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Two-stream instability of electrons in the shock front
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1. Introduction

It is widely believed (see Scudder [1995] and references therein) that electron heating in the shock front is mainly due
to the electron interaction with the quasi-static electric and magnetic fields in the essentially one-dimensional stationary
shock profile. During this interaction each electron, crossing the shock from upstream to downstream, gets the same amount
of energy, namely eϕHT

0 , where ϕHT
0 is the cross-shock potential in the de Hoffman-Teller frame. Adiabatic mechanism

[Feldman et al., 1982; Goodrich and Scudder, 1984; Feldman, 1985; Thomsen et al., 1987; Schwartz et al., 1988; Hull et
al., 1998], which works in most shock profiles, implies that the electron magnetic moment is conserved across the shock,
that is, v2

⊥/B = const everywhere (index ⊥ refers to the local magnetic field direction). In this case the electrons are
efficiently accelerated along the magnetic field. Some electrons are reflected because of the magnetic barrier. In very thin
shocks, where the ramp width is of the order of the electron inertial length [Newbury and Russell, 1996], electrons may be
demagnetized in a part of the ramp and accelerated across the magnetic field [Balikhin et al., 1993; Gedalin et al., 1995;
Gedalin and Balikhin, 1998; Gedalin et al., 1997]. This results in a different distribution of the acquired energy among
the parallel and perpendicular degrees of freedom. Independently of what is the particular mechanism of the electron
energization, the upstream electrons, whose parallel velocities are directed upstream and which never enter the shock, must
have come from the downstream region. A substantial part of the phase space is not accessible to electrons, so that the
electron distribution inside the ramp and just behind it has a hole in the distribution [Hull et al., 1998], which should be
filled somehow to produce the observed distributions. It was suggested that this hole may be filled with some preexisting
electron population [Feldman et al., 1982; Feldman, 1985], in which case the electron distribution forms nonlocally. Only
the high energy tail is produced at the shock while the rest of the distribution is formed at another reflecting boundary, which
requires very good coordination between the shock and this boundary. This scenario was never analyzed in detail. Another
suggestion is the electrostatic and whistler instabilities in the drift (adiabatic) regime [Veltri et al., 1990, 1992 ; Veltri and
Zimbardo, 1993a, b]. Hull et al. [1998] adopted the phenomenological approach where the hole is filled homogeneously
up to the density required by the Rankine-Hugoniot relations, which does not provide physical explanation why such filling
should occur.

In this paper we consider the consequences of the fact that the collisionless electron distribution inside the ramp essentially
consists of two counterstreaming beams, which is the classical two-stream instability case. We find the growth rate of the
instability and show that it is capable of smoothing the electron distribution inside the ramp. In what follows we consider
the adiabatic case, since in the demagnetized regime the electron distribution cannot be determined analytically. However,
the results should not differ substantially, especially for strong shocks with large de Hoffman-Teller cross-shock potential.

2. Electron distribution inside the ramp

For simplicity we assume that the upstream distribution is Maxwellian

fu(vu,‖, vu,⊥) = nu(2πv2
T )−3/2

· exp[−
(vu,‖ − Vsh)2 + v2

u,⊥

2v2
T

],
(1)

where Vsh = Vu/ cos θ is the bulk upstream plasma velocity along the magnetic field in the de Hoffman-Teller frame (Vu

is the plasma velocity in the normal incidence frame, and θ is the angle between the shock normal and upstream magnetic
field). The distribution function is normalized so that 2π

∫
fudvu,‖vu,⊥dvu,⊥ = nu.

Let ϕ(x) be the de Hoffman-Teller potential and B(x) the total magnetic field throughout the shock. Conservation of
energy and magnetic momentum read

v2
‖ + v2

⊥ = v2
u,‖ + v2

u,⊥ +
2eϕ

me
, (2)

v2
⊥ = v2

u,⊥(B/Bu). (3)

1



X - 2 GEDALIN: TWO-STREAM INSTABILITY

Collisionless dynamics implies that throughout the shock f(v‖, v⊥) = fu(vu,‖, vu,⊥), where the functional form of
fu(vu,‖, vu,⊥) is given by (1), while the corresponding vu,‖ and vu,⊥ are found by solving (2)–(3):

v2
u,⊥ = v2

⊥(Bu/B), vu,‖ =
√

Q sign(v‖), (4)

Q = v2
‖ + v2

⊥(1−Bu/B)− 2eϕ

me
. (5)

Obviously, the condition Q < 0 defines the region in the velocity space which is not accessible for electrons.
In what follows we need the one-dimensional distribution function F (v‖) = 2π

∫
f(v‖, v⊥)v⊥dv⊥. Figure 1 shows
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Figure 1. Evolution of the distribution function F (v‖) through
the ramp. The parameters are as follows: de Hoffman-Teller
cross-shock potential eϕHT

0 = 12Teu, Vu/vTe cos θ = 0.2. In
the figure R = B/Bu, nf is the density of transmitted elec-
trons, and nb is the density of the backstreaming electrons nor-
malized on the upstream density. R monotonically increases
from R = 1 (upstream) to R = 4 (downstream).

the evolution of the distribution function F (v‖) across the shock front. The de Hoffman-Teller cross-shock potential is
estimated with the widely used polytropic relation [Schwartz et al., 1988]:

eϕHT
0 =

γ

γ − 1
(Ted − Teu), (6)

where we chose γ = 2 and Td/Tu = Bd/Bu (“adiabatic” case), and Bd/Bu = 4. The parameter Vsh/vTe = 0.2, that is,
upstream electrons are subsonic in the de Hoffman-Teller frame. The distribution function depends on the local magnetic
compression ratio R = B/Bu, and we assume that the potential follows the magnetic field profile [Hull et al., 1998;
Gedalin et al., 1998]: ϕ = ϕ0(B −Bu)/(Bd −Bu). The transmitted and backstreaming electron densities (normalized on
the upstream density) are denoted in the figure as nf and nb, respectively.

3. Two-stream instability

We consider the high-frequency electrostatic oscillations with the wavevector k ‖ B. The corresponding dispersion
relation is ε‖ = 0, where

ε‖ = 1−
ω2

pe

k

∫
dv‖

ω − kv‖
F (v‖), (7)

where ω2
pe = 4πnue2/me is the upstream plasma frequency, and the distribution function F (v‖) is qualitatively shown in

Figure 1. Qualitative analysis of the stability of this two-humped distribution can be done without solving the dispersion
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relation. The distribution should be unstable with respect to excitation of Langmuir waves, propagating in both directions.
Analysis of the exact distribution function is difficult. Moreover, in thin shocks or with weak nonstationarity the distribution
function can be expected to be distorted from (1). We shall, therefore, perform a semi-quantitative analysis of the model
distribution consisting of a waterbag distribution f0 = n0θ(V 2

0 − v2
‖) and two beams at the end of it fb = nb[δ(v‖ − V0) +

δ(v‖ + V0)]. The distribution F = f0 + fb resembles the numerically found distributions in Figure 1. The beams are taken
of equal densities to simplify the analysis (this does not change qualitative conclusions). It can be seen from Figure 1 that
the beam and waterbag densities are comparable. The corresponding dispersion relation reads:

1− ω2
0

ω2 − k2V 2
0

− 2ω2
b (ω2 + k2V 2

0 )
(ω2 − k2V 2

0 )2
= 0. (8)

Hydrodynamic instability occurs when k2V 2
0 < 2ω2

b − ω2
0 . Figure 2 shows the temporal growth rate of the two-stream
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Figure 2. (a) Growth rate Γ and (b) spatial growth rate κ of the two-stream instability for nb/n0 = 0.75.

instability for nb/n0 = 0.75 as a function of k. The maximum growth rate Γ is ≈ 0.14ω0 and occurs at k ≈ 0.25ω0/V0.
Taking V0 ≈ vTe and ω0 ≈ 0.5ωpe, one finds the growth rate of Γ ∼ 0.1ωpe and krDe ∼ 0.1. Spatial development of the
instability is described by the spatial growth rate κ (spatial dependence is ∝ exp(κx)) as a function of frequency. It is seen
that the maximum spatial growth rate occurs at about ω ≈ 0.7ω0 and the spatial scale 1/κ ∼ V0/ω0 is much less than the
electron inertial length.

If nb < 0.5n0 the model distribution is not suitable for the analysis and the instability should be considered kinetically. In
the kinetic regime the instability is not aperiodic and Langmuir waves are excited. Analytical consideration does not seem
possible for general distribution of the form (1) but some qualitative conclusions can be made. The total density is ≈ 0.5nu

so that the excited wave frequency is ωr . 0.7ωpe. The expected resonant wavenumbers lie in the range(0.2− 0.5)ωr/vTe
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so that krDe . 1. The growth rate of the instability can be also expected to be Γ . 0.1ωr. The corresponding spatial scale
is ∼ Vu/Γ � c/ωpe, and therefore is much smaller than the typical scale of the magnetic field variation. The instability
should be very efficient in relaxation of the distribution function, this relaxation taking place at the time scale substantially
less than the ramp crossing time. The relaxation starts at the edges of the ramp and results in the filling of the gap and
lowering of the peaks. If we consider only the parallel instability (k ‖ B) the distribution relaxation occurs at constant
v⊥ and in the final state a plateau ∂f/∂v‖ = 0 is formed in the distribution (see, for example, Swansson [1989]), which
could be responsible for the observed flattops. The edges of the plateau correspond to larger |v‖| than |v‖| corresponding to
the maximum of F (v‖), which means that the Liouville mapping of the maximum in the upstream distribution to the edge
of the observed downstream distribution [Schwartz et al., 1988] would result in overestimates of the de Hoffman-Teller
cross-shock potential. This is in agreement with the Schwartz et al. found discrepancy between this method and the method
of the polytropic estimate based on (6): it was found that the edge mapping gives systematically higher estimates of the
cross-shock potential than the polytropic approximation.

In reality not only waves with k ‖ B are excited, and the relaxation should involve the perpendicular velocity v⊥ as well.
Respectively, instead of plateau a quasi-plateau is formed [Swansson, 1989], which, nevertheless, does not change the basic
conclusion that the two-stream instability should result in the fast gap filling and flattopped distribution formation.

4. Conclusions

As a result of the collisionless electron dynamics in the shock front a two-stream unstable distribution is formed inside
the ramp. Typical temporal and spatial scales of the developing instability are much smaller than the ramp crossing time
and magnetic field inhomogeneity scale, respectively. Therefore, the instability may provide fast filling of the gap in the
collisionless electron distribution. During the relaxation the distribution tends to acquire a flattop-like shape. The high
energy end of the distribution is not involved in the relaxation and may be Liouville mapped onto the upstream distribution.
Because of the relaxation the edge of the downstream electron distribution does not correspond to the maximum in the
upstream distribution but to incident electrons with higher energies. Therefore, the standard Liouville mapping of the edge,
used by Schwartz et al. [1988] for the determination of the de Hoffman-Teller cross-shock potential, should overestimate
the potential.

Obviously, comprehensive quantitative analysis of the high frequency instabilities requires, in general, consideration
of oblique waves too. The above analysis exploited the properties of the distribution formed due to the acceleration of
transmitted electrons and deceleration of electrons leaking from the downstream region, that is, a particular mechanism
of the distribution formation inside the ramp. Nevertheless, the growth of beams should be the common feature of the
all collisionlessly formed distributions. We expect that these distributions are two-stream (bump-on-tail) unstable. Since
these electrostatic instabilities are fast, they may result in effective bringing of the distribution to the marginally stable state,
with low or no beams at all. Since the quasilinear diffusion can be considered as turbulent collisions, we argue that the
formation of the inner part of the electron distribution is collisional, while the high energy tail is formed collisionlessly. If
the above electrostatic instabilities occur they would be observed as appearance of the electrostatic noise inside the ramp
at frequencies below the upstream plasma frequency. Such electrostatic noise at frequencies between the ion and electron
plasma frequencies has been observed at the shock front [Rodriguez and Gurnett, 1975] and later tentatively identified by
Onsager et al. [1989] as electron beam mode waves. It has been shown recently [Matsumoto et al., 1997; Bale et al.,
1998] that this noise exists in the form of the short nonlinear structures with the typical spatial scale of several Debye
lengths, in agreement with our estimated of the typical scale of the most unstable perturbations. Omura et al. [1994] have
shown that “electron holes” can be formed as a result of nonlinear evolution of the two-stream instability with large beam
to background density ratio. These holes can nonlinearly decay into smaller holes [Saeki and Genma, 1998] and probably
result in large amplitude electric field spikes. This inhomogeneous turbulence should scatter electrons producing effective
electron resistivity. Bale et al. [1998] suggested that the “electron holes” may scatter ions too. More reliable quantitative
conclusions require detailed analysis of the behavior of the electron distribution inside the ramp (which in turn requires
better knowledge of the shock structure). However, it seems that the two-stream instability of the collisionlessly formed
electron distribution may trigger the electrostatic noise generation in the observed frequency band.
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