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1. Introduction

The cross-shock electric field, together with the magnetic field, determine the ion and electron dynamics in quasiperpen-
dicular collisionless shocks. Although turbulent fields cannot be neglected, it seems that at the scale of the shock transition
(foot, ramp, and overshoot for a high-Mach number shock, and ramp only for a low-Mach number shock) dc magnetic and
electric field are those which are mostly responsible for ion reflection and heating, and electron heating as well [Sckopke et
al., 1983; Thomsen et al., 1985; Lee et al., 1986, 1987; Goodrich and Scudder, 1984; Schwartz et al., 1988; Burgess et al.,
1989; Gedalin, 1996a]. On the other hand, the fields are affected by the reflected/heated distributions [Phillips and Robson,
1972; Woods, 1971; Leroy et al., 1982; Leroy, 1983], so that, for example, the relative strength of the cross-shock potential
decreases with the Mach number increase [Phillips and Robson, 1972; Formisano, V., 1982; Thomsen et al., 1987; Wygant
et al., 1987]. In order to understand in detail the ion and electron dynamics inside quasiperpendicular shocks, one has to
know in detail the distribution of the dc magnetic and electric field across the shock. While high-resolution magnetic field
measurements became a routine, high-resolution electric field measurements (three-components of the vector) are still not
always available, and it would be useful if such measurements could be compared (or completed) with other available data
to make the obtained information more comprehensive. Theoretical modeling of the electric field distribution inside the
shock would be of substantial help. Such modeling of the electric field across the whole quasiperpendicular shock front
(including ramp, foot, and overshoot) would be a difficult problem, especially because of the sensitivity of ion reflection to
the ion temperature and small-scale features [Burgess et al., 1989; Gedalin, 1996a]. However, in most low-Mach number
shocks the number of reflected ions is small [Thomsen et al., 1985; Sckopke et al., 1990], and there is no foot and overshoot.
We can expect that the relation between the field and ion dynamics is more simple in such shocks consisting of a single
ramp. We will show below that, indeed, this is the case, and rather general relations can be obtained with rather modest as-
sumptions. Similar simplification can be achieved for high-Mach number shocks inside the ramp which is rather narrow and
may be only a small part of the whole shock transition [Newbury et al., 1998]. Most existing derivations of the cross-shock
electric field are hydrodynamics based [see, e.g., Gedalin, 1998] and, as a rule, exploit polytropic state equations for ions
and electrons as well, thus introducing additional assumptions with, at best, limited empirical support. Not only are such
derivations model dependent, but they are also poorly justified. Indeed, in low-Mach number shocks only part of the ion
heating occurs in the ramp, while the main heating is related to the downstream gyration of the ion distribution, as is seen
from observations [Thomsen et al., 1985; Sckopke et al., 1990], numerical simulations [Burgess et al., 1989], and analytical
studies [Gedalin, 1997; Zilbersher et al., 1998] as well. The widely used phenomenological polytropic state equations do
not take into account the distinction between ion heating inside the ramp and the total shock heating. In high-Mach number
shocks reflected ions also considerably distort the state equation in the ramp. Yet is has been shown that, unless initial ion
temperature is high (high-β upstream plasma), ion motion across the ramp is intimately related to the cross-shock potential
[Gedalin, 1996a, 1997]. In the present paper we show that the ion density can be approximately represented as a function
of the potential in the ramp and propose that this relation may be used for indirect potential measurements. The derived
functional dependence allows us to establish two more relations which promise to be useful for comparison with direct
electric field measurements, or completing those if necessary. We discuss the applicability of the method to high-Mach
number shocks.

2. Ion motion in the ramp and relation to the potential

We start with the analysis of the ion motion in the ramp assuming that the magnetic and electric field are stationary (time-
independent) and one-dimensional (depend only on the single coordinate along the shock normal). The two assumptions
may be satisfied only approximately: the fields should not change much during the ramp crossing time, and the typical scale
of the shock inhomogeneity along the shock front should be substantially larger than the perpendicular ion displacement
during the ramp crossing. Fortunately, these conditions are met in most low-Mach number shocks, since they are nearly
stationary and one-dimensional [Zilbersher et al., 1998]. Such conditions should be also often met in high-Mach number
shocks with narrow ramp [Newbury et al., 1998].
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Let x be the coordinate along the shock normal, and y be the noncoplanarity direction, so that Bx = const, Ey = const,
and By is present only inside the ramp. We analyze the ion motion within the single particle equations of motion, which
read:

miv̇ = eE + ev ×B. (1)

Eq. (1) is always correct, even when the fields are varying and/or turbulent. In our case it is assumed that both E and B
depend only on x. As is said above, this is an approximation, and the below derivation remains valid even if there is weak
dependence on y, z and t.

We proceed in the normal incidence frame where an ion enters the ramp with the initial velocity vin = (Vu +ux, uy, uz),
where u is the random (thermal) velocity, typically u ∼

√
βi/M . Here, as usual, βi = 2µ0nuTiu/B2

u, nu is the upstream
plasma density, Bu is the upstream magnetic field, Tiu is the upstream ion temperature, and M is the Alfven Mach number.
The upstream magnetic field Bu, the upstream plasma velocity Vu, the motional electric field Ey and the angle between the
shock normal and upstream magnetic field θ are related as follows:

Ey = VuBu sin θ. (2)

Of course, physics is frame independent. Calculations, however, are easier and more convenient in the normal incidence
frame, where inside the ramp |vy, vz| � vx, as we shall see below. Indeed, for typical parameters of the moderately warm
upstream plasma, (u/Vu)2 ∼ βi/M

2 � 1. The cross-ramp potential with the magnetic field do not stop ions inside the
ramp [Burgess et al., 1989; Gedalin, 1997], so that vx > 0 throughout the ramp and we may substitute d/dt = vx(d/dx)
along the particle trajectory. Now the formal exact solution of (1) can be written as follows:

v2
x = (Vu + ux)2 − 2eφ

mi
+

e

mi

∫ x

0

(vyBz − vzBy)dx′, (3)

vy = uy +
∫ x

0

eEy

mivx
dx′ − e

mi

∫ x

0

Bzdx′ +
e

mi

∫ x

0

vzBx

vx
dx′, (4)

vz = u + z +
e

mi

∫ x

0

Bydx′ − e

mi

∫ x

0

vyBx

vx
dx′. (5)

General solution of (3)-(5) is not available. However, in the case of a thin ramp these equations can be solved approximately
[Gedalin, 1997]. Eq. (4) shows that

vy ∼
eBu sin θ

mi

∫ (
Vu

vx
− Bz

Bu sin θ

)
dx

.
eBu sin θ

mi
L,

(6)

where L is the ramp width, which is typically smaller than the ion inertial length . c/ωpi, ω2
pi = e2n/ε0mi [Mellott and

, 1984; Farris et al., 1993; Newbury et al., 1998]. From this one can easily see that vy � Vu, while vx ∼ Vu, so that
vy � vx throughout the ramp. Similarly, vz � vx. Note, that these conclusions hold even for substantial By [Thomsen
et al., 1987; Farris et al., 1993], because of the small width of the ramp. This is in the complete agreement with general
understanding of the charged particle motion in the inhomogeneous magnetic field: the particle becomes demagnetized
when the inhomogeneity scale is of the order or smaller than the particle gyroradius. The situation inside the ramp is
opposite to what happens in the foot and behind the ramp [Leroy et al., 1982; Leroy, 1983; Burgess et al., 1989; Gedalin,
1996a]. In the foot magnetic forces dominate and cause deflection, although ions are not magnetized. In the downstream,
behind the ramp, ions start to gyrate because of magnetization.

Thomsen et al. [1987] argue that the noncoplanar magnetic field plays an important role in the ion deceleration in the
ramp, in particular when viewed in the de Hoffman-Teller frame. The de Hoffman-Teller frames moves along Bz with the
velocity Vu/ cos θ relative to the normal incidence frame. As a result, the electrostatic field Ex is reduced by VuBy/ cos θ in
the de Hoffman-Teller frame, while the magnetic force Fx = evyBz− evzBy ≈ eVuBy/ cos θ is large. When in the normal
incidence frame, the Lorentz transformation of the field brings VuBy/ cos θ back into the electrostatic field, reducing the
magnetic deceleration force down to −euBy , making it unimportant. The combine effect is, of course, the same in both
frames (physics is frame independent), but the role distribution between the electrostatic and magnetic force is quite different
in different frames.

Taking into account that vy and vz remain small throughout the ramp it is easy to see that the contribution of last term
in (3) is also small relative to the first term, where we used Ex = −(dφ/dx). In the first term ux ∼ vT � Vu can be
neglected unless V 2

u − 2eφ/mi ≈ 0. Thus, the ion motion in the ramp is mostly affected by the potential and only weakly
by the magnetic forces. This conclusion does not require any assumption about the magnitude of the noncoplanar magnetic
field, and is the result if the small ramp width. It is worthwhile to note that magnetic deceleration and/or deflection is
important in wider parts of the shock (foot and overshoot) where it has to be taken into account to properly describe the
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ion reflection [Leroy, 1983; Gedalin, 1996a]. Thomsen et al. [1987] found numerically that the magnetic forces due to the
noncoplanar magnetic field component may contribute a substantial part of the ion decelerating force even in the normal
incidence frame. Their findings are due to the substantial overestimate of the ramp width in hybrid simulations: several
c/ωpi in the simulations versus a fraction of c/ωpi found in observations of high-Mach number shocks [Scudder et al.,
1986; Newbury et al., 1998]. In low-Mach number shocks the ramp width is of the order of c/ωpi [Mellott and , 1984;
Farris et al., 1993] but the noncoplanar magnetic field component is substantially lower.

In the lowest order approximation for low-βi shocks, where βi = 2µ0nTi/B2
u, we arrive at the following simple relation

vx =
√

V 2
u − 2eφ/mi. (7)

Since the upstream thermal spread does not appear here, the velocity vx is at the same time the mean velocity of the ion
flow inside the ramp, and the flux conservation gives immediately

n = nuVu/vx = nu(1− s)−1/2, (8)

where s = 2eφ/miV
2
u is the normalized potential. Thus, the transmitted ion density is directly related to the potential, and

measuring n one can immediately find s.
Now the relation to the magnetic field variations can be found directly from the pressure balance condition (which is

model independent and must be satisfied both in hydrodynamics and kinetics)

nmiv
2
x + pi + pe +

B2

2µ0
= const. (9)

Using (7) and nvx = nuVu one immediately has

numiV
2
u

√
1− s + pi + pe +

B2

2µ0
= const, (10)

where the last three terms can be measured directly and independently from the electric field measurements. Thus, (10)
allows indirect measurement of the potential inside the ramp even if the electric field measurements are impossible or
incomplete. This relation can be further simplified in the low-β plasma.

The lowest order approximation used above neglects thermal effects completely. This is not necessary, and calculation
of pi requires taking into account the broadening of the ion distribution inside the ramp [Thomsen et al., 1985; Sckopke et
al., 1990]. The comprehensive analysis of the equations of motion (3)-(5) with the initial temperature of the incident ions
taken into aacount has been done by Gedalin [1997], and we refer the reader to this paper for details, providing here only
the relevant results (in the normalized form):

n/nu = (1− s)−1/2

[
1 +

3s

2(1− s)2
βi

2M2

]
, (11)

pi

numiV 2
u

=
βi

2M2
(1− s)−3/2, (12)

and v = 1/n. It is easy to see that the correction to n remains small provided βi � M2, so that (8) is a quite good
approximation for a wide range of shock parameters. The relation (8) or the equivalent v =

√
1− s provides a method

of indirect measurement of the potential by measuring the density of the transmitted ions. A good alternative would be
measuring vx at the maximum of the ion distribution throughout the ramp. It is worth noting that the ion velocity at the
top of the ramp, as provided by this expression, Vf =

√
1− sf (where sf is the total potential drop across the ramp) does

not coincide with the downstream plasma velocity Vd, which appears in the Rankine-Hugoniot relations and is often used
for estimates of the ion flow kinetic energy loss [Wygant et al., 1987]. The difference Vf − Vd determines the gyration
velocity of the ion distribution behind the ramp and, therefore, the downstream ion temperature Td ∼ mi(Vf − Vd)2/2
[Gedalin, 1997]. Thus, the potential drop must obey the condition eφ < mi(V 2

u − V 2
d )/2, otherwise the ion heating would

be weak. Reformulating the above, the ion deceleration inside the ramp is almost solely due to the electrostatic field, while
the eventual ion flow deceleration is completed with the magnetic deceleration behind the ramp.

Yet another method of indirect measurements of the electrostatic potential is to use (10) with the density given by (8) and
ion pressure given by (12) (in the absence of reflected ions) or measured independently. The magnetic field measurements
are most reliable, while the electron pressure can be measured too. If the particle measurements are difficult we need a model
for the electron pressure. Electrons cannot be treated in simple kinetics. Indeed, electrons are accelerated by the cross-
shock electric field, and if they are crossing the shock collisionlessly from upstream to downstream, their density decreases
[see, e.g., Gedalin, 1999]. At microscales substantial deviations from quasineutrality can be expected accompanied with
electric field spikes [Bale et al., 1998]. However, at the scales under consideration, & c/ωpe, quasineutrality cannot be
violated in any noticeable way, which requires ne = ni. In order to reconcile the quasineutrality requirements with electron
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dynamics in the ramp we have to conclude that there is another electron population [Scudder, 1995] (trapped or leaked
from downstream) or there are small scale electron instabilities causing effective collisions. The second option seems to
be inevitable especially in view of strong two-stream instability developing in the ramp [Gedalin, 1999]. Necessity of
collisions becomes quite clear in the case of a perpendicular shock where trapping or leakage are not possible. In any case,
typical electron times are much smaller than the ramp crossing time, and electrons easily pass to the hydrodynamic stage.
In the absence of a good quantitative model of mixed (collisionless+turbulent) electron heating in the ramp, we have to
treat them phenomenologically, assuming some state equation. For the estimate we shall use the empirical polytropic law
pe ∝ nγ , where γ was found observationally to be between 5/3 and 2, from the upstream and downstream electron pressure
comparison. Normalizing (9) on numiV

2
u one finds

v = 1− b2 − 1
2M2

− βi

2M2
(v−3 − 1)− βe

2M2
(v−γ − 1), (13)

where v ≡ vx/Vu = nu/n, b = B/Bu, and M2 = µ0numiV
2
u /B2

u. Since v =
√

1− s equation (13) establishes the
relation between the potential and magnetic field variations across the ramp. For sufficiently low-β shocks this relation is
independent of the upstream parameters except Mach number. It should be understood that (13) is written for a low-Mach
number shock and is not applicable for high-Mach number shocks where ion reflection occurs. It should be also understood
that (13) is much more limited than (8) and (10) since it uses additional assumptions regarding electron behavior. Far from
the ramp edges, b− 1 ∼ 1, and in the low-β limit the ratio of thermal contributions to the magnetic contribution into (13) is
∼ β � 1, so that further simplification is possible:

√
1− s = 1− (b2 − 1)/2M2. (14)

The precision of this relation should be quite good except at the downstream edge of the ramp, where gyrating ions begin
to alter ion distribution significantly changing n and pi. It should be also noted that the actual ion pressure may differ from
the derived expression for the transmitted ions, because of the reflected ion population which may contribute noticeably into
the ion heating inside the ramp even for low-Mach number shocks [Thomsen et al., 1985; Sckopke et al., 1990; Zilbersher
et al., 1998]. In this case one would have to use (10) with measured pressures. The reflected ion contribution into the ion
density inside the ramp of low-Mach number shocks remains at the level of a few percent Thomsen et al. [1985]; Sckopke et
al. [1990] and can be neglected in the derivation of n. The ion reflection itself is very sensitive to the ion temperature even
for low βi [Sckopke et al., 1983; Burgess et al., 1989; Gedalin, 1996a] since it occurs in the tail of the ion distribution.

3. Role of electrons

It is of interest to analyze the electron contribution into the current

x̂× dB⊥

dx
= µ0ne(vi⊥ − ve⊥), (15)

where ⊥ refers to y and z components, and x̂ is the unit vector in the shock normal direction. The ion contribution is small
since the velocity vi⊥ is small. The perpendicular electron velocity can be estimated from hydrodynamical equations with
the electron mass neglected (unless in perpendicular shocks), which simply gives

Ey + vezBx − vexBz = 0, (16)
vexBy − veyBx = 0. (17)

With vex = vx one gets
vey = vxBy/Bx, vez = (vxBz − Ey)/Bx. (18)

Substituting into (15) one gets

dBy

dx
= −µ0ne(vxBz − Ey)

Bx
= −µ0nueVu sin θ

cos θ

(
Bz

Bu sin θ
− Vu

vx

)
,

dBz

dx
=

µ0nevxBy

Bu cos θ
=

µ0enuVu

Bu cos θ
By,

where we have used nvx = nuVu, Ey = VuBu sin θ, and Bx = Bu cos θ (θ begin the angle between the shock normal and
the upstream magnetic field. Further differentiation of the equation for dBz/dx and substitution of dBy/dx result in the
following equation

c2 cos2 θ

M2ω2
pi

d2bz

dx2
= N − bz, (19)
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where bz = Bz/Bu sin θ, and N = n/nu = 1/v is given by (13). One can see that L ≡ c cos θ/Mωpi is the main scale
parameter in the shock front (cf. Mellott and [1984]; Farris et al. [1993]; Gedalin [1998]). Equation (19) is valid for
the magnetic field in the ramp but cannot be used for the description of the whole shock transition since downstream ion
behavior (gyration) is quite different from their behavior in the ramp, and the dependence of vx on B is no longer given by
(13).

When the electron current dominates, using (15) with vi neglected in the electron equation of motion

me

(
∂vx

∂t
+ vx

∂vx

∂x

)
= −eEx −

1
n

dpe

dx
− ex̂ · (ve ×B)

and neglecting the electron mass, one obtains the following frequently used relation [Gedalin, 1996b]

eEx = − 1
n

dpe

dx
− 1

n

d

dx

B2

2µ0
. (20)

Direct comparison of this relation with observations requires calculation of spatial derivatives or invoking model relations
like n/B ≈ const and pe ∝ γ. Such model assumptions were used by Schwartz et al. [1988] for the determination of the de
Hoffman-Teller potential. In our case the integration is more simple and does not require additional assumptions. Having
established the relation (8) between the density and potential, (20) can be now directly integrated to

nuVumi

√
V 2

u − 2eφ/mi + pe +
B2

2µ0
= const, (21)

which is much easier to apply to observations since pe and B can be directly measured and no spatial derivatives or phe-
nomenological models need to be invoked (thus additional errors related to these two are also excluded). The first term in
(21) is written for the lowest order approximation. In one wishes to take into account the nonzero ion temperature in the
ramp, (11) has to be used when integrating (20), which would introduce relative corrections∼ βi/M

2(1−s). Unfortunately,
the expression (20) cannot be used directly in high-Mach number shocks since the ion current is not negligible.

4. Discussion and conclusions

The only assumption used in the above derivation of the relation between the potential and ion density inside the ramp
is that the incident ion βi � M2. We have also exploited the narrowness of the ramp, L . c/ωpi, which ensured that
the main ion deceleration is produced by the electric field. Thus, the derived relation (8) (or the more precise version (11))
should be valid for virtually all low-Mach number shocks, unless the upstream temperature is too high. It can be used for the
determination of the potential from the measurements of the transmitted ion density of by just following the maximum of
the ion distribution. The relation (10) is also applicable in most cases and can be used for the determination of the potential
from the direct measurements of the electron and ion pressure and magnetic field. The accompanying expression (13) is less
universal since the electron pressure behavior cannot be theoretically predicted at this stage, and some empirical models
should be applied. Yet for sufficiently low electron βe the electron contribution is only a small correction and (13) with
electron term omitted may be a good approximation. The last expression (21) is valid as long as the ion current is much
smaller than the electron current, which is typical for low-Mach number shocks.

We also found that the ramp widths of oblique low-Mach number shocks should always correlate with L = c cos θ/Mωpi.
The only reason for that is that almost massless, hydrodynamically behaving, electrons provide almost all current needed
for the magnetic field increase. It should be noted that (19) can describe the magnetic field behavior inside the ramp but
fails at the upstream and downstream edges, thus not allowing to derive the shock profile. The reason of the failure is the
same as the reason for the failure of polytropic hydrodynamics: the ion behavior at the entry to the ramp and just behind the
ramp is essentially kinetic, and the polytropic state equation is inappropriate.

In the low-Mach number case above the behavior of the ion velocity inside the shock was determined by the cross-shock
potential and the fact that the ion motion is almost completely demagnetized in the thin ramp [Gedalin, 1997; Zilbersher et
al., 1998]. In high-Mach number shocks the transmitted ion behavior remains essentially the same [Burgess et al., 1989;
Gedalin, 1996a], since the ramp is thin [Balikhin et al., 1995; Newbury et al., 1998]. It has been shown that some ions gyrate
back to the ramp from downstream and cross it once again backwards [Gedalin, 1996a]. Making another loop, almost half-
gyration, just ahead of the ramp, these ions cross the ramp forward once again and finally drift away downstream. The
number of the reflected ions correlates with the shock strength, Bd/Bu, and anti-correlates with the cross-shock potential.
The ion reflection depends on the details of the magnetic and electric field distribution in the shock structure (foot, ramp,
and overshoot), and there is no simple analytical estimate of the number of reflected ions and their distribution. It seems, at
the first sight, that one could use the specular reflection approximation, where the back-gyrating ions leave the ramp with
the velocity v = (−Vu, 0, 0) and enter the ramp again as an almost cold beam. In that case three fluid hydrodynamics
would be appropriate for the ion description in the shock, and all we need would be the fraction of reflected ions. However,
it has been shown [Sckopke et al., 1983; Gedalin, 1996a] that the dispersion of the reflected ions is substantial already at
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the first return to the ramp from the downstream, so that the above used approximation is no longer applicable and fully
kinetic description is needed. Since the ion reflection process is very sensitive to the details of the shock front and initial
ion parameters, we cannot expect any pronounced similarity in the structure of the ramp of high-Mach number shocks, in
contrast with what happens at low-Mach number shocks, so that our predictive ability is greatly reduced. Yet the relation
between the velocity of the incident (transmitted) ions and the potential in the ramp is maintained here too, and, probably,
even with greater precision because of the smaller thickness of the ramp and even weaker effects of the Lorentz force inside
it. The ratio βi/M

2 also decreases with the increase of the Mach number, so that zeroth-order approximation may appear to
be even more efficient in the ramp of a high-Mach number shock than in low-Mach number shocks. Thus, one can measure
the potential indirectly by measuring the velocity vx of the maximum of the core (transmitted ions) throughout the ramp.
Unfortunately, (10) and (21) are no longer useful, since reflected ions contribute significantly to the ion density and current,
thus making n and electron velocities unusable for our objectives. It is worth mentioning that the incident ion velocity at
the upstream edge of the ramp is no longer the upstream velocity Vu but the velocity of the ion flow decelerated in the foot
[Woods, 1971; Leroy et al., 1982; Leroy, 1983].

Direct measurements of the electrostatic potential even in low Mach number shocks are a very delicate task. Compli-
cations in such measurements are results of both physical and instrumental effects. In the ideal theoretical planar shock
the motional component of the electric field related to the V × B drift must be constant across the shock front. However,
nonstationarity of the shock front, errors in the determination of the shock normal, and possible nonplanar geometry of the
front do not allow precise separation of the electrostatic electric field component, that results from the cross shock potential,
from the motional electric field. That hampers the experimental determination of the cross shock potential. Instrumental
effects can lead to the different offsets in the solar wind and in the magnetosheath that as well undermines determination of
the electric field in the shock front transition region. The relation derived in the present paper allows to use density measure-
ments to determine cross shock potential for low Mach number shock. Temporal resolution of particle instruments is often
too low to provide complete information for subsequent determination of the cross shock potential, especially in narrow
high-Mach number shocks. However, wave instruments, such as WHISPER instrument on board of Cluster spacecraft, can
be used to determine plasma frequency (i.e. density as well) with resolution high enough to provide detailed profile of the
electrostatic potential inside the ramp of most observed low-Mach number shocks and at least a part of high-Mach number
shocks. It should be noted, however, that the shock front of a high-Mach number shock can be very structured and have no
a single monotonic ramp. Since the above analysis is valid only in the narrow transition layers, the indirect determination of
the potential distribution in a structured shock may be still a difficult observational problem requiring proper determination
of the regions where the proposed method is applicable.
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