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ABSTRACT

We demonstrate capabilities of wavelet transform on the measured magnetic
field of a collisionless shock. First derivative of Gaussian is applied to the time
series to identify the smallest scale of the ramp transition. Morlet transform is
used for the local analysis of wave features.

1 Introduction

The standard method of analysis of a time series is Fourier transform, which
has a number of drawbacks. For example, it cannot be applied to wavepack-
ets which are only several wavelengths long. Neither can it separate localized
structures which contribute into power spectrum independently of their position.
Wavelet transform is free of these drawbacks and allows retain information about
position and scale (frequency) as well. It is, therefore, an appropriate tool for the
analysis of complex systems, which contain a number of different scales and in
which stationary localized structures coexist with quasiperiodic time-dependent
features. An example of such system is a collisionless shock profile, in which on
a presumably sharp gradient of the magnetic field (ramp) large amplitude waves
may be superimposed, making identification of the ramp itself and determina-
tion of the wave features difficult. In the present paper we apply wavelet trans-
form to a shock profile (magnetic field) to demonstrate capabilities of the method.
The emphasis is on the possibility of extracting useful information from a single
spacecraft observations without invoking other plasma parameter measurements.
We restrict ourselves only to the magnetic vector data. The paper is organized as
follows. In section 2 we give theoretical background of the wavelet transform and
the method presented in the paper. In section 3 we apply the wavelet transform to
the ramp transition region in the shock profiled for the determination of the ramp
scale. In section 4 we apply Morlet transform for the local determination of the



upstream and downstream wave properties in the same shock profile.

2 Theoretical Background

Any localized function ψ(t), so that
∫∞
−∞ |ψ|

2dt < ∞, can be chosen as a
mother wavelet, if it satisfies the admissibility criterion

∫∞
−∞ ψdt = 0. If this is a

case, a family of the wavelets is built according to the following prescription:

ψ[a, d](t) = d−1/2ψ(
t− a

d
), (1)

where a is the position of the wavelet and d is its scale.
For any f(t) its wavelet transform W [f ](a, d) is defined as follows:

W [f ](a, d) =

∫ ∞

−∞
f(t)ψ∗[a, d](t)dt. (2)

In reality f(t) is not a continuous function but a time series, so that integration
in (2) should be substituted by summation. An obvious immediate advantage of
the method is that the time series does not have to be stationary, and there is no
need to detrend it.

It is clear that the result of the transform depends on the choice of the mother
wavelet (in general, arbitrary except the admissibility condition), so that this
choice should be dictated by our goals. In what follows we will be interested
in the analysis of two different features, which in the ideal case look as a) a sharp
jump of the magnetic field, or b) monochromatic wave. It has been shown that
the first derivative of Gaussian (G1)

G1(t) = t exp(−t2/2) = (−d/dt) exp(−t2/2) (3)

is especially suitable for the identification of the features of the first kind, while
waves are best analyzed with the use of the complex Morlet (M) wavelet:

M(t) = exp(2πit− t2/2). (4)

Let us consider the two wavelet transforms in more detail. In the lowest order
approximation a sharp jump can be represented as a step function f(t) = H(t −
t0), where H(t) = 1 when t > 0 and H(t) = 0 otherwise. The corresponding
G1-transform looks as follows:

WG[H](a, d) = d1/2 exp[−(t0 − a)2

2d2
]. (5)

In what follows we shall use the wavelet power spectrum P = |W |2/d, which in
this case takes the following form:

PG[H](a, d) = exp[−(t0 − a)2

d2
], (6)
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and has a sharp maximum at a = t0, independently of d, while the isocontours
(lines of P = const on the a− d plane) are |a− t0|/d = const.

In reality the transition is never infinitely narrow. Let us approximate the
transition by f(t) such that df/dt = (2π)−1/2D−1 exp[−(t − t0)

2/2D2]. When
D → 0 our f(t) → H(t− t0). The corresponding power spectrum is

PG[f ](a, d) =
d2

d2 +D2
exp[−(t0 − a)2

d2 +D2
]. (7)

Isocontours are |a−t0|/d ≈ const when d� D, and |a−t0| ∝ ln dwhen d� D.
Thus, the scale, where the conic isocontours |a−t0|/d ≈ const break down, gives
the width D of the profile.

Let us now examine a monochromatic wave f(t) = cos(ωt). The G-transform
gives

PG(a, d) = ω2d2 sin2(ωa) exp(−ω2d2/2), (8)

which is small for small and large values of d as well. We conclude that the
G-transform is not sensitive to monochromatic waves.

Let us consider now the M-transform of a monochromatic wave f = cos(ωt).
The transform is easily calculated:

WM(a, d) =

√
πd

2
[exp(iωa−(ωd−2π)2/2)+exp(−iωa−(ωd+2π)2/2)]. (9)

The second term in square brackets is always small and we shall neglect it here-
forth. Then the spectral power is

PM(a, f) =
π

2
exp[−4π2(f0/f − 1)2, (10)

where we defined f0 = ω/ω and f = 1/d. It is easy to see that the spectral power
has a sharp maximum at f = f0.

In reality wavepackets are always of a finite length, so we examine the M-
transform of the following wavepacket: f = exp[iω(t− t0)− (t− t0)2/2T 2]. The
spectral power is easily calculated in the following form:

PM(a, f) =
d2 + T 2

exp
[−2π2K2(f0 − f)2 − (a− t0)

2/2(d2 + T 2)], (11)

where, as above, f0 = ω/2π, f = 1/d, and K−2 = d−2 + T−2. Again there is a
sharp maximum at f = f0 for fixed a. We can also estimate the temporal width
∆a of the M-transform (which is centered on a = t0 as is the initial wavepacket)
and uncertainty in the frequency determination ∆f/f0 as follows:

∆a =
√
d2 + T 2 ≈

√
1 + (f0T )2/f0, (12)

∆f/f0 =
1

2πK
≈ 1

2π

√
1 + (f0T )−2, (13)
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which shows that when f0T � 1 the temporal width of the M-transform equals
the width of the wavepacket, and the uncertainty of the frequency determination
is 1/2π. Expressions (12)–(13) show that even when f0T ∼ 1, that is, when
the wavepacket is short and contains only ∼ 1 waveperiod, the precision of the
determination of its parameters using the M-transform is rather good.

As is seen from this analysis, the M-transform of a wavepacket looks as a
stripe in the a − −f plane, which is parallel to a-axis. It can be shown that the
M-transform of the step-like profiles looks as a ”fan” diverging to large d and can
be easily separated from the wave features.

In what follows we plan to apply M-transform to the measurements of the
magnetic field vector B = (Bx, By, Bz). As can be seen from above, the M-
transform effectively extracts quasi-monochromatic wave packets, and Wi ≡
WM [Bi](a, f) = Biq(a, d), where i = x, y, z and function f(a, d) is the same
for all three components. Thus, we can treat W = (Wx,Wy,Wz) locally as a
magnetic field of a monochromatic wave (apart of insignificant common factor
q).

Let us consider such a wave, in which B = B1 + iB2, where B1 and B2

are real. Presence of i means phase shift of π/2. It can be shown that the usual
definition of the degree of circular polarization Pc can be reformulated in the
vector form as follows:

Pc =
2|B1 ×B2|

B ·B∗ , (14)

and, if Pc 6= 0, the propagation direction is given by the following unity vector:

n̂ =
B1 ×B2

|B1 ×B2|
. (15)

Translating this into the language of M-transform, one finds

Pc =
2| ImW × ReW|

W ·W∗ , (16)

n̂ =
ImW × ReW

| ImW × ReW|
. (17)

It is worth noting that because of the nature of the wavelet transform W is
always completely polarized and the degree of linear polarization Pl = 1− Pc.

3 Ramp Identification

In this section we apply the G-transform to the magnetic field profile of the
s0292 shock. The total magnetic field and components are shown in Figure 1.
Figure 2 shows the wavelet spectral power for G1 and M-transforms applied to
the central part of the magnetic field profile. The G-transform panel clearly shows
the ramp transition and two more distinct step-like features downstream. The
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M-transform panel shows presence of downstream turbulence in two frequency
ranges (see below). Figure 3 shows the G-transform in more detail. The ramp
transition is identified from the typical conic shape of the transform. The ramp is
at t = 620 s and its width is about 2 s.

4 Upstream and Downstream Waves

In this section we study upstream and downstream waves using the method
described in section 2. The corresponding regions under consideration are shown
in Figure 1 by vertical lines.

For each component of the magnetic field Bi we find the corresponding M-
transform Wi(a, f), where f = 1/d, and the spectral power matrix is defined as
Pij(a, f) = fWi ·W ∗

j . The total power is defined as Pt = Pxx + Pyy + Pzz. The
total spectral power and spectral power for each component for upstream waves
are shown in Figure 4. It is seen that the distribution of the wave power is inho-
mogeneous. The strongest wave activity lasts for only several periods. It is also
seen that the wave activity in By is weak, while other components behave differ-
ently in different places. Figure 5 shows the wavelet analog of cross-correlation
spectral power. In both figures the range with Pt < 0.2 max(Pt) are cut out to
make the presentation more clear.

Figure 6 presents the polarization parameters of the upstream waves. In the
upper panel we provide the total magnetic field which has been denoised using
the Daubechies-10 wavelet transform and removing 7 finest levels. This magnetic
field is used below as a background magnetic field for the calculation of the angle
of the propagation direction with the magnetic field (the lowest panel). The other
panels show the total spectral power (for reference) and the degree of circular po-
larization. It should be noted that the determination of the angle φ = arccos |n̂ ·b|
(where b = B/|B|) is reliable only when the circular polarization is substantial.
It is clearly seen that in the regions, where circular polarization is high, the waves
propagate at small angles with respect to the background magnetic field. In Fig-
ure 7 the direction of propagation is given via angles between n̂ and axes x, y, and
z. The direction of propagation is rather stable, that is, does not fluctuate rapidly.
This stability is necessary for reliability of the method.

In principle, knowing direction of the wavevector k (which coincides with n̂)
and the plasma velocity in the spacecraft frame V, one may estimate the plasma
rest frame frequency of these waves from the Doppler shift ω′ = |ω − k · V|,
invoking theoretically known dispersion relations. We will not discuss this subject
in more details here.

Figures 8–12 show the results of similar analysis for downstream waves. We
shall briefly comment the main pecularities. In this region there are two distinct
frequency ranges of wave activity. Higher frequency is close to the spacecraft ro-
tation frequency 1/3 s−1 (shown in Figures 8–10 by green line) and to the ion gy-
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rofrequency as well (shown in Figure 10 by red line). The first proximity makes
one suspect that this is an artifact (although that may be a mere coincidence),
therefore we choose to not analyze it here and restrict ourselves to the lower fre-
quency band in Figures 11 and 12. In this frequency range the waves are strongly
circularly polarized (Pc > 0.7 typically) and propagate preferentially along the
background magnetic field. The angles between k and axes are also very stable
and vary relatively weakly, although this variation is quite noticeable.

5 Conclusions

We demonstrated capabilities of local analysis of a complex multiscale system
using wavelets. We have shown that G1 wavelet can be used to identify positions
and determine widths of steplike features. We have also proposed a method of
local determination of wave polarization and direction of its propagation. The
clear advantage of the method is that it does not require spatial (temporal) averag-
ing, necessary for Fourier analysis, thus allowing retain high temporal resolution
along with a rather good frequency resolution, even for short wavepackets con-
taining only few waveperiods.
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Figure 1: Total magnetic field and components for the shock s0292.
Time in seconds staring from an arbitary moment. Vertical lines cut
out the upstream and downstream regions studied later in section 4.
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Figure 2: Total magnetic field and contour plots for G1 and M-
transforms for the central part of the s0292 shock.
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Figure 3: Total magnetic field and contour plot for G1-transform for
the central part of the s0292 shock – more detailed view.
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Figure 4: Spectral power Pii = Wi ·W ∗
i /d for upstream waves.
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Figure 5: Cross-correlation spectral power |Pij| = |Wi ·W ∗
j |/d, i 6= j

for upstream waves.
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Figure 6: From top to bottom: a) total magnetic field with fluctuations
filtered out using Daubechies-10 wavelet transform and removing 7
finest scales, b) total wavelet spectral power, c) degree of circular
polarization, and d) angle between the direction of propagation and
the denoised magnetic field.
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Figure 7: Degree of circular polarization (upper panel) and angles
between the direction of propagation n̂ and axes x, y, and z.
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Figure 8: Spectral power Pii = Wi ·W ∗
i /d for downstream waves.
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Figure 9: Cross-correlation spectral power |Pij| = |Wi ·W ∗
j |/d, i 6= j

for downstream waves.
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Figure 10: From top to bottom: a) total magnetic field with fluctua-
tions filtered out using Daubechies-10 wavelet transform and remov-
ing 7 finest scales, b) total wavelet spectral power, c) degree of cir-
cular polarization, and d) angle between the direction of propagation
and the denoised magnetic field.
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Figure 11: Same as in Figure 10 but for low frequencies only.
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Figure 12: Degree of circular polarization (upper panel) and angles
between the direction of propagation n̂ and axes x, y, and z.
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