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The properties of low-frequency waves in a one-dimensional, relativistic electron-positron plasma in a strong
external magnetic field typical of pulsar magnetospheres are discussed. Approximate dispersion relations are
derived for a broad class of distribution functions that have an intrinsically relativistic spread in energies. The
effects of the non-neutrality, associated with rotation, and of the relative motion of the plasma species are
discussed briefly. In the plasma rest frame only three wave modes need be considered. The magnetosonic (t)
mode becomes firehose unstable as the magnetic field weakens, and this occurs in the wind zone of the pulsar.
The Alfvén (A) mode exists only below a maximum frequency, and is weakly damped only for sufficiently strong
magnetic fields. The Langmuir-O mode (L-O mode) is approximately longitudinal near its cutoff frequency, and
approximately transverse at high frequencies. We argue that the emission zone is within∼ 102 pulsar radii, and
that only t, A and Langmuir waves may participate in the formation of the observed radio spectrum.

I. INTRODUCTION

Relativistic plasma plays an important role in a number of astrophysical objects such as active galactic nuclei, black hole
magnetospheres, the primordial Universe, relativistic jets, cosmic rays and others [1]. In particular, relativistic pair (electron-
positron) plasma in a strong magnetic field plays a central role in the physics of pulsar magnetospheres and winds [2–4]. The
observed radio emission (ω ∼ 109–1011 s−1) from pulsars, which are magnetized neutron stars, is generated in a relativistic
pair plasma and must propagate through such plasma as it escapes [2, 4]. The pair plasma is created in a two-stage process:
primary particles are accelerated by an electric field parallel to the magnetic field near the poles (where the typical magnetic
field is ∼ 1012 G) up to extremely high energies, and these produce a secondary, denser pair plasma via an avalanche or cascade
process [5]. The number density, Np, of the secondary pair plasma exceeds the Goldreich-Julian density NGJ (which is required
to maintain corotation) by the so called multiplicity factor M = Np/NGJ ∼ 102− 106 [2, 4, 5]. The pair plasma is intrinsically
highly relativistic, its flow Lorentz factor γp being of the same order of magnitude as the typical spread (e.g., root mean square)
Lorentz factor 〈γ〉, with γp ∼ 〈γ〉 ∼ 10− 103 [4].

The radio emission mechanism for pulsars is not adequately understood [4, 6]. A plausible scenario is the excitation of waves
due to a resonant kinetic plasma instability followed by nonlinear interaction between the waves to produce the spectrum of
the escaping radiation. One version of this process is that suggested by one of us [7–9] and other versions have been reviewed
elsewhere [4, 6]. Whatever the details of the emission mechanism, the properties of the low-frequency waves in relativistic pair
plasma in the pulsar magnetosphere are of central importance for understanding the underlying processes in the formation of the
radio spectrum.

Waves in pulsar plasmas have been studied extensively over the past two decades. Early studies mainly concentrated on the
relativistic plasma flow, assuming cold or only mildly relativistic distribution of electrons and positrons in the plasma rest frame
(see, e.g., Ref. 10 and references therein). Kinetic analysis of the highly relativistic plasma concentrated mainly on longitudinal
waves propagating along the magnetic field (see, e.g., 11). A general expression for the dielectric tensor, except for the neglect
of gyrotropic factors (see below), was derived by one of us [12] for oblique low-frequency waves in a plasma which is one-
dimensional in the sense that the particles have motion only along the magnetic field lines. The dispersion relation for the
oblique electromagnetic waves was obtained and linear polarization explained. Low-frequency waves were studied in detail by
Arons and Barnard [13], where many of the results of the previous studies were rederived and generalized. The specific cases
considered in detail in [13] were the cold plasma and waterbag distributions. These distributions are not sufficiently general to
include all the possibly important effects in the application to pulsar plasmas. More recently a relativistic thermal distribution
was discussed by Polyakov [14], but this is also insufficiently general to contain all the possibly important features. In all these
cases, the plasma is assumed to be one-dimensional, which is well justified for plasma in the superstrong pulsar magnetic fields.
The astrophysical objective of such investigations is to understand the radio emission mechanism for pulsars, but neither the
emission mechanism nor even the location of the emission region has been clearly identified (see, e.g., Ref. 15).

The objective of the present paper is to determine the general properties (dispersion relations and polarization) of the low
frequency waves in pulsar plasmas making only the most general assumptions on the form of the distribution function. The
plasma is assumed locally homogeneous, and although we examine the effects of the nonzero charge and current density on the
wave properties, we argue that they can be ignored. The streaming motion of the plasma is removed by carrying out the analysis
in the plasma rest frame, where the intrinsic spread in particle energies is assumed highly relativistic. Our aim is to derive
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compact expressions for the dispersion relations for the low-frequency modes, which apply in the regions of the magnetosphere
where the observed radio emission is plausibly generated.

The paper is organized as follows. In section II we discuss the plasma parameters used throughout the paper. In section III we
present an efficient method for the treatment of linear and nonlinear low-frequency waves, based on the direct expansion of the
Vlasov equation in an inverse gyrofrequency power series, and use it in section IV to derive the dielectric tensor for an arbitrary
one-dimensional distribution function. In section V we analyze the dispersion relation for different modes and establish the
relation between the location of the region where the waves are considered (emission region) and mode features. In section VI
we summarize the results and discuss qualitative implications for the interpretation of pulsar radio emission.

II. PLASMA PARAMETERS

The pulsar plasma parameters in the source region are model dependent. There are different models for the generation of the
secondary pairs, for the location of the radio emission region, and there are intrinsic variations from one pulsar to another, all of
which introduce uncertainties into the estimates. We choose what we consider to be the most plausible parameters, but note that
there is necessarily an uncertainty of several orders of magnitude in some estimates, most notably of the plasma density.

A standard model of the polar cap pair cascade implies that the pulsar rest frame density of the pair plasma is Np ≈ MNGJ ,
where NGJ ≈ B0/Pec is the Goldreich-Julian density, and M is the multiplicity factor. For a pulsar with the polar magnetic
field B0 ≈ 1012 G and period P = 1 s, one finds NGJ ≈ 1011 cm−3. The multiplicity factor is uncertain, with estimates in the
range 102–106. We adopt M = 103 for numerical estimates. The resulting plasma density is Np ≈ 1014 cm−3. This plasma
is highly relativistic, flowing with a mean Lorentz factor of about γp ≈ 103 and having a spread in Lorentz factors of about
〈γ〉 ≈ 102 (for the actual definition of this parameter see below). Thus, the plasma rest frame density near the pulsar surface is
Nr = Np/γp ≈ 1011 cm−3.

The dipole magnetic field varies in the magnetosphere as B = B0(R0/R)−3, where R0 ≈ 106 cm is the radius of the
neutron star. In most models of the pulsar radio emission [15] the emission zone is believed to be well inside the light cylinder
RL = cP/2π, beyond which corotation must break down. For a pulsar with the period P = 1 s, the light cylinder is at the radius
RL ≈ 1010 cm ≈ 104R0. The plasma density varies as Np ∝ R−3 (as the magnetic field) in the region of interest (R . RL),
where γp and 〈γ〉 are independent of R.

The frequencies of interest are those in the observed radio range of 109–1011 s−1, which translates into ω ∼ 106–108 s−1

in the plasma rest frame for γp ≈ 103. The gyrofrequency Ω = eB/mc and the plasma frequency, defined here as ωp =
(4πNre

2/m)1/2 without any Lorentz factor, vary from Ω ≈ 2 × 1019 s−1 and ωp ≈ 2 × 1010 s−1 near the polar cap, to
Ω ≈ 2 × 107 s−1 and ωp ≈ 2 × 104 s−1 at the light cylinder. If the emission zone is near 0.01RL [15], the corresponding
frequencies are approximately Ω ≈ 2× 1013 s−1 and ωp ≈ 2× 107 s−1. For more rapidly rotating pulsars these frequencies are
higher.

III. GENERAL FORMALISM

The approach to the analysis of low-frequency long waves was described in detail in Ref. 16. Here we briefly outline its
modification for the case of relativistic plasma.

The ultrarelativistic pair plasma, typical for pulsar magnetospheres, should be described by the relativistic Vlasov equation

∂

∂t
fs + v

∂

∂r
fs +

qs

ms
(E + v ×B)

∂

∂u
fs = 0, (1)

for each species s (electrons and positrons in our case), with u = p/m, v = u/γ, γ2 = 1 + u2, and where we use units with
c = 1. The magnetic field B includes the constant external magnetic field chosen so that B0 = (0, 0, B0). Eq. (1) applies in an
arbitrary inertial frame, and we use it in the plasma rest frame.

In cylindrical coordinates with u = (u⊥ cos φ, u⊥ sinφ, uz), the distribution function may be expressed as a Fourier series:

fs =
n=∞∑

n=−∞
fs,n(u⊥, uz) exp(−inφ). (2)

Only the components fs,0 and fs,σ, σ = ±1 appear in the following expression for the current density:

jz =
∑

s

qs

∫
vzfs,0u⊥du⊥duz, (3)
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jx =
∑

s

1
2

∑
σ

qs

∫
v⊥fs,σu⊥du⊥duz, (4)

jy =
∑

s

1
2

∑
σ

iσqs

∫
v⊥fs,σu⊥du⊥duz, (5)

and where
∑

s denotes summation over species. The dependence on s is omitted, but remains implicit, in the following equations.
Eq. (1) is equivalent to the following infinite chain:

(Ln + inΩ̃)fn +
∑

σ=±1

Gn−σ
σ fn−σ = 0, (6)

where the operators Ln and Gn
σ are defined by

Ln =
∂

∂t
+ vz

∂

∂z
+ αEz

∂

∂uz
inαγ−1Bz, (7)

Gn
σ =

v⊥
2
∇σ +

α

2
(Eσdσn + iσBσrσn), (8)

dσn =
∂

∂u⊥
− σn

u⊥
, rσn = vzdσn − v⊥∂, (9)

where α = q/m, Ω = qB0/m, Ω̃ = Ω/γ, Eσ = Ex + iσEy , Bσ = Bx + iσBy , and σ = ±1, and with ∇σ = ∂/∂x + iσ∂/∂y,
and ∂ ≡ (∂/∂uz).

In the general case, the infinite chain (6) is no simpler to solve than the original Vlasov equation (1). However, in the low
frequency, long wavelength regime, there is a small parameter ξ ∼ ωγ/Ω ∼ kγ/Ω � 1 in which one may expand. This
expansion is described in detail in Ref. [16]. It is done by simple substitution Ω → Ω/ξ (where now ξ is used as a formal
smallness parameter, which is set equal to unity in the end), so that Eq. (6) for |n| ≥ 1 may be written

fn =
ξ

inΩ̃

[
−Lnfn −

∑
σ

Gn−σ
σ fn−σ

]
. (10)

Since the equilibrium distribution is gyrotropic (fn → 0 for |n| ≥ 1, if E → 0, B → 0, and ∇ → 0), the distribution function
can be represented as a following power series:

fn =
∞∑

m=|n|

ξmf (m)
n , (11)

where the lower summation limit is determined by taking into account Eq. (10). For our present purposes it is sufficient to
restrict ourselves to the currents of order not higher than ξ2. Since fn ∼ O(ξ|n|), the chain (6) can be reduced to the following
equations for f0 and fσ , σ = ±1:

fσ = − ξ

iσΩ̃
G0

σf0 +
ξ2

iσΩ̃
Lσ

1
iσΩ̃

G0
σf0, (12)

L0f0 =
∑

σ

Gσ
−σ

ξ

iσΩ̃

(
1− ξLσ

iσΩ̃

)
G0

σf0. (13)

These equations form a closed set for plasma in a strong external magnetic field. A perturbative solution gives

L0f
(0)
0 = 0, (14)

L0f
(1)
0 =

∑
σ

Gσ
−σ

1
iσΩ̃

G0
σf

(0)
0 , (15)

L0f
(2)
0 =

∑
σ

Gσ
−σ

1
iσΩ̃

G0
σf

(1)
0 −

∑
σ

Gσ
−σ

1
iσΩ̃

Lσ
1

iσΩ̃
G0

σf
(0)
0 . (16)

Of course, the inverse operator L−1
0 should be properly defined to solve Eqs. (14)–(16).
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The expansion procedure simplifies in the weak turbulence limit in which one can expand in a further small parameter η ∼
E/B0 � 1. As we are concerned with the linear response of the plasma we need retain only the zeroth and linear terms in this
expansion. This leads to the expansion

f0 = F0(u⊥, uz) + η
2∑

n=0

ξnf
(n)
0 , (17)

fσ = η
2∑

n=1

ξnf (n)
σ . (18)

It is convenient to switch to Fourier space, assuming that all perturbations ∝ exp[i(k · r− ωt)], with k = (k⊥, 0, kz). Omitting
the lengthy algebra we find

f0 = F0(u⊥, uz)−
αk⊥v⊥

2Ω̃ζ
Eyµ0F0 +

iαk⊥v⊥

2Ω̃2ω
Exµ0F0 (19)

+
ik2
⊥v⊥vzα

2Ω̃2ζ
µ0F0Ez +

ik⊥v⊥α

2Ω̃2
µ0F0Ex,

fσ = − α

2iσΩ̃
[Eσ + Ez(k⊥vz/ζ)]µ0F0 (20)

+
iαk2

⊥v2
⊥

4iσΩ̃2ζ
Eyµ0F0 +

iαζ

2Ω̃2
[Eσ + Ez(k⊥vz/ζ)]µ0F0,

where we use the relation B = k×E/ω and the notation ζ = ω − kzvz and µ0 = [ζ(∂/∂u⊥) + kzv⊥(∂/∂uz)]/ω. In the final
expressions (19) and (20) the formal smallness parameter ξ is not necessary already and it is set to unity.

IV. GENERAL DIELECTRIC TENSOR AND DISPERSION EQUATION

The distribution functions f0 and fσ found from (19) and (20) are used in Eqs. (3)–(5) to determine the conductivity tensor
by writing ji = KijEj . The dielectric tensor then follows from

εij = δij +
4πi

ω
Kij . (21)

We obtain

εzz = 1 +
∑

s

ω2
ps

ω

∫
vzu⊥ζ−1∂Fs,0du⊥duz (22)

−
∑

s

ω2
psk

2
⊥

2ωΩ2
s

∫
u2
⊥u2

zγ
−1ζ−1µ0Fs,0du⊥duz,

εyz = −εzy = i
∑

s

ω2
psk⊥

2ωΩs

∫
uzu

2
⊥γ−1ζ−1µ0Fs,0du⊥duz, (23)

εxz = εzx = −
∑

s

ω2
psk⊥

2ωΩ2
s

∫
uzu

2
⊥µ0Fs,0du⊥duz, (24)

εxy = −εyx = i
∑

s

ω2
ps

2ωΩs

∫
u2
⊥µ0Fs,0du⊥duz, (25)

εxx = 1−
∑

s

ω2
ps

2ωΩ2
s

∫
ζγu2

⊥µ0Fs,0du⊥duz, (26)

εyy = εxx +
∑

s

ω2
psk

2
⊥

4ωΩ2
s

∫
u4
⊥γ−1ζ−1µ0Fs,0du⊥duz, (27)

where we restore subscript s = ±1 denoting summation over species (s = 1 for positrons and s = −1 for electrons). Here
ω2

ps = 4πe2Nrs/m and Ωs = seB0/m, where we take into account q+ = −q− = e, m+ = m− = m. We now incorporate the
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plasma rest frame number density Nrs in the plasma frequency ωps and normalize the distribution function as follows:∫
Fs,0u⊥du⊥duz = 1. (28)

The dispersion equation for the waves is

det ||n2δij − ninj − εij || = 0, (29)

where n = |n|, with n = k/ω the refractive index, ω2
p = 4πq2Nr/m.

In (22)–(27) the distribution functions Fs,0(u⊥, uz) are arbitrary. The above expressions can be partially integrated to give

εzz = 1 +
∑

s

ω2
ps

ω
〈uzγ

−1ζ−1∂〉s +
∑

s

ω2
psk

2
⊥

ω2Ω2
s

〈u2
zγ
−1〉s (30)

−
∑

s

ω2
psk

2
⊥

2ω2Ω2
s

〈u2
zu

2
⊥γ−3〉s −

∑
s

ω2
psk

2
⊥kz

2ω2Ω2
s

〈u2
zu

2
⊥γ−2ζ−1∂〉s,

εyz = i
∑

s

ω2
psk⊥

2ω2Ωs

[
−2ω〈uzγ

−1〉s + kz〈uzu
2
⊥γ−2ζ−1∂〉s

]
, (31)

εxz = −
∑

s

ω2
psk⊥

2ω2Ω2
s

[
−2ω〈uz〉s + kz〈(2u2

z − u2
⊥)γ−1〉s

]
, (32)

εxy = i
∑

s

ω2
ps

2ω2Ωs

[
−2ω + kz〈uzγ

−1〉s
]
, (33)

εxx = 1−
∑

s

ω2
ps

2ω2Ω2
s

[
−2ω2〈γ〉s − ω2〈u2

⊥γ−1〉s (34)

+ 4ωkz〈uz〉s − k2
z〈(2u2

z − u2
⊥)γ−1〉s

]
,

εyy = εxx +
∑

s

ω2
psk

2
⊥

4ω2Ω2
s

[
−4〈u2

⊥γ−1〉s + 〈u4
⊥γ−3〉s + kz〈u4

⊥γ−2ζ−1∂〉s
]
, (35)

where

〈. . .〉s ≡
∫

u⊥du⊥duz(. . .)Fs,0. (36)

In (30)–(35), Fs,0(u⊥, uz) remain arbitrary, and the derived general dielectric tensor describes the linear response of both
anisotropic and isotropic plasmas. The distribution function of the electron-positron plasma in the pulsar magnetosphere is
assumed one-dimensional Fs,0 ∝ δ(u⊥)/u⊥, due to the perpendicular energy of relativistic electrons and positrons being
radiated away. We assume Fs,0 = F̃s,0(uz)δ(u⊥)/u⊥ with normalization

∫
F̃s,0duz = 1. For this one-dimensional distribution

one has

εzz = ε‖ = 1−
∑

s

ω2
ps

ω2
Ws(n‖) +

∑
s

ω2
psn

2
⊥

Ω2
〈u2

zγ
−1〉s, (37)

εyz = −iP = −i
∑

s

ω2
psn⊥

ωΩs
〈uzγ

−1〉s, (38)

εxz = Q =
∑

s

ω2
psn⊥

Ω2
s

(〈uz〉s − n‖〈u2
zγ
−1〉s), (39)

εxy = −ig = −i
∑

s

ω2
ps

ωΩs
(1− n‖〈uzγ

−1〉s), (40)

εxx = εyy = ε⊥ = 1 +
∑

s

ω2
ps

Ω2
s

(〈γ〉s − 2n‖〈uz〉s + n2
‖〈u

2
zγ
−1〉s), (41)
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where we introduce n⊥ = k⊥/ω = n sin θ, n‖ = kz/ω = n cos θ. The dispersion functions Ws(n‖) are defined by (for positive
ω)

Ws(n‖) = − 1
n‖

∫ ∞

−∞

1
1− n‖vz + iτ

dF̃s,0

duz
duz, (42)

where iτ (τ → +0) defines the contour of integration. The functions Ws(n‖) are defined so that in the cold plasma Ws = 1.
Alternative forms are

Ws(n‖) = − 1
n‖

[
P
∫ ∞

−∞

1
1− n‖vz

dF̃s,0

duz
duz − iπ

γ3
r

|n‖|
dF̃s,0

duz |uz=ur

]
, (43)

Ws(n‖) = − 1
n‖

[
P
∫ 1

−1

1
1− n‖vz

dF̃s,0

dvz
dvz − iπ

1
|n‖|

dF̃s,0

dvz |vz=vr

]
, (44)

with vr = 1/n‖, γr = (1− v2
r)−1/2, ur = γrvr, and P denotes the principal value integral.

The averaging procedure (36) becomes

〈. . .〉s =
∫

(. . .)F̃s,0duz. (45)

The plasma rest frame is defined such that the net flow speed is zero. In the following we argue that the relative flow between the
electrons and positrons is unimportant in determining the wave properties, and hence we effectively assume 〈uz〉− = 〈uz〉+ = 0
in the rest frame, where the subscripts denote electrons and positrons. However, 〈uz〉 = 0 does not guarantee that 〈uzγ

−1〉
vanishes, except where the distribution function possesses a specific symmetry property. It is likely that the pulsar plasma
distribution is noticeably asymmetric with respect to the outward and inward directions, because of the way it is generated in a
pair cascade.

V. WAVE PROPERTIES

In this section we derive the properties of the waves for specific distribution functions, using these to infer approximate
dispersion relations for a wider class of distributions.

A. Neglect of the gyrotropic terms

We start by arguing that the gyrotropic terms εyz and εxy may be neglected in the wave analysis. These terms are nonzero due
to nonzero charge density ρ ∼ eNGJ and a parallel current density J ∼ eNGJ associated with the rotation of the magnetosphere
[13], and each is smaller by a factor ∝ |N− − N+|/N ∼ NGJ/N ∼ 10−3 � 1 than the nongyrotropic terms. Only the
square of the gyrotropic terms enter the dispersion relation (29) for oblique propagation, and their effect would be significant,
compared with the other terms in the dispersion relation, for ω . ωp(NGJ/N)/〈γ〉1/2. Near the polar cap this inequality gives
ω . 106 s−1. The plasma density decreases ∝ R−3 with increasing radius R, so that the frequencies where the gyrotropic
terms are significant decreases with R. Assuming the source region to be at R > 10R0, implies that the gyrotropic terms
would be significant only at ω . 103 s−1, corresponding to an observational frequency ∼ 103γr/2π ≈ 0.2 MHz, which is well
below the radio frequency range of interest. It follows that the gyrotropic terms are negligible in the dispersion relations. The
gyrotropic terms imply an ellipticity of the polarization∝ NGJ/N , which is also negligible except in the limiting case of parallel
propagation.

The case of parallel propagation requires separate consideration. The dispersion relation in the appropriate approximation
becomes (retaining only the largest term)

n2 = 1±
ω2

p

ωΩ
|N− −N+|

N
, (46)

with |N− − N+| ∼ NGJ . The right hand side of (46) is insensitive to R so it suffices to estimate it near the pulsar surface.
With the parameters of section II one finds that the largest correction to the refractive index in the radio range is . 10−8. This
correction is not significant here.

In the following we neglect effects related to the nonzero charge and current densities, set F̃+,0 = F̃−,0, and hence neglect
the gyrotropic terms. However, the gyrotropic terms must become important for sufficiently low frequency waves, specifically
for waves for which the ratio of the rotation frequency of the star to the wave frequency is not negligible.
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B. The dispersion equation

The neglect of the gyrotropic terms implies P = g = 0 in (38) and (40), and for the same reason the terms involving 〈uz〉s
in (39) are neglected. We may also omit subscript s, using notation ωp+ = ωp− ≡ ωp, Ω+ = −Ω− ≡ Ω, and W+(n‖) =
W−(n‖) ≡ W (n‖). The dispersion equation then factorizes into two independent dispersion relations for linearly polarized
waves:

n2 = ε⊥, Ey 6= 0, (47)

(n2
‖ − ε⊥)(n2

⊥ − ε‖) = (n⊥n‖ + Q)2, Ey = 0, (48)

where

ε‖ = 1−
2ω2

p

ω2
W (n‖) + n2

⊥∆λ, (49)

ε⊥ = 1 + ∆(〈γ〉+ n2
‖λ), (50)

Q = −∆n⊥n‖λ, (51)

∆ =
2ω2

p

Ω2
, λ = 〈u2

zγ
−1〉. (52)

Eq. (47) corresponds to a strictly transverse wave mode, usually called the magnetosonic (t) mode, which name is used here.
This mode was called the X-mode in [13]. Eq. (48) corresponds to waves which are neither strictly longitudinal nor strictly
transverse in general, and it includes both the Langmuir and Alfvén modes as limiting cases. We discuss the waves described by
(47) and (48) separately.

C. Magnetosonic (t) waves

The dispersion relation (47) for t waves may be written in the form (cf. 9, 13):

ω2
t = k2v2

A(1−∆λ cos2 θ), (53)

where vA = 1/(1 + ∆〈γ〉)1/2 is the relativistic Alfvén speed as defined by [17].
The t mode is subluminous (ω < k), and this is a necessary condition for a resonant (Cherenkov) interaction with particles

to be possible. Nevertheless, no resonant interaction is possible because the waves have Ez = 0, and the current associated
with a particle is strictly along the z-axis in the one-dimensional case. A resonant interaction becomes possible in principle
when either the gyrotropic terms are included, as these lead to a nonzero longitudinal component of the polarization, or when
the particles are not confined to their lowest Landau orbital. In the first case the absorption coefficient should be proportional to
Ez/Ey ∝ ∆NGJ/Np, and hence is very weak. The second case requires that there be some mechanism to excite the particles out
of their lowest Landau orbital, and the only effective mechanism is a resonant gyromagnetic interaction, which requires waves
of much higher frequency than are of interest here. Such excitation through the anomalous Doppler resonance was discussed
by [18]. Provided our assumption that the plasma is one dimensional remains valid, absorption (positive or negative) due to
gyromagnetic interactions is not possible.

Eq. (53) shows that the plasma becomes intrinsically (aperiodically) unstable when ∆λ > 1. This is a special case of the
firehose instability, which may occur in a hot anisotropic plasma [17]. Well within the light cylinder in a pulsar magnetosphere
one has ∆ ∝ R3, and then the firehose instability develops for

R & R0

(
Ω2

0

ω2
p0〈γ〉

)1/3

, (54)

where the subscript 0 refers to the values near the pulsar surface. It is usually assumed that once the firehose instability develops,
the distribution function isotropizes due to quasilinear interactions with the unstable waves. In principle, the effects of the
quantization of the Landau levels needs to be taken into account here, because the conventional treatment in terms of a diffusion
in pitch angle applies only in the non-quantum limit. However, for typical plasma parameters the firehose instability develops
well beyond the light cylinder, in the wind zone, where ∆ ∝ R−2. Hence, it is not directly relevant to the present discussion.

The correction to the refractive index (and phase velocity) ∝ ∆〈γ〉 is small for parameters of relevance here. The correction
is relevant at all only if it is larger than other corrections, in particular, that due to vacuum polarization (e.g., Ref. 13). The
vacuum polarization gives a correction ∝ (αf/45π)(B/Bc)2, where αf = 1/137 is the fine structure constant, and the critical
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magnetic field is Bc = 4.4 × 1013 G. Near the pulsar surface this correction is ∼ 10−7 and drops to ∼ 10−13 at R = 10R0,
being proportional to R−6. On the other hand the plasma induced correction is ∆〈γ〉 ∼ 10−16 near the pulsar surface, and
increases as R3 with the distance, reaching ∆〈γ〉 ∼ 10−8 at R = 103R0. These numbers show that vacuum polarization effects
are negligible and the infinite magnetic field approximation (∆ = 0) is appropriate for R . 103R0. This conclusion also applies
to the mixed (Alfvén-Langmuir) mode. Nevertheless, for completeness, we retain ∆ 6= 0.

D. Alfvén-Langmuir mode

The second dispersion relation (48) is more complicated. The identification of the modes is made by considering the case
of parallel propagation. For n⊥ = 0, (48) factorizes into the dispersion relation n2 = ε⊥ for the parallel Alfvén mode (which
is degenerate with the parallel t wave) and ε‖ = 0 for the parallel Langmuir wave [9, 11]. On including a small obliquity, the
relevant solutions of (48) are found to map continuously onto these parallel modes as the obliquity reduces to zero (in the long
wavelength limit k → 0), and hence the classification into Alfvén and Langmuir waves remains well defined. However, the
“Langmuir” mode does not necessarily remain even approximately longitudinal away from parallel propagation. The Langmuir
mode evolves into a transverse electromagnetic mode, identified as the O-mode by [13]. We also note that because all solutions
of (48) have Ez 6= 0 the Cherenkov resonance, ω = kzvz , allows Landau damping (or growth) for subluminous waves, where
“subluminous” means n‖ = kz/ω > 1.

The existing nomenclature for these modes can be confusing. Our nomenclature is to refer to the mode which is degenerate
with the t mode for parallel propagation as the Alfvén (A) mode. The A mode has a parallel phase velocity (= 1/n‖) that is
subluminous (n‖ > 1). The mode with a cutoff frequency has a parallel phase velocity that is superluminous, and is called the
L-O mode mode. The L-O mode is referred to as the Langmuir mode only in the regime where the waves are approximately
longitudinal.

We write Eq. (48) in the form

ω2

2ω2
p

=
n2
‖ − (1 + δ1)

n2
‖ − (1 + δ2) cos2 θ

W (n‖) cos2 θ. (55)

where we retain first order terms in ∆ in the small corrections δ1 = ∆(〈γ〉 + λ) and δ2 = ∆(〈γ〉 cos2 θ + λ). The form (55)
contains the parallel A mode as a limiting case in which both the numerator and denominator vanish. To understand the behavior
of the A and L-O modes in the general case, one needs to consider the signs of the factors n2

‖ − (1 + δ1), n2
‖ − (1 + δ2) cos2 θ

and W (n‖). The plasma is transparent to one of these modes when (n2
‖ − (1 + δ1))(n2

‖ − (1 + δ2) cos2 θ)W (n‖) > 0. Since
W (n‖ < 1) > 0, the non-damping L-O mode always exists for 0 ≤ n2

‖ < (1+ δ2) cos2 θ (provided sin2 θ > δ2). The Langmuir

end of this mode starts at cutoff n‖ = 0, ω = ωp

√
2〈γ−3〉. The O-mode end is nondispersive with the dispersion relation

ω = k
√

1 + δ2.
The A-mode features depend on the details of the behavior of W (n‖). To investigate this mode we first consider several

specific distributions for which W (n‖) can be found analytically.

E. Specific distribution functions

We consider several simple choices of distributions. For simplicity, only symmetric distributions F̃0(−uz) = F̃0(uz) are
investigated, and (with one exception) the distributions are assumed to have a high energy cutoff at uz = um, with F̃0(uz >
um) = 0. The distributions discussed in detail are the waterbag, hard bell, and soft bell distributions illustrated in Figure 1. The
different shapes of the distribution functions, for given um, result in significantly different wave properties. These properties are
illustrated in Figures 2–5, which are discussed in detail below. Throughout this section we use the notation γm =

√
1 + u2

m,
vm = um/γm.

1. “Waterbag” distribution

First, consider the waterbag distribution (cf. Ref. 13), which we take in the form F̃0 = (1/2um)H(u2
m − u2

z) , where H(x)
is the Heavyside function, H(x) = 1 for x > 0 and H(x) = 0 otherwise. The dispersion function (44) becomes

W (n‖) =
1

γm(1− n2
‖v

2
m)

, (56)
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and (55) becomes

ω2

2ω2
p

= − cos2 θ

γmv2
m

n2
‖ − (1 + δ1)

[n2
‖ − (1 + δ2) cos2 θ](n2

‖ − 1/v2
m)

. (57)

The A mode depends on the values of n2
‖ corresponding to the zeros (at n2

‖ = 1 + δ1) and poles (at n2
‖ = (1 + δ2) cos2 θ and

n2
‖ = 1/v2

m ) of the right hand side of Eq. (57) (note that (1 + δ2) cos2 θ < 1 + δ1).
a. Case 1: (1 + δ2) cos2 θ < 1 + δ1 < 1/v2

m. The L-O mode requires 0 < n2
‖ < (1 + δ2) cos2 θ. The cutoff frequency

is ω → ωp

√
2/vm and the mode is purely longitudinal (Langmuir mode) when n‖ → 0. For ω → ∞ the L-O mode becomes

transverse (O-mode) when n2
‖ → (1 + δ2) cos2 θ < 1. The A mode has parallel refractive index in the range from n2

‖ = 1 + δ1

(where ω → 0) to n2
‖ → 1/v2

m (where ω →∞). This mode is transverse in the whole frequency range. Since vm < 1 this is the
only possible case in the infinite magnetic field limit, where δ1 = δ2 = 0.

b. Case 2: (1 + δ2) cos2 θ < 1/v2
m < 1 + δ1. The only difference from the case 1 is that the refractive index for the A

mode decreases now from (1 + δ1)1/2 to 1/vm with increasing frequency.
c. Case 3: 1/v2

m < (1 + δ2) cos2 θ < 1 + δ1. This order is possible only for (1 + δ2) cos2 θ > 1, that is, in the
quasiparallel regime. The L-O mode becomes electromagnetic (O-mode) with n‖ → 1/vm for ω → ∞. The A mode has
(1 + δ2) cos2 θ < n2

‖ < 1 + δ1.

2. “Hard bell” distribution

The waterbag distribution has dF̃0/duz = 0 everywhere except at the end points, where it is infinite. This precludes damping
due to the Cherenkov resonance. In order to study damping it is necessary to consider a distribution with dF̃0/duz 6= 0. Here
we consider the hard bell distribution

F̃0 =
3γ2

m

4u3
m

v2
m − v2

z

1− v2
z

H(v2
m − v2

z)

=
3

4u3
m

(u2
m − u2

z)H(u2
m − u2

z). (58)

The dispersion function (44) becomes

W (n‖) =
3

2u3
m(n2

‖ − 1)2

[
n‖ ln

∣∣∣∣n‖vm + 1
n‖vm − 1

∣∣∣∣
−umγm(n2

‖ − 1)−
n2
‖ + 1

2
ln
∣∣∣∣1 + vm

1− vm

∣∣∣∣
]

− i
3πn‖

2u2
m(n2

‖ − 1)2
H(n‖vm − 1).

(59)

This function has a logarithmic singularity, W →∞ at n‖ = 1/vm, but does not change sign there, in contrast with the waterbag
case. The sign change occurs at some n‖ = 1/v∗ > 1/vm (the exact value of which is of no importance here), so that the plasma
is non-transparent for waves with n‖ > 1/v∗. The imaginary part of W (n‖) is nonzero for all n‖ > 1/vm. The mode behavior
again depends on the relative positions of the zeros and the singularities, with (1 + δ2) cos2 θ < 1 + δ1, 1/v2

m < 1/v2
∗ . We

consider two cases.
a. Case 1: (1 + δ2) cos2 θ < 1 + δ1 < 1/v2

m < 1/v2
∗. The most important new feature is the appearance of a new mode,

whose parallel refractive index is in the range 1/vm < n‖ < 1/v∗ with n‖ → 1/vm for ω →∞ and n‖ → 1/v∗ for ω → 0. We
refer to this as the sub-‖ mode. The damping rate for this mode is

Γ
ω

=
Im W

2 Re W
= −

3πn‖

4u2
m(n2

‖ − 1)2 Re W
, (60)

which is large.
b. Case 2: (1+δ2) cos2 θ < 1/v2

m < 1+δ1 < 1/v2
∗. In this case the additional sub-‖mode exists for 1+δ1 < n2

‖ < 1/v2
∗ ,

and tends to low frequencies (ω → 0) at both ends of the range. It is strongly damped everywhere, and hence is of little practical
interest.
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3. “Soft bell” distribution

The waterbag distribution is discontinuous at vz = vm, and while the hard bell distribution is continuous at at vz = vm, it has
a discontinuous derivative there. The new sub-‖ mode that we identify for a hard bell distribution exists only near n‖ = 1/vm,
and may well be associated with the discontinuous derivative there. To explore this point, we consider a soft bell distribution,
which is continuous with a continuous derivative at vz = vm:

F̃0 =
15γ4

m

16u5
m

[
v2

m − v2
z

1− v2
z

]2
H(v2

m − v2
z)

=
15

16u5
m

(u2
m − u2

z)
2H(u2

m − u2
z). (61)

The dispersion function is

W (n‖) =
15γ2

m

4u5
m(n2

‖ − 1)3

{
1
8

ln
∣∣∣∣1 + vm

1− vm

∣∣∣∣ [(3 + v2
m)(3n2

‖ + 1)

−n2
‖(3v2

m + 1)(n2
‖ + 3)

]
+

1
4
umγm(n2

‖ − 1)(3v2
mn2

‖ + v2
m − n2

‖ − 3)

+n‖(n2
‖v

2
m − 1) ln

∣∣∣∣n‖vm + 1
n‖vm − 1

∣∣∣∣}
− i

15πγ2
mn‖(n2

‖v
2
m − 1)

4u5
m(n2

‖ − 1)3
H(n‖vm − 1).

(62)

The main difference from the hard bell case is that now there is no singularity at n‖ = 1/vm. The sign change of W (n‖) occurs
at some n‖ = 1/v∗ and the explicit value of v∗ is of no particular significance here. For (1 + δ2) cos2 θ < 1 + δ1 < 1/v2

∗
the sub-‖ mode has 1 + δ1 < n2

‖ < 1/v2
∗, as for the “hard-bell” case, but now with ω → 0 at both ends of the range. There

is substantial damping for n‖ > 1/vm, and the damping rate increases rapidly with increasing n‖. We conclude that the sub-‖
mode is only of possible interest for n‖ < 1/vm.

The frequency of the A mode is now limited from above, through the existence of a maximum frequency. The mode ceases to
exist for ω > ωmax, with ωmax determined by the the behavior of the dispersion function, implying ω → ωmax for n‖ = 1/vm.

4. Illustrations

To make the above analysis more comprehensible we illustrate the mode features for these three distributions graphically in
Figures 1–5. For this purpose we choose γm = 100 and θ = 80◦. Since the parameters 〈γ〉 and 〈γ−3〉 enter the dispersion
relations, it is of interest to compare them for these three cases. Numerically we find 〈γ〉w = 50 and 〈γ−3〉w = 0.1 for the
waterbag, 〈γ〉h = 37.5 and 〈γ−3〉h = 0.16 for the hard bell, and 〈γ〉s = 31.2 and 〈γ−3〉s = 0.2 for the soft bell distributions. As
could be expected, the softer the distribution, the lower is 〈γ〉 and the higher is 〈γ−3〉. In the three cases 〈γ−3〉〈γ〉 ≈ 0.5− 0.6.

The frequency–refractive index relation for the superluminous L-O mode (ω/ωp

√
2 as a function of n‖) for all three cases

in the infinite magnetic field limit is shown in Figure 2. This mode exists for 0 < n‖ < cos θ. The cutoff frequency ω0 =
ωp

√
〈γ−3〉 is nearly the same for all three distributions. Figure 3 shows that L-O wave becomes almost electromagnetic and

transverse (E ⊥ k) already at ω ≈ 2ω0.
Figure 4 shows the frequency - refractive index (solid lines) and damping rate - refractive index (dash-dotted lines) relations

for the subluminous A mode in the range n‖ > 1 for the same parameters as above. In the case of waterbag distribution the
plasma is not transparent for this mode for n‖ > 1/vm. In the hard bell and soft bell cases the wave propagates, but the damping
rate becomes comparable to or even larger than the wave frequency. Thus no weakly damped A wave exists for n > 1/vm in any
of the three cases. The wave frequencies are not limited from above for the waterbag and the hard bell distributions (although
in the latter case the logarithmic singularity does not allow us to show this in the figure). The dispersion relation ω(k) for this
mode in the transparency range 1 < n‖ < 1/vm and the upper frequency limit for the soft bell distribution (heavy line) are seen
in Figure 5. The thin line corresponds to the two other cases, which are not distinguishable from the soft bell case in this low
frequency limit, but extend to ω →∞.

To summarize, the A mode exists only in the very narrow range of refractive indices, (n‖−1) . 10−4, within which it is well
approximated by the dispersion relation ω = k cos θ. It is a low frequency wave and ceases to exist when its frequency becomes
of the order of the Langmuir wave cutoff frequency ωp

√
〈γ−3〉.
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5. Relativistic thermal distribution

All the above distributions have a high energy cutoff and have discontinuous first or higher derivatives. An example of a
distribution which extends to arbitrarily high particle energies and has all its derivatives continuous is the one-dimensional
relativistic thermal (Jüttner-Synge) distribution

F̃0 = A e−ργ , (63)

where ρ = m/T is the inverse of the temperature in units of the rest mass, and where the normalization constant A is of no
particular interest. If one interprets the exponential function in (63) as a smoothed form of cutoff of the distribution, then this is
analogous to a soft bell distribution with ρ = 1/γm or v2

m = 1− 1/ρ. The mean values 〈. . .〉, defined by (45), may be evaluated
in terms of known functions for the distribution (63), and compared with the results for other choices of distribution function.
In the ultrarelativistic limit, relations between these averages are insensitive to the form of the cutoff of the distribution. One
specific approximate relation required below is 〈γ−3〉 ∼ 〈γ〉−1, which applies to within a factor of order unity. The exact value
of this factor depends on the details of the distribution.

The dispersion function (44) for the distribution (63) is transcendental, and may be written in terms of various relativistic
plasma dispersion functions. For example, it may be written

W (1/z) = Az2 ∂

∂z
T (z, ρ), (64)

with z = 1/n‖, where the relativistic plasma dispersion function is that introduced and discussed by [19]:

T (z, ρ) =
∫ 1

−1

dv
e−ργ

v − z
. (65)

(A result analogous to (64) was derived by [14] in terms of different functions.) In the ultrarelativistic limit, ρ � 1, one has

∂T (z, ρ)
∂z

≈ 2(z2 − 1)−1 (66)

for 1 − z � ρ2. An expansion given by [19] implies ∂T (z, ρ)/∂z ≈ 4ρ−2 for |1 − z| � ρ2. The damping rate is determined
by Im T (z, ρ) = πH(1− z) e−ργr , with γr = 1/(1− z2)1/2 = n‖/(n2

‖ − 1)1/2. This implies strong damping for n2
‖ & 1− ρ2,

analogous to n2
‖ & 1/v2

m for the hard bell and soft bell distributions.
Comparison with the results for the other three distributions considered above, with ρ ∼ 1/γm � 1, suggests that the

dispersive function is not particularly sensitive to the choice of distribution function for n‖ < 1 (z > 1). For n‖ > 1, the
function ∂T (z, ρ)/∂z has a zero at 0 < z − 1 � 1, analogous to the zero of W (n‖) at n‖ = 1/v∗ for the other distributions.
However, unlike the other three cases, the function (64) has no unusual properties corresponding to n‖ ∼ 1/vm (n2

‖ − 1 ∼ ρ2),
suggesting that the properties of the new sub-‖ mode may be an artifact of the discontinuous derivatives of the hard bell and
soft bell distributions. The strong damping for n2

‖ & 1 + ρ2 is analogous to that for n2
‖ & 1/v2

m for the hard bell and soft bell
distributions.

F. Wave properties for more general distributions

With the foregoing examples as guides, we now draw some general conclusions concerning the properties of the wave modes
for a wider class of distributions of highly relativistic particles. We consider distributions that are nonzero in a range −um− <

uz < um+, where um± are large and positive, with um− 6= um+ in general. We also assume that F̃0 decreases monotonically
with the increasing γ, that is, there are no beams.

For the A mode to exist and be of interest, one requires that the frequency be below the maximum allowed frequency, and that
the damping be weak. In the ultrarelativistic case, F̃0 is approximately constant below a cutoff at γ = γm, and then normalization
to unity implies F̃0 ∼ 1/γm. Continuity of dF̃0/duz at uz = um results in the existence of a maximum A wave frequency that
can be estimated by setting n2

‖ = 1/v2
m = 1 + 1/γ2

m. Using (44) to estimate W (n‖) at this value, one finds W (n‖) ∼ ζ〈γ〉,
with ζ a coefficient of order unity that depends on the details of the distribution function. It follows that the maximum allowed
frequency for A waves is ωmax ∼ ωp(2/ζ〈γ〉)1/2. Damping results from continuity of F̃0 at uz = um and the damping is strong
for 1 + δ1 > 1 + 1/u2

m. To within a factor of order unity, this condition implies that the damping is strong for ∆ & 1/〈γ〉3. It
follows that A waves exist in one-dimensional plasmas only when the magnetic field is sufficiently strong that this condition is
satisfied.
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We conclude that the A mode exists and has dispersion relation approximated by ωA = k cos θ within limits set by the
maximum frequency, ωmax ∼ ωp/〈γ〉1/2, and by the onset of strong damping, with weakly damped waves confined to the
range ∆ . 1/〈γ〉3. With the parameters used here, the maximum frequency for A waves is ∼ 109 s−1 near the pulsar surface,
decreasing to . 106 s−1 above R ∼ 102R0. The strong damping implies that A waves cannot exist at R & 103R0, where
∆ & 1/〈γ〉3. Presence of an exponential tail for γ → ∞, as in the distribution (63), does not change these semiquantitative
conclusions.

For the L-O mode one has n‖ < 1. For an ultrarelativistic plasma the dispersion function may be approximated by

W (n‖) =
∫ ∞

−∞

F̃0duz

γ3(1− n‖vz)2

≈ 〈γ−3〉
[

1 + a

2(1− n‖)2
+

1− a

2(1 + n‖)2

]
, (67)

where a is the measure of the distribution asymmetry. In the high phase velocity limit n‖ � 1 the L-O mode describes oblique
Langmuir waves with approximate dispersion relation

ω2
l = 2ω2

p〈γ−3〉+ k2. (68)

As noted above, one has 〈γ−3〉 ∼ 〈γ〉−1 in an ultrarelativistic plasma. With the parameters used here the cutoff frequency
implied by (68) is ωp〈γ−3〉1/2 ∼ 109 s−1, near the pulsar surface, and ∼ 106 s−1 at R ∼ 102R0.

In the high frequency limit, n → 1, Eq. (67) in (55) describes O-mode waves with dispersion relation

ω2
O = k2 +

2ω2
p〈γ−3〉
sin2 θ

(1 + 2a cos θ + cos2 θ), (69)

where the condition k & ωp〈γ−3〉1/2/ sin θ is assumed to be satisfied.

G. Parallel propagation

The above expressions are valid for oblique propagation, when θ � (∆〈γ〉)1/2, 1/〈γ〉. In the opposite limit the waves should
be considered as effectively parallel. For completeness we summarize the properties of the waves propagating parallel to the
external magnetic field.

The t and A waves become circularly polarized and have the same dispersion relation ω2 = k2v2
A(1 −∆λ). The dispersion

relation for Langmuir wave in the limit k � ω0 becomes

ω2 = ω2
0 +

4ω2
pk〈uzγ

−4〉
ω0

+
6ω2

pk2〈u2
zγ
−5〉

ω0
. (70)

The most significant change from the oblique case is that the parallel Langmuir mode crosses the line n = 1 and becomes
subluminous at ω2 ≈ 4ω2

p〈γ〉.

VI. DISCUSSION AND CONCLUSIONS

Our study of the low frequency waves in a one dimensional, relativistic pair plasma, is motivated by their possible application
to pulsar radio emission. We describe these waves in the plasma rest frame. Observed frequencies are higher than those in the
plasma rest frame by a factor ∼ γp, due to the Lorentz transformation, with γp = 103 assumed here. The basic parameters
characterizing the low-frequency waves in the pulsar plasma for different conditions are given in Table 1. Depending on the
location in the pulsar magnetosphere, slightly different sets of obliquely propagating modes exist.

It can be seen from the table, that above R & 103R0 the radio range waves are no longer nonresonant, since ω ∼ Ω/〈γ〉. On the
other hand, the finite magnetic field corrections are negligible up to R ∼ 103R0, and the infinite magnetic field approximation
must be applied. The maximum A wave frequency and minimum Langmuir wave frequency, which are of the same order,
∼ ωp/(〈γ〉)1/2, are above the radio range near the pulsar surface, but below it at R & 102R0. The subluminous A wave
and superluminous L-O wave apparently complement each other to ensure the number of allowed oblique modes at any given
frequency equals two. In the parallel propagation case there are always two complementary subluminous transverse waves (t and
A waves degenerate), while the parallel Langmuir wave gradually enters the radio range with increasing distance. At R ∼ 102R0

the whole undamped part of the Langmuir wave is in the radio range.
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There is observational evidence in favor of the location of the emission zone well inside the magnetosphere, at R ∼ 10−2RL,
which corresponds to 10R0 . R . 102R0. Taking account that this zone is only a small part of the magnetosphere, one finds
that the emission zone should be located somewhere between 10R0 and 102R0 for a typical 1 s pulsar, and its size is ∼ R0. In
this case the only waves which may participate in the local spectrum formation (for example, due to nonlinear processes) are t
and A waves, for which the approximate dispersion relations ωt = k and ωA = k cos θ are appropriate. The Langmuir-O mode
has dispersion relation approximated roughly by ω2

l = ω2
p〈γ−3〉+ k2.

To summarize, we propose a method for studying waves with frequencies much lower than the relativistic gyrofrequency in
relativistic pair plasmas. We derive the concise general dispersion relations for these low frequency waves without making any
additional simplifying assumptions. We analyze the effects of gyrotropic terms on the waves in the radio frequency range and
find them negligible except for the polarization in the parallel propagation case. Working in the plasma rest frame we derive the
dispersion relations in various limits. Our representation differs from that of Ref. 13 in that that our choice of the plasma rest
frame avoids having the dispersion relations depend on Doppler shift effects. This choice of frame allows us to concentrate on the
effects related to the intrinsically relativistic distribution of electrons and positrons. Finally, using the pulsar plasma parameters
typical for the polar cap cascade models, we perform mode-location mapping and establish which modes can participate in the
processes of the formation of the radio emission spectrum for a typical pulsar.
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TABLE I: Plasma parameters for different locations in a pulsar magnetosphere. The choice of parameters is discussed in section II.

Distance, R0 ωp, s−1 Ω, s−1 ωp(〈γ〉)1/2, s−1 ωp/(〈γ〉)1/2, s−1 Ω/〈γ〉, s−1 ω2
p〈γ〉/Ω2

1 2× 1010 2× 1019 2× 1011 2× 109 2× 1017 10−16

10 6× 108 2× 1016 6× 109 6× 107 2× 1014 10−13

102 2× 107 2× 1013 2× 108 2× 106 2× 1011 10−10

103 6× 105 2× 1010 6× 106 6× 104 2× 108 10−7

104 2× 104 2× 107 2× 105 2× 103 2× 105 10−4
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FIG. 1: The waterbag, hard bell, and soft bell distributions with γm = 100.
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FIG. 2: Superluminous L-O mode for the three distributions. For given n‖, the frequency is the lowest for the waterbag distribution and highest
for the soft bell.
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FIG. 3: Same as Figure 2 but for ω and a function of k. The mode starts as the longitudinal Langmuir mode at k = 0 and becomes the
transverse O-mode as ω approaches k.
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FIG. 4: Frequency (solid line) and damping rate (dash-dotted line) for the subluminous A mode in the range n‖ > 1. For given 1 < n‖ < 1/vm

the frequency is highest for the waterbag and lowest for the soft bell. There is a singularity (ω →∞) for the waterbag and the hard bell cases
at n‖ = 1/vm. In the soft bell case there is no such singularity. In both hard bell and soft bell cases the wave damps for n > 1/vm.
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FIG. 5: Dispersion relation for subluminous A mode in the non-damping range 1 < n‖ < 1/vm. The existence of a maximum frequency for
the soft bell case (heavy line) is apparent. The thin line extending beyond the soft bell cutoff corresponds to the waterbag and hard bell cases,
which are non-distinguishable in the low-frequency range and do not have upper frequency limit.


