Chapter 1

Introduction

. Die Untersuchungsmethode, deren ich mich bedient habe endufl 6konomis-
che Probleme noch nicht angewandt wurde, macht die Lek&remten Kapitel ziemlich
schwierig, und es ist zu befiirchten,das franzdsische Publikum, stets ungeduldig nach
dem Ergebnis und begierig, den Zusammenhang zwischenldemalinen Grundsatzen und
den Fragen zu erkennen, die es unmittelbar bewegen, sichrabken I&t, weil es nicht
sofort weiter vordringen kann.

Das ist ein Nachteil, gegen den ich nichts weiter unternehikaan, als die nach Wahrheit
strebenden Leser von vornherein darauf hinzuweisen urabigefi machen. Es gibt keine
Landstragge fir die Wissenschaft, und nur diejenigen haben, Ausstute lichten Hohen zu
erreichen, die die Mihe nicht scheuen, ihre steilen Pfadaikdimmen.Karl Marx, preface
to the french edition of 'Das Kapital’, Vol. |

In the physical sciences we often encounter problems ofiatiah various properties of a given function
f(z). Typical operations are differentiation, integration dmaling the roots off(x). In most cases
we do not have an analytical expression for the functf¢m) and we cannot derive explicit formulae
for derivatives etc. Even if an analytical expression islate, the evaluation of certain operations on
f(z) are so difficult that we need to resort to a numerical evadnatMore frequentlyf(x) is the result

of complicated numerical operations and is thus known ohly set of discrete points and needs to be
approximated by some numerical methods in order to obtaimali@es, etc etc.

The aim of these lecture notes is to give you an introducticsetected numerical methods which are
encountered in the physical sciences. Several exampldsyarying degrees of complexity, will be used
in order to illustrate the application of these methods.

The text gives a survey over some of the most used methodsmpuwtational physics and each
chapter ends with one or more applications to realisticesgst from the structure of a neutron star to
the description of quantum mechanical systems through é4@airlo methods. Among the algorithms
we discuss, are some of the top algorithms in computatianahse. In recent surveys by Dongarra and
Sullivan [1] and Cipra [2], the list over the ten top algonith of the 20th century include

1. The Monte Carlo method or Metropolis algorithm, devisgddhn von Neumann, Stanislaw Ulam,
and Nicholas Metropolis, discussed in chapféfsi8-11.

2. The simplex method of linear programming, developed bgrGe Dantzig.

3. Krylov Subspace lIteration method for large eigenvalbi@ms in particular, developed by Mag-
nus Hestenes, Eduard Stiefel, and Cornelius Lanczos,ssiedun chaptér12.

Introduction

4. The Householder matrix decomposition, developed byoalstouseholder and discussed in chap-
ter[12.

The Fortran compiler, developed by a team lead by JohniBadodes used throughout this text.
The QR algorithm for eigenvalue calculation, developgdde Francis, discussed in chagpidr 12
The Quicksort algorithm, developed by Anthony Hoare.

Fast Fourier Transform, developed by James Cooley andTiakey, discussed in chapfed 19

© ® N o O

The Integer Relation Detection Algorithm, developed ldthan Ferguson and Rodney

10. The fast Multipole algorithm, developed by Leslie Gigaal and Vladimir Rokhlin; (to calculate
gravitational forces in an N-body problem normally reqsifé? calculations. The fast multipole
method uses order N calculations, by approximating thetsfief groups of distant particles using
multipole expansions)

The topics we cover start with an introduction to C++, Pythad Fortran programming combining
it with a discussion on numerical precision, a point we feadften neglected in computational science.
This chapter serves also as input to our discussion on noaheigrivation in chaptdd 3. In that chapter
we introduce several programming concepts such as dynemeaory allocation and call by reference
and value. Several program examples are presented in #ygerh For those who choose to program in
C++ we give also an introduction to the auxiliary library @4+, which contains several useful classes
for numerical operations on vectors and matrices. The bnRlitz++, matrices and selected algorithms
for linear algebra problems are dealt with in chajpler 4. @vaffs andd6 deal with the solution of non-
linear equations and the finding of roots of polynomials andherical interpolation, extrapolation and
data fitting.

Therafter we switch to numerical integration for integraith few dimensions, typically less than
three, in chaptdrl7. The numerical integration chapteresealso to justify the introduction of Monte-
Carlo methods discussed in chaptérs 8 [@nd 9. There, a vafietyplications are presented, from in-
tegration of multidimensional integrals to problems irtistacal physics such as random walks and the
derivation of the diffusion equation from Brownian motid@haptefZID continues this discussion by ex-
tending to studies of phase transitions in statistical jgisy<haptef 111 deals with Monte-Carlo studies of
quantal systems, with an emphasis on variational Monteo@aethods and diffusion Monte Carlo meth-
ods. In chaptdr12 we deal with eigensystems and applicatme.g., the Schrédinger equation rewritten
as a matrix diagonalization problem. Problems from sdatjetheory are also discussed, together with
the most used solution methods for systems of linear equatiéinally, we discuss various methods for
solving differential equations and partial differentigiuations in chaptefsI3315 with examples ranging
from harmonic oscillations, equations for heat conductiod the time dependent Schrodinger equation.
The emphasis is on various finite difference methods.

We assume that you have taken an introductory course ingmoging and have some familiarity
with high-level or low-level and modern languages such aa,JBython, C++, Fortran 77/90/95, etc.
Fortrarﬁ and C++ are examples of compiled low-level languages, inrrashto interpreted ones like
Maple or Matlab. In such compiled languages the computeskaes an entire subprogram into basic
machine instructions all at one time. In an interpreted legg the translation is done one statement at a
time. This clearly increases the computational time expered More detailed aspects of the above two
programming languages will be discussed in the lab clasmsarious chapters of this text.

lwith Fortran we will consistently mean Fortran 2003. Therer® programming examples in Fortran 77 in this text.

1.1 — Choice of programming language

There are several texts on computational physics on theahade for example Refs. [3—10], ranging
from introductory ones to more advanced ones. Most of thesss treat however in a rather cavalier
way the mathematics behind the various numerical methodsve/lso succumbed to this approach,
mainly due to the following reasons: several of the methadsudsed are rather involved, and would
thus require at least a one-semester course for an intiodudh so doing, little time would be left for
problems and computation. This course is a compromise leattieee disciplines, numerical methods,
problems from the physical sciences and computation. Tieglsuch a synthesis, we will have to relax
our presentation in order to avoid lengthy and gory mathmalagxpositions. You should also keep in
mind that computational physics and science in more getemrak consist of the combination of several
fields and crafts with the aim of finding solution strateg@sdomplicated problems. However, where we
do indulge in presenting more formalism, we have borroweaviyefrom several texts on mathematical
analysis.

1.1 Choice of programming language

As programming language we have ended up with preferring, Guttall examples discussed in the text
have their corresponding Fortran and Python programs owélxpage of this text.

Fortran (FORmula TRANSslation) was introduced in 1957 andaims in many scientific computing
environments the language of choice. The latest standarttaR [11-14], includes extensions that are
familiar to users of C++. Some of the most important featwfeSortran include recursive subroutines,
dynamic storage allocation and pointers, user defined tratetgres, modules, and the ability to manip-
ulate entire arrays. However, there are several good redepohoosing C++ as programming language
for scientific and engineering problems. Here are some:

— C++ is now the dominating language in Unix and Windows emuinents. It is widely available
and is the language of choice for system programmers. Itriswilespread for developments of
non-numerical software

— The C++ syntax has inspired lots of popular languages, ssi¢ted, Python and Java.
— Itis an extremely portable language, all Linux and Unix @ped machines have a C++ compiler.

— Inthe last years there has been an enormous effort towavetogeng numerical libraries for C++.
Numerous tools (numerical libraries such as MPI [15—-1&)\aritten in C++ and interfacing them
requires knowledge of C++. Most C++ and Fortran compileragare fairly well when it comes to
speed and numerical efficiency. Although Fortran 77 and Cegarded as slightly faster than C++
or Fortran, compiler improvements during the last few ydarge diminshed such differences. The
Java numerics project has lost some of its steam recentl]ara is therefore normally slower than
C++ or Fortran, see however the Java Numerics homepage fscasdion on numerical aspects
of Java [18].

— Complex variables, one of Fortran’s strongholds, can aésdddined in the new ANSI C++ stan-
dard.

— C++ is a language which catches most of the errors as earlgssspe, typically at compilation
time. Fortran has some of these features if one omits impliciable declarations.

Introduction

— C++ is also an object-oriented language, to be contrastdd @viand Fortran. This means that
it supports three fundamental ideas, namely objects, ¢l@sarchies and polymorphism. For-
tran has, through theMODULE declaration the capability of defining classes, but lackeiitance,
although polymorphism is possible. Fortran is then comsifl@s an object-based programming
language, to be contrasted with C++ which has the capabilitglating classes to each other in a
hierarchical way.

An important aspect of C++ is its richness with more than 8@nads allowing for a good balance
between object orientation and numerical efficiency. Farrtiore, careful programming can results in
an efficiency close to Fortran 77. The language is well-dufite large projects and has presently good
standard libraries suitable for computational sciencgepts, although many of these still lag behind
the large body of libraries for numerics available to Fartpmrogrammers. However, it is not difficult
to interface libraries written in Fortran with C++ codesgcére is exercised. Other weak sides are the
fact that it can be easy to write inefficient code and thatdlaee many ways of writing the same things,
adding to the confusion for beginners and professionalsedls Whe language is also under continuous
development, which often causes portability problems.

C++ is also a difficult language to learn. Grasping the basiagather straightforward, but takes
time to master. A specific problem which often causes unvdanteodd errors is dynamic memory
management.

The efficiency of C++ codes are close to those provided byr&wortThis means often that a code
written in Fortran 77 can be faster, however for large nuoa¢rmprojects C++ and Fortran are to be
preferred. If speed is an issue, one could port criticalspairthe code to Fortran 77.

Future plans

Since our undergraduate curriculum has changed conslgdraim the beginning of Fall-2007, with the
introduction of Python as programming language, the camtethis course will change accordingly from
the fall semester 2009. C++ and Fortran will then coexishwiython and students can choose between
these three programming languages. The emphasis in theitelse on C++ programming, but how to
interface C++ or Fortran programs with Python codes wilbdle discussed.

1.2 Designing programs

Before we proceed with a discussion of numerical methodsyetdd like to remind you of some aspects
of program writing.

In writing a program for a specific algorithm (a set of rules ftwing mathematics or a precise
description of how to solve a problem), it is obvious thafeté#nt programmers will apply different
styles, ranging from barely readaﬁeeven for the programmer) to well documented codes whictbean
used and extended upon by others in e.g., a project. The fagladability of a program leads in many
cases to credibility problems, difficulty in letting othexstend the codes or remembering oneself what a
certain statement means, problems in spotting errors,Iwaitya easy to implement on other machines,
and so forth. Although you should feel free to follow your owres, we would like to focus certain
suggestions which may improve a program. What follows hera list of our recommendations (or
biases/prejudices).

2As an example, a bad habit is to use variables with no specéaning, like x1, x2 etc, or names for subprograms which
go like routinel, routine2 etc.

6

1.2 — Designing programs

First about designing a program.

— Before writing a single line, have the algorithm clarifiecdaimderstood. It is crucial to have a
logical structure of e.g., the flow and organization of dagfole one starts writing.

— Always try to choose the simplest algorithm. Computatispmded can be improved upon later.

— Try to write a as clear program as possible. Such programsasier to debug, and although it
may take more time, in the long run it may save you time. If yollaborate with other people, it
reduces spending time on debugging and trying to understéiatithe codes do. A clear program
will also allow you to remember better what the program yeddies!

— Implement a working code with emphasis on design for exterssimaintenance etc. Focus on the
design of your code in the beginning and don’t think too mugobua efficiency before you have a
thoroughly debugged and verified your program. A rule of thusthe so-calle@0 — 20 rule, 80
% of the CPU time is spent in 20 % of the code and you will expegethat typically onlya small
part of your code is responsible for most of the CPU expenrglittherefore, spend most of your
time in devising a good algorithm.

— The planning of the program should be from top down to bottoyimg to keep the flow as linear as
possible. Avoid jumping back and forth in the program. Ryt need to arrange the major tasks to
be achieved. Then try to break the major tasks into subtdsiese can be represented by functions
or subprograms. They should accomplish limited tasks arfdraas possible be independent of
each other. That will allow you to use them in other programwall.

— Try always to find some cases where an analytical solutiost®err where simple test cases can be
applied. If possible, devise different algorithms for sotythe same problem. If you get the same
answers, you may have coded things correctly or made the saprawice.

— When you have a working code, you should start thinking offieiency. Analyze the efficiency
with a tool (profiler) to predict the CPU-intensive partsia&k then the CPU-intensive parts after
the program reproduces benchmark results.

However, although we stress that you should post-pone astizm of the efficiency of your code to
the stage when you are sure that it runs correctly, thereaane simple guidelines to follow when you
design the algorithm.

— Avoid lists, sets etc., when arrays can be used without tochniaste of memory. Avoid also calls
to functions in the innermost loop since that produces anhaaal in the call.

— Heavy computation with small objects might be inefficieng. evector of class complex objects
— Avoid small virtual functions (unless they end up in morertlisay) 5 multiplications)

— Save object-oriented constructs for the top level of youeco

— Use taylored library functions for various operations,dgpible.

— Reduce pointer-to-pointer-to....-pointer links insideps.

— Avoid implicit type conversion, use rather the explicit keyd when declaring constructors in
C++.

Introduction

— Never return (copy) of an object from a function, since trosmally implies a hidden allocation.
Finally, here are some of our favoured approaches for wr#icode.

— Use always the standard ANSI version of the programminguagg. Avoid local dialects if you
wish to port your code to other machines.

— Add always comments to describe what a program or subprodoas. Comment lines help you
remember what you did e.g., one month ago.

— Declare all variables. Avoid totally theIMPLICIT statement in Fortran. The program will be more
readable and help you find errors when compiling.

— Do not use GOTO structures in Fortran. Although all varieties of spagheatti great culinaric temp-
tations, spaghetti-like Fortran with mang0T0 statements is to be avoided. Extensive amounts of
time may be wasted on decoding other authors’ programs.

— When you name variables, use easily understandable namesid A vi when you can use
speed_of_light . Associatives names make it easier to understand what disgebprogram
does.

— Use compiler options to test program details and if posslde different compilers. They make
errors too.

— Writing codes in C++ and Fortran may often lead to segmeamtdtiults. This means in most cases
that we are trying to access elements of an array which aravadable. When developing a code
it is then useful to compile with debugging options. The ukdebuggers likegdb is something
we highly recommend during the development of a program.

