l e n a m e) ;
/ / read i n i n p u t da ta from s c r e e n
i n i t i a l i s e (& i n i t i a l _ s t e p , &x , &number_o f_s teps) ;
/ / a l l o c a t e space i n memory f o r t h e one−d i m e n s i o n a l a r r a y s
/ / h _ s t e p and c o m p u t e d _ d e r i v a t i v e
h _ s t e p = new double[number_o f_s teps] ;
c o m p u t e d _ d e r i v a t i v e =new double[number_o f_s teps] ;
/ / compute t h e second d e r i v a t i v e o f exp (x)
s e c o n d _ d e r i v a t i v e (number_o f_s teps , x , i n i t i a l _ s t e p , h_step ,

c o m p u t e d _ d e r i v a t i v e) ;
/ / Then we p r i n t t h e r e s u l t s t o f i l e

o u t p u t (h_step , c o m p u t e d _ d e r i v a t i ve , x , number_o f_s teps) ;
/ / f r e e memory
d e l e t e [] h _ s t e p ;
d e l e t e [] c o m p u t e d _ d e r i v a t i v e ;
/ / c l o s e o u t p u t f i l e
o f i l e . c l o s e () ;
re turn 0 ;

} / / end main program

The main part of the code includes now an object declarationofstream ofilewhich is included in C++ and
allows the programmer to open and declare files. This is done via the statementofile .open(outfilename) ;.
We close the file at the end of the main program by writingofile . close () ;. There is a corresponding
object for reading inputfiles. In this case we declare prior to the main function, or in an evantual header
file, ifstream ifile and use the corresponding statementsifile .open(infilename) ;and ifile . close () ; for
opening and closing an input file. Note that we have declared two character variableschar∗ outfilename
; and char∗ infilename ;. In order to use these options we need to include a corresponding library of
functions using# include <fstream>.

One of the problems with C++ is that formatted output is not aseasy to use as the printf and scanf
functions in C. The output function using the C++ style is included below.

56

3.2 – Numerical differentiation

/ / f u n c t i o n t o w r i t e ou t t h e f i n a l r e s u l t s
vo id o u t p u t (double ∗h_step , double ∗ c o m p u t e d _ de r i va t i ve ,double x ,

i n t number_o f_s teps)
{

i n t i ;
o f i l e << "RESULTS:" << end l ;
o f i l e << s e t i o s f l a g s (i o s : : showpo in t | i o s : : u p p e r c a s e) ;
f o r (i =0 ; i < number_o f_s teps ; i ++)

{
o f i l e << setw (1 5) << s e t p r e c i s i o n (8) << log10 (h _ s t e p [i]) ;
o f i l e << setw (1 5) << s e t p r e c i s i o n (8) <<
log10 (f a b s (c o m p u t e d _ d e r i v a t i v e [i]−exp (x)) / exp (x))) << end l ;
}

} / / end o f f u n c t i o n o u t p u t

The functionsetw(15)reserves an output of 15 spaces for a given variable whilesetprecision (8)yields
eight leading digits. To use these options you have to use thedeclaration# include <iomanip>

Before we discuss the results of our calculations we list here the corresponding Fortran program. The
corresponding Fortran example ishttp://www.fys.uio.no/ompphys/p/programs/FYS3150/hapter03/f90/program1.f90
! Program t o compute t h e second d e r i v a t i v e o f exp (x) .
! Only one c a l l i n g f u n c t i o n i s i n c l u d e d .
! I t computes t h e second d e r i v a t i v e and i s i n c l u d e d i n t h e
! MODULE f u n c t i o n s as a s e p a r a t e method
! The v a r i a b l e h i s t h e s t e p s i z e . We a l s o f i x t h e t o t a l number
! o f d i v i s i o n s by 2 o f h . The t o t a l number o f s t e p s i s read from
! s c r e e n
MODULE c o n s t a n t s

! d e f i n i t i o n o f v a r i a b l e s f o r doub le p r e c i s i o n s and complexv a r i a b l e s
INTEGER , PARAMETER : : dp = KIND (1 . 0D0)
INTEGER , PARAMETER : : dpc = KIND ((1 . 0 D0 , 1 . 0 D0))

END MODULE c o n s t a n t s

! Here you can i n c l u d e s p e c i f i c f u n c t i o n s which can be used by
! many s u b r o u t i n e s or f u n c t i o n s

MODULE f u n c t i o n s
USE c o n s t a n t s
IMPLICIT NONE
CONTAINS

SUBROUTINE d e r i v a t i v e (number_o f_s teps , x , i n i t i a l _ s t e p , h_step , &
c o m p u t e d _ d e r i v a t i v e)

USE c o n s t a n t s
INTEGER , INTENT (IN) : : number_o f_s teps
INTEGER : : loop
REAL (DP) , DIMENSION (number_o f_s teps) ,INTENT (INOUT) : : &

c o m p u t e d _ de r i va t i ve , h _ s t e p
REAL (DP) , INTENT (IN) : : i n i t i a l _ s t e p , x
REAL (DP) : : h
! c a l c u l a t e t h e s t e p s i z e
! i n i t i a l i s e t h e d e r i v a t i v e , y and x (i n m inu tes)

57

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter03/f90/program1.f90

Numerical differentiation

! and i t e r a t i o n c o u n t e r
h = i n i t i a l _ s t e p
! s t a r t comput ing f o r d i f f e r e n t s t e p s i z e s
DO l oop =1 , number_o f_s teps

! s e t u p a r r a y s w i th d e r i v a t i v e s and s t e p s i z e s
h _ s t e p (loop) = h
c o m p u t e d _ d e r i v a t i v e (loop) = (EXP(x+h)−2.∗EXP(x) +EXP(x−h)) / (h∗h)
h = h∗0 .5

ENDDO
END SUBROUTINE d e r i v a t i v e

END MODULE f u n c t i o n s

PROGRAM s e c o n d _ d e r i v a t i v e
USE c o n s t a n t s
USE f u n c t i o n s
IMPLICIT NONE
! d e c l a r a t i o n s o f v a r i a b l e s
INTEGER : : number_o f_s teps , loop
REAL (DP) : : x , i n i t i a l _ s t e p
REAL (DP) , ALLOCATABLE , DIMENSION (:) : : h_s tep , c o m p u t e d _ d e r i v a t i v e
! read i n i n p u t da ta from s c r e e n
WRITE (∗ ,∗) ’ Read in i n i t i a l s tep , x v a l u e andnumber o f s t e p s ’
READ (∗ ,∗) i n i t i a l _ s t e p , x , number_o f_s teps
! open f i l e t o w r i t e r e s u l t s on
OPEN(UNIT =7 ,FILE = ’ out . da t ’)
! a l l o c a t e space i n memory f o r t h e one−d i m e n s i o n a l a r r a y s
! h _ s t e p and c o m p u t e d _ d e r i v a t i v e
ALLOCATE (h _ s t e p (number_o f_s teps) , c o m p u t e d _ d e r i v a t i v e (number_o f_s teps))
! compute t h e second d e r i v a t i v e o f exp (x)
! i n i t i a l i z e t h e a r r a y s
h _ s t e p = 0 .0 _dp ; c o m p u t e d _ d e r i v a t i v e = 0 .0 _dp
CALL d e r i v a t i v e (number_o f_s teps , x , i n i t i a l _ s t e p , h_step , c om p u t e d _ d e r i v a t i v e

)

! Then we p r i n t t h e r e s u l t s t o f i l e
DO l oop =1 , number_o f_s teps

WRITE (7 , ’ (E16 . 1 0 , 2X, E16 . 1 0) ’) LOG10(h _ s t e p (loop)) ,&
LOG10 (ABS ((c o m p u t e d _ d e r i v a t i v e (loop)−EXP(x)) / EXP(x)))

ENDDO
! f r e e memory
DEALLOCATE (h_s tep , c o m p u t e d _ d e r i v a t i v e)
! c l o s e t h e o u t p u t f i l e
CLOSE(7)

END PROGRAM s e c o n d _ d e r i v a t i v e

TheMODULE declaration in Fortran allows one to place functions like the one which calculates second
derivatives in a module. Since this is a general method, one could extend its functionality by simply
transfering the name of the function to differentiate. In our case we use explicitely the exponential
function, but there is nothing which hinders us from definingother functions. Note the usage of the
moduleconstantswhere we define double and complex variables. If one wishes toswitch to another

58

3.2 – Numerical differentiation

precision, one just needs to change the declaration in one part of the program only. This hinders possible
errors which arise if one has to change variable declarations in every function and subroutine. Finally,
dynamic memory allocation and deallocation is in Fortran done with the keywordsALLOCATE (array(
size)) andDEALLOCATE (array). Although most compilers deallocate and thereby free spacein memory
when leaving a function, you should always deallocate an array when it is no longer needed. In case
your arrays are very large, this may block unnecessarily large fractions of the memory. Furthermore,
you should always initialise arrays. In the example above, we note that Fortran allows us to simply write
h_step = 0.0_dp; computed_derivative = 0.0_dp, which means that all elements of these two arrays are
set to zero. Coding arrays in this manner brings us much closer to the way we deal with mathematics.
In Fortran it is irrelevant whether this is a one-dimensional or multi-dimensional array. In the next next
chapter, where we deal with allocation of matrices, we will introduce the numerical library Blitz++ which
allows for similar treatments of arrays in C++. By default however, these features are not included in the
ANSI C++ standard.

Results

In Table 3.1 we present the results of anumerical evaluationfor various step sizes for the second deriva-
tive of exp (x) using the approximationf ′′0 =

fh−2f0+f−h

h2 . The results are compared with the exact ones
for variousx values. Note well that as the step is decreased we get closer to the exact value. However, if

x h = 0.1 h = 0.01 h = 0.001 h = 0.0001 h = 0.0000001 Exact
0.0 1.000834 1.000008 1.000000 1.000000 1.010303 1.000000
1.0 2.720548 2.718304 2.718282 2.718282 2.753353 2.718282
2.0 7.395216 7.389118 7.389057 7.389056 7.283063 7.389056
3.0 20.102280 20.085704 20.085539 20.085537 20.250467 20.085537
4.0 54.643664 54.598605 54.598155 54.598151 54.711789 54.598150
5.0 148.536878 148.414396 148.413172 148.413161 150.635056 148.413159

Table 3.1: Result for numerically calculated second derivatives ofexp (x) as functions of the chosen step
sizeh. A comparison is made with the exact value.

it is further decreased, we run into problems of loss of precision. This is clearly seen forh = 0.0000001.
This means that even though we could let the computer run withsmaller and smaller values of the step,
there is a limit for how small the step can be made before we loose precision.

3.2.2 Error analysis

Let us analyze these results in order to see whether we can finda minimal step length which does not
lead to loss of precision. Furthermore In Fig. 3.2 we have plotted

ǫ = log10

(∣∣∣∣∣
f ′′computed − f ′′exact

f ′′exact

∣∣∣∣∣

)

,

as function oflog10(h). We used an intial step length ofh = 0.01 and fixedx = 10. For large values of
h, that is−4 < log10(h) < −2 we see a straight line with a slope close to 2. Close tolog10(h) ≈ −4
the relative error starts increasing and our computed derivative with a step sizelog10(h) < −4, may no
longer be reliable.

59

Numerical differentiation

Relative error

log10(h)

ǫ

0-2-4-6-8-10-12-14

6

4

2

0

-2

-4

-6

-8

-10

Figure 3.2: Log-log plot of the relative error of the second derivative ofex as function of decreasing step
lengthsh. The second derivative was computed forx = 10 in the program discussed above. See text for
further details

Can we understand this behavior in terms of the discussion from the previous chapter? In chapter 2
we assumed that the total error could be approximated with one term arising from the loss of numerical
precision and another due to the truncation or approximation made, that is

ǫtot = ǫapprox + ǫro.

For the computed second derivative, Eq. (3.4), we have

f ′′0 =
fh − 2f0 + f−h

h2
− 2

∞∑

j=1

f
(2j+2)
0

(2j + 2)!
h2j ,

and the truncation or approximation error goes like

ǫapprox ≈
f

(4)
0

12
h2.

If we were not to worry about loss of precision, we could in principle makeh as small as possible.
However, due to the computed expression in the above programexample

f ′′0 =
fh − 2f0 + f−h

h2
=

(fh − f0) + (f−h − f0)

h2
,

we reach fairly quickly a limit for where loss of precision due to the subtraction of two nearly equal
numbers becomes crucial. If(f±h − f0) are very close, we have(f±h − f0) ≈ ǫM , where|ǫM | ≤ 10−7

for single and|ǫM | ≤ 10−15 for double precision, respectively.
We have then

∣∣f ′′0
∣∣ =

∣∣∣∣
(fh − f0) + (f−h − f0)

h2

∣∣∣∣ ≤
2ǫM
h2

.

60

3.2 – Numerical differentiation

Our total error becomes

|ǫtot| ≤
2ǫM
h2

+
f

(4)
0

12
h2. (3.6)

It is then natural to ask which value ofh yields the smallest total error. Taking the derivative of|ǫtot| with
respect toh results in

h =

(
24ǫM

f
(4)
0

)1/4

.

With double precision andx = 10 we obtain

h ≈ 10−4.

Beyond this value, it is essentially the loss of numerical precision which takes over. We note also that
the above qualitative argument agrees seemingly well with the results plotted in Fig. 3.2 and Table 3.1.
The turning point for the relative error at approximatelyh ≈ ×10−4 reflects most likely the point where
roundoff errors take over. If we had used single precision, we would geth ≈ 10−2. Due to the subtractive
cancellation in the expression forf ′′ there is a pronounced detoriation in accuracy ash is made smaller
and smaller.

It is instructive in this analysis to rewrite the numerator of the computed derivative as

(fh − f0) + (f−h − f0) = (ex+h − ex) + (ex−h − ex),

as
(fh − f0) + (f−h − f0) = ex(eh + e−h − 2),

since it is the difference(eh + e−h − 2) which causes the loss of precision. The results, still forx = 10
are shown in the Table 3.2. We note from this table that ath ≈ ×10−8 we have essentially lost all leading

h eh + e−h eh + e−h − 2

10−1 2.0100083361116070 1.0008336111607230×10−2

10−2 2.0001000008333358 1.0000083333605581×10−4

10−3 2.0000010000000836 1.0000000834065048×10−6

10−4 2.0000000099999999 1.0000000050247593×10−8

10−5 2.0000000001000000 9.9999897251734637×10−11

10−6 2.0000000000010001 9.9997787827987850×10−13

10−7 2.0000000000000098 9.9920072216264089×10−15

10−8 2.0000000000000000 0.0000000000000000×100

10−9 2.0000000000000000 1.1102230246251565×10−16

10−10 2.0000000000000000 0.0000000000000000×100

Table 3.2: Result for the numerically calculated numeratorof the second derivative as function of the step
sizeh. The calculations have been made with double precision.

digits.
From Fig. 3.2 we can read off the slope of the curve and therebydetermine empirically how truncation

errors and roundoff errors propagate. We saw that for−4 < log10(h) < −2, we could extract a slope
close to2, in agreement with the mathematical expression for the truncation error.

We can repeat this for−10 < log10(h) < −4 and extract a slope≈ −2. This agrees again with our
simple expression in Eq. (3.6).

61

Numerical differentiation

3.3 Exercises and projects

Exercise 3.1: Computing derivatives numerically

We want you to compute the first derivative of

f(x) = tan−1(x)

for x =
√

2 with step lengthsh. The exact answer is1/3. We want you to code the derivative using the
following two formulae

f ′2c(x) =
f(x+ h)− f(x)

h
+O(h), (3.7)

and

f ′3c =
fh − f−h

2h
+O(h2), (3.8)

with f±h = f(x± h).

(a) Find mathematical expressions for the total error due toloss of precision and due to the numerical
approximation made. Find the step length which gives the smallest value. Perform the analysis
with both double and single precision.

(b) Make thereafter a program which computes the first derivative using Eqs. (3.7) and (3.8) as function
of various step lengthsh and leth→ 0. Compare with the exact answer.

Your program should contain the following elements:

– A vector (array) which contains the step lengths. Use dynamic memory allocation.

– Vectors for the computed derivatives of Eqs. (3.7) and (3.8)for both single and double preci-
sion.

– A function which computes the derivative and contains call by value and reference (for C++
users only).

– Add a function which writes the results to file.

(c) Compute thereafter

ǫ = log10

(∣∣∣∣∣
f ′computed − f ′exact

f ′exact

∣∣∣∣∣

)
,

as function oflog10(h) for Eqs. (3.7) and (3.8) for both single and double precision. Plot the results
and see if you can determine empirically the behavior of the total error as function ofh.

62

