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Stationary one-dimensional nonlinear waves in two-fluid hydrodynamics are studied analytically in the
assumption of polytropic pressure and massless electrons. Particular attention is paid to the presence of
soliton solutions, which exist when the asymptotic plasma velocity is in the range v2

+ < v2 < v2
F or

v2
SL < v2 < v2

−, where vSL, vI , vF , and vS are the slow, intermediate, fast and sound speeds, respec-
tively, and v− = min(vS , vI), v+ = max(vS , vI). General nonlinear solution is derived in the parametric
representation. Inclusion of weak dissipation changes qualitatively the behavior of solutions allowing for fast
shock-like solutions. Generalized expression for the whistler precursor wavelength is derived.

I. INTRODUCTION

Nonlinear low-frequency hydrodynamical waves are of substantial interest, in particular, due to their role in the collisionless
shock formation and generic relation to the structure of these shocks. ”Low-frequency” in the present context means that the
typical frequencies and wavelengths correspond to the range ω � Ωe, where Ωe = eB/mec is the electron gyrofrequency.
This range includes both magnetosonic and whistler modes Nonlinear fast magnetosonic waves steepen into shocks (see, e.g.,
Ref. 1 and references therein), and are coupled to whistlers, which are part of the shock structure [2–4] or result from nonlinear
dynamics of the shock front [5, 6]. Alternatively, shocks can be considered as formed from weakly damped solitons [7]. It
should be noted that throughout the paper the term ”soliton” is used in its non-rigorous usage, as a synonym for a stationary
one-dimensional localized structure which tends to the same asymptotic state at both spatial infinities (solitary wave), in the
spirit of Ref. 7. Since no temporal evolution is considered, the integrability issues are not relevant here.

One-dimensional nonlinear hydrodynamical waves have been thoroughly investigated in various limits (see, e.g., [8–13]),
mainly within the mode separation approach (for review see [8, 13]). Particular attention was paid to the existence of soliton
solutions. However, mode separation does not seem appropriate for the description of the one-dimensional stationary nonlinear
wave of shock structure, which covers spatial scale range from typical MHD scales � c/ωpi (where ωpi = (4πne2/mi)1/2)
down to much smaller scales � c/ωpi, typical for the whistler [3, 4]. Therefore, a shock front itself should be considered as a
large amplitude nonlinear wave, incorporating in it properties of several modes.

Two-fluid hydrodynamics allows to extend the description onto scales in the typical whistler range, without extra complica-
tions due to the kinetic effects, although in the same time it leaves aside many features typical for high-Mach number shocks,
like anisotropy and non-gyrotropy of ion distributions (see a review in Ref. 14). Still two-fluid hydrodynamics is useful in the
case of relatively low Mach numbers and may provide some guidelines even for higher-Mach number regimes. Previous stud-
ies (see [12, 13] and references therein) treated nonlinear stationary one-dimensional waves (NS1D) semi-quantitatively, using
qualitative analysis of the corresponding pseudopotential. In the present paper we complete the analytical study of NS1D in the
framework of two-fluid hydrodynamics for a hot plasma, assuming the polytropic form for the state equation. The objective of
the present short paper is to present the results of the analysis of the features of these low-frequency stationary nonlinear waves,
including the range of parameters when solitons exist. The paper is organized as follows. In section II we derive the basic
equations in the dimensionless form. In section III we analyze the stationary points of the above equations, paying particular
attention to the conditions for the existence of soliton solutions. In section IV we analytically derive the general nonlinear wave
solution in the parametric form. In section V we consider the effects of weak dissipation and make some conclusions for the
shock-like solutions, including the generalization for the whistler precursor wavelength.

II. BASIC EQUATIONS

We start with the one-dimensional stationary two-fluid hydrodynamical equations, with ∂/∂t = ∂/∂y = ∂/∂z = 0, assuming
quasineutrality ne = ni = n and neglecting the electron mass me = 0. We also assume that the electron and ion pressures are
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isotropic and depend only on the density n. With these assumptions the equations take the following form [15]:

miv
dv

dx
= eEx +

e

c
n̂ · (Ui ×B⊥)− 1

n

dpi

dx
, (1)

0 = −eEx −
e

c
n̂ · (Ue ×B⊥)− 1

n

dpe

dx
, (2)

miv
dUi

dx
= eE⊥ +

e

c
vn̂×B⊥ +

e

c
BxUi × n̂, (3)

0 = −eE⊥ −
e

c
vn̂×B⊥ −

e

c
BxUe × n̂, (4)

n̂× dB⊥

dx
=

4π

c
ne(Ui −Ue), (5)

nv = J = const, (6)

where n̂ is the unity vector along x axis, B⊥ ⊥ n̂, U ⊥ n̂, E⊥ ⊥ n̂, and E⊥ = const.
Straightforward calculations give

Ui =
Bx

4πnvmi
(B⊥ −B⊥0), (7)

Ue =
Bx

4πnvmi
(B⊥ −B⊥0)−

c

4πen
n̂× dB⊥

dx
, (8)

where B⊥0 is the integration constant. After substitution of Eq. (8) into Eq. (4) one has

Bx

4πn

dB⊥

dx
− (

e

c
v − eB2

x

4πnvmi
)n̂×B⊥

= eE⊥ +
eB2

x

4πnvmi
n̂×B⊥0 ≡ G = const.

(9)

These equations are accompanied by the pressure balance equation

nmiv
2 + pe + pi +

B2
⊥

8π
= P = const, (10)

which is obtained by summing up Eq. (1) and (2) and nothing but the momentum conservation (constancy of the momentum
flux).

It is convenient and instructive to write the equations in the dimensionless form. To do so we choose a reference point, where
n = n0, v = v0, and B = B0. Using the freedom in the choice of a reference frame, we require that Ui = 0 in the reference
point, so that B0 = (Bx,B⊥0), Bx = B0 cos θ, |B⊥0| = B0 sin θ. We shall also use the freedom in the coordinate choice to
choose z axis along G. Now, normalizing the variables as follows:

n

n0
= N,

B⊥

B0
= (by, bz), (11)

and introducing the local Alfven velocity in the reference point v2
A = B2

0/4πn0mi one arrives at the following equations:

lW
dbz

dx
= (1−Nχ)by, (12)

lW
dby

dx
= µN sin θ(1− χ)− (1−Nχ)bz, (13)

where we normalized the reference point plasma velocity with the Alfven velocity V = v0/vA (this is in fact the local flow
Alfven Mach number in the reference point), and µ = const and lW = c cos θv0/V 2Ω0, Ω0 = eB0/mic. We also denoted
χ = cos2 θ/V 2 for convenience and compactness of writing.

The pressure balance equation takes the following dimensionless form:

2V 2

N
+ βp(N) + b2 = 2V 2 + β + sin2 θ, (14)

where β = 8π(pe(n0) + pi(n0))/B2
0 and p(N) = (pe + pi)/(pe(n0) + pi(n0)). In what follows we shall make the simplifying

assumption p(N) = NΓ.
It is worth noting that if the solution tends to the asymptotically homogeneous state, one can choose the reference point there,

and µ = 1.
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III. STATIONARY POINT ANALYSIS

The global behavior of the solutions of Eqs. (12)-(14) is determined by the location and character of the stationary points, in
which dby/dx = dbz/dx = 0. In such point by = 0 and

bz = µN sin θ
1− χ

1−Nχ
. (15)

If there is no stationary point on a solution, the solution describes a periodic nonlinear wave (or diverges, in which case we say
that there is no solution). Any soliton solution starts and ends in the same stationary point, while a shock-like solution goes from
one stationary point to another.

Let as assume that a stationary point does belong to the solution. In this case we always may choose our reference point in
this stationary point, that is, N = 1, b = (0, sin θ) should satisfy both (15) and (14), so that µ = 1. This point will be hereforth
referred to as upstream point. Analyzing perturbations near the upstream point by = δby , bz = sin θ + δbz , and N = 1 + δN ,
and assuming δby, δbz, δN ∝ exp(κx), one easily finds

κ2l2W = − (V 2 − v2
SL)(V 2 − v2

I )(V 2 − v2
F )

V 4(V 2 − v2
S)

, (16)

where vS = (β/2)(dp/dN)1/2
|N=1 = (Γβ/2)1/2 is the normalized local sound velocity, and vSL, vI , and vF are normalized local

slow, intermediate, and fast velocities, respectively, in the upstream point:

v2
I = cos2 θ, (17)

v2
SL = 1

2 [(v2
S + 1)−

√
(v2

S + 1)2 − 4v2
Sv2

I ], (18)

v2
F = 1

2 [(v2
S + 1) +

√
(v2

S + 1)2 − 4v2
Sv2

I ]. (19)

The above expression (16) shows that the upstream point is a center if V > vF or v− < V < v+ or V < vSL, and it is a
saddle if v+ < V < vF or vSL < V < v−, where v− = min(vI , vS) and v+ = max(vI , vS).

If a stationary point is a center, it is an isolated point, that is, it itself represents the trivial constant solution and does not
belong to any other solution. On the other hand, if a stationary point is a saddle point, there exists a solution which tends to
the stationary point at either x → ∞ or x → −∞, that is, the solution is asymptotically homogeneous. Absence of the asymp-
totically homogeneous state automatically implies absence of a soliton solution. From the above relations one can immediately
conclude that fast (V > vF ) magnetosonic soliton does not exist. Since the pressure is expected to be almost isotropic near
the asymptotically homogeneous state, the above conclusion that there are no fast magnetosonic solitons in the non-dissipative
two-fluid hydrodynamics, is quite general. Therefore, the suggested in 7 ”shock from a soliton” scenario does not work in the
oblique case.

It is easy to see, that, with the substitution κ = ik, V = vph = ω/k, Eq. (16) is nothing but the dispersion relation for
small-amplitude fast, intermediate, and slow waves [13], and the ranges of soliton existence coincide with the ranges where the
linear mode dispersion is negative. This suggests simple qualitative explanation for the soliton absence when κ2 < 0. Indeed,
let us assume, for example, that a fast soliton forms in a plasma with the asymptotic velocity V > vF . From the point of view of
the initial value problem this soliton should be considered as a spontaneous emitter of small-amplitude fast waves, propagating
in both directions (upstream and downstream). The wave, propagating downstream, is convected by the plasma flow and leaves
eventually the system, leaving the stationary soliton alone. The wave, propagating upstream, will be convected by the plasma
flow, if its velocity is less than the plasma velocity, but will stand in the flow, thus breaking the upstream soliton asymptotics, if its
velocity can be equal to the flow velocity. If the fast wave dispersion were negative, all small-amplitude waves would have phase
velocities vph < vF < V and would be convected downstream and further out of the system, leaving again the stationary soliton
alone. However, Eq. (16) shows that the fast wave is positively dispersive, and its phase velocity is not limited from above.
Thus, for each given V > vF a small-amplitude wave exists, whose phase velocity vph = V . In this case the soliton would
have an option to break spontaneously into two stationary structures, one of which is a phasestanding monochromatic wave. We
will not go into further detail of this qualitative argument, mentioning only that it is similar to the well known evolutionarity
consideration for MHD discontinuities [16].

Thus, solitons in the non-dissipative two-fluid hydrodynamics with polytropic pressure exist if their asymptotic velocity is in
the range vSL, V < v− or v+ < V < vF .

However, nothing forbids for a solution with V > vF to pass infinitesimally close to the upstream point. Let us analyze
whether such solution can start (end) in another stationary point, which we hereafter call downstream point. If the downstream
point exists, the following relations should be satisfied: by = 0,

bz =
N sin θ(1− χ)

1−Nχ
, (20)
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P (N) =
2V 2

N
+ βNΓ + [

N sin θ(1− χ)
1−Nχ

]2

= 2V 2 + β + sin2 θ,

(21)

where we assume N > 1, without loss of generality. Since d2P (N)/dN2 > 0 and P (N) → +∞ when N = 1/χ, it is obvious
that the necessary and sufficient condition that the second stationary point exists is

dP

dN |N=1
= −2

(V 2 − v2
F )(V 2 − v2

SL)
V 2 − v2

I

< 0. (22)

Thus, a solution with V > vF can pass infinitesimally close to the upstream point and end in the downstream point. If the
upstream point becomes unstable because of other factors, not taken into account in the current approximation (see below), the
solution becomes a shock-like solution.

It is obvious that the downstream point should be a saddle, and the locally defined normalized (with the values of the magnetic
field and density in the downstream point) velocity should satisfy the same inequalities as above.

To illustrate the last statement let us consider the simplest limit β → 0, cos θ → 0. Let us denoting the density in the
downstream point by Nm and the magnetic field by = 0, bz = bm = Nm. Analyzing small perturbations δN, δb ∝ exp(κmx),
one finds the general expression for corresponding κm in the following form:

κ2
ml2W = −

(
V 2 −Nmv2

I

V 2

) [
V 2 −Nmv2

I

V 2

− sin2 θN3
m(V 2 − v2

I )2

(V 2 −Nmv2
I )2(V 2 − v2

SNΓ+1
m )

]
.

(23)

In the above defined limit bm = Nm,

Nm =
1
2
[(8V 2 + 1)1/2 − 1], (24)

and (23) takes the form

κ2
ml2W =

N3
m

V 2
− 1. (25)

Taking into account the mass conservation NV = const and v2
A ∝ b2/N , one finds that V 2/N2

m = V 2
m/v2

Am, as was expected.
One can see also from (24) and (25) that the downstream point is a saddle when V > 1, that is in the fast range.

IV. GENERAL SOLUTION

The equations (12)-(14) were usually treated qualitatively (see, for example, [12, 13]), using graphical examination of the
corresponding pseudopotential. However, it is not too difficult to find the general solution. From Eqs. (12)-(13) one immediately
has

dby

dbz
=

µN sin θ(1− χ)− (1−Nχ)bz

(1−Nχ)by
, (26)

which can be easily transformed further in the following equation:

dbz

db2
=

1−Nχ

2µN sin θ(1− χ)
. (27)

Using Eq. (14) with the polytropic pressure P (N) = βNΓ for the relation between b2 and N , one finally obtains

dbz

dN
=

1−Nχ

2µN sin θ(1− χ)
(
2V 2

N2
− ΓβNΓ−1). (28)

Eq. (28) is easily integrated to

bz = sin θ +
V 2

2µ sin θ(1− χ)
(1− 1

N2
)− Γβ

2µ sin θ(1− χ)(Γ− 1)
(NΓ−1 − 1)

+
cos2 θ

µ sin θ(1− χ)
(

1
N
− 1) +

β cos2 θ

2µ sin θ(1− χ)V 2
(NΓ − 1),

(29)
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where the boundary conditions bz = sin θ, by = 0, at N = 1, are already taken into account. Eq. (29) provides the parametric
representation for bz(N). It should be completed with the equation for by:

by = ±(2V 2(1− 1/N) + β(1−NΓ) + sin2 θ − b2
z)

1/2. (30)

Obviously, the solution is limited by the conditions N > 0 and b2
y > 0, which gives

|bz| ≤
√

2V 2(1− 1/N) + β(1−NΓ). (31)

The points, where by = 0 are ”reflection points”, since there dbz/dx changes its sign. The solution is a periodic nonlinear wave
or a soliton depending on the choice of the parameters V and µ. The spatial dependence can be found from

x = lW

∫
b−1
y

dbz

dN
dN, (32)

although the integration cannot be carried out explicitly in general case. This general solution in the parametric form completes
the studies of NS1D in polytropic two-fluid hydrodynamics with massless electrons.

In the following figures we show the phase portraits and spatial profiles of the nonlinear waves, which are obtained using
the above derived expressions. For this graphical presentation the parameters were chosen as follows: β = 0.3, Γ = 5/3,
and θ = 75◦, which corresponds to the following set of characteristic velocities:vSL = 0.1164, vI = 0.2588, vS = 0.5, and
vF = 1.112. In Fig. 1 we present the phase portraits (bz, by) for a number of soliton solutions, when µ = 1 and vS < V < vF .
Only the by > 0 half of the phase portrait is shown. The solitons are rarefactive, both density and magnetic fields are minimum
in the central part of the profile. The amplitude of the soliton increases with the decrease of its velocity (Mach number) V . It
is worth mentioning that bz changes sign for sufficiently low V . For the velocities near vF the noncoplanar magnetic field by

always remains substantially less than the main component. For lower velocities the two components become comparable.
Fig. 2 presents the spatial profiles bz(x) for these soliton solutions. Again only half of the profile is shown. As could be

expected the solitons become wider with the increase of their velocity and decrease of the amplitude. However, nearly in all of
them bz decreases from its maximum value to the asymptotic value on the scale of about (4− 5)lW .

In Fig. 3 we show the phase portraits for nonlinear periodic fast waves. In this case µ 6= 1, so that a specific V = 2 > vF is
chosen, while µ was varied. The part of the figure to the left from bz = sin θ corresponds to the same solutions that were shown
earlier, only the parameters are different. The part to the right corresponds to the periodic nonlinear waves. Portraits with cusps
are not artificial. They appear because of the double-valued character of the function N(b2) as defined by Eq. 14. The cusps
correspond to the transition from one branch to another (cf. 13). In the waves with relatively small amplitudes by remains small,
while with the increase of the amplitude the two magnetic field components become comparable.

Fig. 4 shows the profiles of these periodic nonlinear waves (only half-wavelength is shown). For the relative amplitude of
about 0.5 the wave half-wavelength is about 4lW . For higher amplitude waves this parameter is slightly less, but the dependence
on the amplitude does not seem to be strong.

The cusped solutions are singular, since dbz/dx → 0. They are hydrodynamical idealization of the same kind as MHD
discontinuities or cusped perpendicular magnetosonic soliton [7]. In fact, the massless electron approximation breaks down
where magnetic field gradients become large and the typical scale of the spatial variation approaches the electron inertial length
c/ωpe. The magnetic field behavior near the cusps should be significantly affected by the electron inertia effects (which are not
considered here), so that at small scales in the cusp vicinity the wave profile will be smoothed out. At scales substantially larger
than the electron inertial length the cusped profile is still as a reasonable approximation.

V. WEAKLY DISSIPATIVE REGIME

Real plasmas are dissipative, often because of turbulent collisions. We shall model phenomenologically this dissipation by
introducing effective friction ∝ (Ui −Ue) in the equations of motion, as follows:

miv
dUi

dx
= eE⊥ +

e

c
vn̂×B⊥ +

e

c
BxUi × n̂− ν(Ui −Ue), (33)

0 = −eE⊥ −
e

c
vn̂×B⊥ −

e

c
BxUe × n̂− ν(Ue −Ui). (34)

This friction results in the resistivity η = ν/ne2.
Taking into account that the dissipation is assumed to be small, Eqs. (33)-(34) give eventually

lW
dbz

dx
+ εlW

dby

dx
= (1−Nχ)by, (35)

lW
dby

dx
− εlW

dbz

dx
= µN sin θ(1− χ)− (1−Nχ)bz, (36)
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where ε = ld/lW = ν/miΩi cos θ � 1.
Let us analyze again the upstream point N = 1, bz = sin θ, by = 0, which exists when µ = 1. It is easy to find that in this

case:

κ = κND + ε(2lW )−1[(V 2 − v2
SL)(V 2 − v2

F )

+ (V 2 − v2
I )(V 2 − v2

S)][V 2(V 2 − v2
S)]−1,

(37)

where κND is the nondissipative exponent (see section III) and κ2
ND < 0. One can easily see that in the fast range V > vF the

character of the upstream point changes to the unstable focus. In this case a solution with V > vF can start from this point at
x → −∞. As we have seen above, there is another stationary point (saddle downstream point) in the fast range, which means
that a shock-like solution is possible in the weakly dissipative regime.

Once the existence of a shock-like solution is established, it is natural to identify the parameter V with the shock Mach number
M , so that χ = cos2 θ/M2. Then Eqs. (16) and (37) give the wavelength λW and the damping length ∆W , respectively, of the
whistler precursor in the following form:

λW = 2πlW

[
M4(M2 − v2

S)
(M2 − v2

SL)(M2 − v2
I )(M2 − v2

F )

]1/2

, (38)

∆W =
2lW
ε

M2(M2 − v2
S)

(M2 − v2
SL)(M2 − v2

F ) + (M2 − v2
I )(M2 − v2

S)
, (39)

which generalizes the expression for the upstream whistler precursor found in [2].

VI. CONCLUSIONS

Using the two-hydrodynamics with polytropic pressure and massless electrons for the description of one-dimensional station-
ary nonlinear low-frequency waves, we derived the most general equations for the structure of these waves. Soliton solutions
exist only for rather restrictive constraints on the asymptotic plasma velocity. In particular, fast magnetosonic solitons do not
exist in such plasmas without dissipation. Studies of one-dimensional stationary nonlinear waves are completed with the deriva-
tion of the general solution for a nonlinear wave in the parametric form. Inclusion of weak dissipation changes qualitatively the
character of solutions, allowing existence of fast shocks. The expression for the whistler precursor wavelength is generalized for
the hot plasma case.
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FIG. 1: Phase portrait for rarefactive soliton solutions.
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FIG. 2: Spatial profiles for the soliton solutions shown in Fig. 1. Only half of the soliton is shown.
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FIG. 3: Phase portraits of the periodic nonlinear fast waves.
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FIG. 4: Profiles of the periodic nonlinear fast waves. Only half-wavelength is presented.


