
Chapter 1

Introduction

. . . Die Untersuchungsmethode, deren ich mich bedient habe und die auf ökonomis-
che Probleme noch nicht angewandt wurde, macht die Lektüre der ersten Kapitel ziemlich
schwierig, und es ist zu befürchten, daβ das französische Publikum, stets ungeduldig nach
dem Ergebnis und begierig, den Zusammenhang zwischen den allgemeinen Grundsätzen und
den Fragen zu erkennen, die es unmittelbar bewegen, sich abschrecken läβt, weil es nicht
sofort weiter vordringen kann.

Das ist ein Nachteil, gegen den ich nichts weiter unternehmen kann, als die nach Wahrheit
strebenden Leser von vornherein darauf hinzuweisen und gefaβt zu machen. Es gibt keine
Landstraβe für die Wissenschaft, und nur diejenigen haben, Aussicht,ihre lichten Höhen zu
erreichen, die die Mühe nicht scheuen, ihre steilen Pfade zuerklimmen.Karl Marx, preface
to the french edition of ’Das Kapital’, Vol. I

In the physical sciences we often encounter problems of evaluating various properties of a given function
f(x). Typical operations are differentiation, integration andfinding the roots off(x). In most cases
we do not have an analytical expression for the functionf(x) and we cannot derive explicit formulae
for derivatives etc. Even if an analytical expression is available, the evaluation of certain operations on
f(x) are so difficult that we need to resort to a numerical evaluation. More frequently,f(x) is the result
of complicated numerical operations and is thus known only at a set of discrete points and needs to be
approximated by some numerical methods in order to obtain derivatives, etc etc.

The aim of these lecture notes is to give you an introduction to selected numerical methods which are
encountered in the physical sciences. Several examples, with varying degrees of complexity, will be used
in order to illustrate the application of these methods.

The text gives a survey over some of the most used methods in computational physics and each
chapter ends with one or more applications to realistic systems, from the structure of a neutron star to
the description of quantum mechanical systems through Monte-Carlo methods. Among the algorithms
we discuss, are some of the top algorithms in computational science. In recent surveys by Dongarra and
Sullivan [1] and Cipra [2], the list over the ten top algorithms of the 20th century include

1. The Monte Carlo method or Metropolis algorithm, devised by John von Neumann, Stanislaw Ulam,
and Nicholas Metropolis, discussed in chapters 8-11.

2. The simplex method of linear programming, developed by George Dantzig.

3. Krylov Subspace Iteration method for large eigenvalue problems in particular, developed by Mag-
nus Hestenes, Eduard Stiefel, and Cornelius Lanczos, discussed in chapter 12.

3

Introduction

4. The Householder matrix decomposition, developed by Alston Householder and discussed in chap-
ter 12.

5. The Fortran compiler, developed by a team lead by John Backus, codes used throughout this text.

6. The QR algorithm for eigenvalue calculation, developed by Joe Francis, discussed in chapter 12

7. The Quicksort algorithm, developed by Anthony Hoare.

8. Fast Fourier Transform, developed by James Cooley and John Tukey, discussed in chapter 19

9. The Integer Relation Detection Algorithm, developed by Helaman Ferguson and Rodney

10. The fast Multipole algorithm, developed by Leslie Greengard and Vladimir Rokhlin; (to calculate
gravitational forces in an N-body problem normally requiresN2 calculations. The fast multipole
method uses order N calculations, by approximating the effects of groups of distant particles using
multipole expansions)

The topics we cover start with an introduction to C++, Pythonand Fortran programming combining
it with a discussion on numerical precision, a point we feel is often neglected in computational science.
This chapter serves also as input to our discussion on numerical derivation in chapter 3. In that chapter
we introduce several programming concepts such as dynamical memory allocation and call by reference
and value. Several program examples are presented in this chapter. For those who choose to program in
C++ we give also an introduction to the auxiliary library Blitz++, which contains several useful classes
for numerical operations on vectors and matrices. The link to Blitz++, matrices and selected algorithms
for linear algebra problems are dealt with in chapter 4. Chapters 5 and 6 deal with the solution of non-
linear equations and the finding of roots of polynomials and numerical interpolation, extrapolation and
data fitting.

Therafter we switch to numerical integration for integralswith few dimensions, typically less than
three, in chapter 7. The numerical integration chapter serves also to justify the introduction of Monte-
Carlo methods discussed in chapters 8 and 9. There, a varietyof applications are presented, from in-
tegration of multidimensional integrals to problems in statistical physics such as random walks and the
derivation of the diffusion equation from Brownian motion.Chapter 10 continues this discussion by ex-
tending to studies of phase transitions in statistical physics. Chapter 11 deals with Monte-Carlo studies of
quantal systems, with an emphasis on variational Monte Carlo methods and diffusion Monte Carlo meth-
ods. In chapter 12 we deal with eigensystems and applications to e.g., the Schrödinger equation rewritten
as a matrix diagonalization problem. Problems from scattering theory are also discussed, together with
the most used solution methods for systems of linear equations. Finally, we discuss various methods for
solving differential equations and partial differential equations in chapters 13-15 with examples ranging
from harmonic oscillations, equations for heat conductionand the time dependent Schrödinger equation.
The emphasis is on various finite difference methods.

We assume that you have taken an introductory course in programming and have some familiarity
with high-level or low-level and modern languages such as Java, Python, C++, Fortran 77/90/95, etc.
Fortran1 and C++ are examples of compiled low-level languages, in contrast to interpreted ones like
Maple or Matlab. In such compiled languages the computer translates an entire subprogram into basic
machine instructions all at one time. In an interpreted language the translation is done one statement at a
time. This clearly increases the computational time expenditure. More detailed aspects of the above two
programming languages will be discussed in the lab classes and various chapters of this text.

1With Fortran we will consistently mean Fortran 2003. There are no programming examples in Fortran 77 in this text.

4

1.1 – Choice of programming language

There are several texts on computational physics on the market, see for example Refs. [3–10], ranging
from introductory ones to more advanced ones. Most of these texts treat however in a rather cavalier
way the mathematics behind the various numerical methods. We’ve also succumbed to this approach,
mainly due to the following reasons: several of the methods discussed are rather involved, and would
thus require at least a one-semester course for an introduction. In so doing, little time would be left for
problems and computation. This course is a compromise between three disciplines, numerical methods,
problems from the physical sciences and computation. To achieve such a synthesis, we will have to relax
our presentation in order to avoid lengthy and gory mathematical expositions. You should also keep in
mind that computational physics and science in more generalterms consist of the combination of several
fields and crafts with the aim of finding solution strategies for complicated problems. However, where we
do indulge in presenting more formalism, we have borrowed heavily from several texts on mathematical
analysis.

1.1 Choice of programming language

As programming language we have ended up with preferring C++, but all examples discussed in the text
have their corresponding Fortran and Python programs on thewebpage of this text.

Fortran (FORmula TRANslation) was introduced in 1957 and remains in many scientific computing
environments the language of choice. The latest standard, Fortran [11–14], includes extensions that are
familiar to users of C++. Some of the most important featuresof Fortran include recursive subroutines,
dynamic storage allocation and pointers, user defined data structures, modules, and the ability to manip-
ulate entire arrays. However, there are several good reasons for choosing C++ as programming language
for scientific and engineering problems. Here are some:

– C++ is now the dominating language in Unix and Windows environments. It is widely available
and is the language of choice for system programmers. It is very widespread for developments of
non-numerical software

– The C++ syntax has inspired lots of popular languages, such as Perl, Python and Java.

– It is an extremely portable language, all Linux and Unix operated machines have a C++ compiler.

– In the last years there has been an enormous effort towards developing numerical libraries for C++.
Numerous tools (numerical libraries such as MPI [15–17]) are written in C++ and interfacing them
requires knowledge of C++. Most C++ and Fortran compilers compare fairly well when it comes to
speed and numerical efficiency. Although Fortran 77 and C areregarded as slightly faster than C++
or Fortran, compiler improvements during the last few yearshave diminshed such differences. The
Java numerics project has lost some of its steam recently, and Java is therefore normally slower than
C++ or Fortran, see however the Java Numerics homepage for a discussion on numerical aspects
of Java [18].

– Complex variables, one of Fortran’s strongholds, can also be defined in the new ANSI C++ stan-
dard.

– C++ is a language which catches most of the errors as early as possible, typically at compilation
time. Fortran has some of these features if one omits implicit variable declarations.

5

Introduction

– C++ is also an object-oriented language, to be contrasted with C and Fortran. This means that
it supports three fundamental ideas, namely objects, classhierarchies and polymorphism. For-
tran has, through theMODULE declaration the capability of defining classes, but lacks inheritance,
although polymorphism is possible. Fortran is then considered as an object-based programming
language, to be contrasted with C++ which has the capabilityof relating classes to each other in a
hierarchical way.

An important aspect of C++ is its richness with more than 60 keywords allowing for a good balance
between object orientation and numerical efficiency. Furthermore, careful programming can results in
an efficiency close to Fortran 77. The language is well-suited for large projects and has presently good
standard libraries suitable for computational science projects, although many of these still lag behind
the large body of libraries for numerics available to Fortran programmers. However, it is not difficult
to interface libraries written in Fortran with C++ codes, ifcare is exercised. Other weak sides are the
fact that it can be easy to write inefficient code and that there are many ways of writing the same things,
adding to the confusion for beginners and professionals as well. The language is also under continuous
development, which often causes portability problems.

C++ is also a difficult language to learn. Grasping the basicsis rather straightforward, but takes
time to master. A specific problem which often causes unwanted or odd errors is dynamic memory
management.

The efficiency of C++ codes are close to those provided by Fortran. This means often that a code
written in Fortran 77 can be faster, however for large numerical projects C++ and Fortran are to be
preferred. If speed is an issue, one could port critical parts of the code to Fortran 77.

Future plans

Since our undergraduate curriculum has changed considerably from the beginning of Fall-2007, with the
introduction of Python as programming language, the content of this course will change accordingly from
the fall semester 2009. C++ and Fortran will then coexist with Python and students can choose between
these three programming languages. The emphasis in the textwill be on C++ programming, but how to
interface C++ or Fortran programs with Python codes will also be discussed.

1.2 Designing programs

Before we proceed with a discussion of numerical methods, wewould like to remind you of some aspects
of program writing.

In writing a program for a specific algorithm (a set of rules for doing mathematics or a precise
description of how to solve a problem), it is obvious that different programmers will apply different
styles, ranging from barely readable2 (even for the programmer) to well documented codes which canbe
used and extended upon by others in e.g., a project. The lack of readability of a program leads in many
cases to credibility problems, difficulty in letting othersextend the codes or remembering oneself what a
certain statement means, problems in spotting errors, not always easy to implement on other machines,
and so forth. Although you should feel free to follow your ownrules, we would like to focus certain
suggestions which may improve a program. What follows here is a list of our recommendations (or
biases/prejudices).

2As an example, a bad habit is to use variables with no specific meaning, like x1, x2 etc, or names for subprograms which
go like routine1, routine2 etc.

6

1.2 – Designing programs

First about designing a program.

– Before writing a single line, have the algorithm clarified and understood. It is crucial to have a
logical structure of e.g., the flow and organization of data before one starts writing.

– Always try to choose the simplest algorithm. Computationalspeed can be improved upon later.

– Try to write a as clear program as possible. Such programs areeasier to debug, and although it
may take more time, in the long run it may save you time. If you collaborate with other people, it
reduces spending time on debugging and trying to understandwhat the codes do. A clear program
will also allow you to remember better what the program really does!

– Implement a working code with emphasis on design for extensions, maintenance etc. Focus on the
design of your code in the beginning and don’t think too much about efficiency before you have a
thoroughly debugged and verified your program. A rule of thumb is the so-called80 − 20 rule, 80
% of the CPU time is spent in 20 % of the code and you will experience that typically onlya small
part of your code is responsible for most of the CPU expenditure. Therefore, spend most of your
time in devising a good algorithm.

– The planning of the program should be from top down to bottom,trying to keep the flow as linear as
possible. Avoid jumping back and forth in the program. Firstyou need to arrange the major tasks to
be achieved. Then try to break the major tasks into subtasks.These can be represented by functions
or subprograms. They should accomplish limited tasks and asfar as possible be independent of
each other. That will allow you to use them in other programs as well.

– Try always to find some cases where an analytical solution exists or where simple test cases can be
applied. If possible, devise different algorithms for solving the same problem. If you get the same
answers, you may have coded things correctly or made the sameerror twice.

– When you have a working code, you should start thinking of theefficiency. Analyze the efficiency
with a tool (profiler) to predict the CPU-intensive parts. Attack then the CPU-intensive parts after
the program reproduces benchmark results.

However, although we stress that you should post-pone a discussion of the efficiency of your code to
the stage when you are sure that it runs correctly, there are some simple guidelines to follow when you
design the algorithm.

– Avoid lists, sets etc., when arrays can be used without too much waste of memory. Avoid also calls
to functions in the innermost loop since that produces an overhead in the call.

– Heavy computation with small objects might be inefficient, e.g., vector of class complex objects

– Avoid small virtual functions (unless they end up in more than (say) 5 multiplications)

– Save object-oriented constructs for the top level of your code.

– Use taylored library functions for various operations, if possible.

– Reduce pointer-to-pointer-to....-pointer links inside loops.

– Avoid implicit type conversion, use rather the explicit keyword when declaring constructors in
C++.

7

Introduction

– Never return (copy) of an object from a function, since this normally implies a hidden allocation.

Finally, here are some of our favoured approaches for writing a code.

– Use always the standard ANSI version of the programming language. Avoid local dialects if you
wish to port your code to other machines.

– Add always comments to describe what a program or subprogramdoes. Comment lines help you
remember what you did e.g., one month ago.

– Declare all variables. Avoid totally theIMPLICIT statement in Fortran. The program will be more
readable and help you find errors when compiling.

– Do not use GOTO structures in Fortran. Although all varieties of spaghettiare great culinaric temp-
tations, spaghetti-like Fortran with manyGOTO statements is to be avoided. Extensive amounts of
time may be wasted on decoding other authors’ programs.

– When you name variables, use easily understandable names. Avoid v1 when you can usespeed_of_light . Associatives names make it easier to understand what a specific subprogram
does.

– Use compiler options to test program details and if possiblealso different compilers. They make
errors too.

– Writing codes in C++ and Fortran may often lead to segmentation faults. This means in most cases
that we are trying to access elements of an array which are notavailable. When developing a code
it is then useful to compile with debugging options. The use of debuggers likegdb is something
we highly recommend during the development of a program.

8

