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Abstract. We propose a new avalanching model which is
characterized by a) a local threshold in the transition from
passive to active states, b) finite life time of active sites, and
c) is dissipative. This model seems to be more appropriate
for the description of a continuous system where localized
reconnection plays a crucial role. The model allows for an
analytical treatment. We establish the shape of the distribu-
tion of cluster sizes and the relation of the observables to the
model parameters. The results are illustrated with numerical
simulations which support the analytical results.

1 Introduction

Self-organized criticality (SOC) is a relatively new paradigm
(Bak et al., 1987, 1988) that is often expected to explain
the statistical behavior of open dynamical systems, such as
power law spectra of various variables (Bak et al., 1987).
The basic features of such systems are a) random input (driv-
ing), b) two regimes (active and passive) of local activity, c)
threshold-like transition from the passive to active state, and
d) excitation of neighboring sites by the active ones causing
the avalanche-like evolution of activity in the system (Jensen,
1998). Such activity may be completely different from the
physical point of view. Avalanches can be observed in many
systems, like sandpiles (Hwa and Kadar, 1992), earthquakes
(Bak and Tan, 1989), forest fires, magnetospheric activity
(Chapman et al., 1998; Chang, 1999; Takalo et al., 1999;
Consolini and De Michelis, 2001; Valdivia, 2003), solar
flares (Lu and Hamilton, 1991; Boffetta et al., 1999; Hamon
et al., 2002; Krasnoselskikh et al., 2002), biological evolu-
tion (de Boer et al., 1994) etc. Running sandpile models
are most ubiquitous, being based on the slope-controlled re-
distribution rules and immediate passive↔active transitions.
In running sandpiles driving (albeit usually a weak one) per-
sists during avalanche development too (Hwa and Kadar,
1992; Corral and Paczuski, 1999). Strictly speaking, SOC
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occurs only in the limit of infinitely weak driving. In other
words, a complete separation of time scales is necessary: the
duration of the largest avalanche in the systems should be less
than the smallest time interval between subsequent inputs ().
This condition is hardly realized in nature, therefore we will
not stick with SOC but will discuss avalanching systems in
general. This concept is more extended since the behavior
of an avalanching system may appear non-SOC, while the
basic feature - ability to develop avalanches - remains. It is
worth mentioning that it is well-accepted to refer to many
avalanching systems as to SOC systems, even not in the limit
of zero driving, if these systems exhibit power-law distribu-
tions. The latter feature means that the system behavior is
scale-free (apart from the smallest possible scale and the size
of the system as a whole, as it appears in numerical models).
We, nevertheless, will refer to such systems as avalanching,
keeping in mind that in real physical systems driving depends
on external conditions and may change with time to a become
a strong one.

SOC, and sandpile models, in particular, have been widely
applied to plasma systems, especially to those which are
thought to be governed by localized reconnection (Chang,
1999; Chapman et al., 1998; Charbonneau et al., 2001; Bof-
fetta et al., 1999; Consolini and De Michelis, 2001; Klimas
et al., 2004; Krasnoselskikh et al., 2002; Lu and Hamilton,
1991; Takalo et al., 1999; Valdivia, 2003; Uritsky, V., M. Pu-
dovkin, and A. Steen, 2001; Uritsky et al., 2002). The more
sophisticated field reversal model (Takalo et al., 1999; Kli-
mas et al., 2004) is based on the hysteresis behavior of the
resistivity (diffusion). It is unclear whether it can be directly
applied to collisionless localized reconnection. It should be
mentioned, though, that there is no definitive observational
evidence relating SOC models to the localized reconnection
processes in plasma sheet, and there is no general agreement
regarding the dynamical nature of current sheet reconnection.
Multiple reconnection X lines were evidenced, for example,
(Slavin et al., 2003), while others reported a single, local-
ized and transient reconnection with an impulsive modula-
tion of reconnection rate (Sergeev et al., 1987; Semenov et
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al., 1992).
In the present paper we propose and study a new model,

which has a number of features characteristic of the localized
reconnection process in the current sheet (Milovanov et al.,
2001; Milovanov and Zelenyi, 2002; Zelenyi et al., 2002),
and which are not, in our opinion, properly presented in other
models. These features are:

– the transition passive-to-active depends on the local
threshold, resembling what happens in a current layer,
when its width becomes less than some critical value,
or, alternatively, when the current exceeds the critical
current;

– there is a finite life time of an active site, that is, an
active site, which excites its neighbor, does not become
passive immediately but remains active for some time;

– a part of the energy dissipates into ”radiation” which
can be observed by a remote observer.

Locality of the threshold can be introduced artificially
even in a simple sandpile model by assigning the property
of variables to slopes. This works, however, only for one-
dimensional directed models (otherwise a local vector field
of ”slopes” has to be defined). Dissipative models are rather
ubiquitous Lu (see,e.g. 1995). We, however, propose that the
dissipated energy is the energy which comes to a distant ob-
server directly from the active site, and can be used for iden-
tification of the system state. The finite life time feature is
the most important since it removes the unphysical condition
of immediate energy release by an active site with the tran-
sition to the passive regime. The proposed feature not only
allows to study the behavior of the avalanching system in the
fast driving regime, but also makes possible resolution of the
temporal behavior of active regions.

In the present paper we study the avalanche properties of
the burning model depending on the strength of driving. The
question of whether a distant observer can distinguish be-
tween the burning system and a sandpile system using only
a limited set of measurements is analyzed in the companion
paper.

2 The model

In this paper we restrict ourselves to a one-dimensional
model only (two-dimensional model will be studied else-
where). Let there be a an array of cells (sites) with the
length L. Each site i, i = 1, . . . , L, is characterized by its
temperature Ti. The system is open and there is an exter-
nal random heat input. At each time step each site gets the
amount of heat q with the probability p. Thus, the average
heat input into a single site is qp and the total time average
driving into the whole system is qpL. If the temperature of
a site exceeds some critical value, Ti ≥ Tc, burning starts,
during which the site loses energy at the rate (energy per
time step) Ji = kT . In other words, should this site be left
alone, its temperature would change according Ṫ = −kT ,

or T = T (0) exp(−kt). Once the temperature drops below
another critical value, Ti < T0 = sTc, s < 1, the burning
ceases, and does not start again until Ti ≥ Tc. Physically
it corresponds to the idea that the energy release at the re-
connecting site, one started, persists until it is exhausted, and
can start again only after sufficient energy is accumulated.
Summarizing all this, the energy flux is

Ji = kTi[θ(Ti − Tc) + θ(Tc − Ti)θ(Ti − T0)θ(−Ṫi)], (1)

where the step-function θ(x) = 1 when x ≥ 0 and zero oth-
erwise. The last term θ(−Ṫ ) in (1) introduces the history
(hysteresis) dependence: if the temperature is below the up-
per critical value but above the lower critical value, burning
occurs only if the site was burning at the previous step, that
is, its temperature was decreasing. Note that the description
is imprecise since the random input may occasionally cause
some reheating even during the burning stage. This problem
is easily avoided during the discretization, as we shall see a
little later. It is worth mentioning that the life time of a lonely
burning site, tl, can be estimated as tl ≈ ln(Tc/T0)/k.

The energy release Ji is partly dissipated, while the rest
is isotropically distributed among the neighbors. Let a < 1
denote the part of the energy which remains in the system.
If the temperature of the site i at the time t was Ti(t), at the
next step it would be

Ti(t+1) = Ti(t)−Ji(t)+(a/2)(Ji−1(t)+Ji+1(t))+η(i, t).
(2)

The last term is the random input with the average 〈η〉 = pq.
Now it is easy to see that the flux can be properly rewritten
as

Ji(t) = kTi(t)[θ(Ti(t)−Tc)+θ(Tc−Ti(t))θ(Ti(t)−T0)θ(Ji(t−1))],
(3)

The two equations (2) and (3) completely determine the
model. We only have to add the boundary conditions which
will be open boundaries, or T (1) = T (L) = 0 always, and
the distribution of the random variable η. The last one will
be usually taken as uniform if not specified otherwise.

The proposed model has the following features which are
usually absent (or incomplete) in other models: a) the active-
passive transitions depend only on the local conditions, that
is, the temperature of the site and the energy release of the
same site determine whether it is active or passive, b) a site
which becomes active does not fade away immediately once
it transfers energy to neighbors, but lives for some time, and
c) there is some dissipation along with the energy flow in-
side the system. These features make the system resembling
the a current sheet with localized reconnection going on at
different sites.

3 Field presentation

While discretization is the natural and only way for perform-
ing numerical simulations, in reality there is nothing to break
a continuous system into a number of discrete sites, although
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some minimal scale is always present in physical systems,
like, for example, regular MHD cannot be extended to scales
smaller than the ion gyroradius. Thus, a proper analytical
description of continuous physical systems would require its
formulation in terms of differential equations (in case of his-
tory dependence there is no translational symmetry with re-
spect to time and an integro-differentical equation might be
expected, in general).

In this section we transform the model into a field model.
In order to do this we introduce the respective temporal and
spatial reference lengths, τ and l. Thus, t + 1 → t + τ , and
i± 1→ x± l. Now (2) is rewritten as

τ
∂T (x)

∂t
= −(1− a)J(x) +

al2

2
∂2J

∂x2
+ η(x, t). (4)

Respectively, the equation for the flux is

J(t) = kT [θ(T (t)−Tc)+θ(Tc−T (t))θ(T (t)−T0)θ(J(t−τ))].
(5)

The last term in (5) is non-local. Taking into account that
all variables change continuously for T0 < T < Tc, one can
Taylor expand to get

τ J̇ = −J+k(T+τ Ṫ )[θ(T+τ Ṫ−Tc)+θ(Tc−T−τ Ṫ )θ(T+τ Ṫ−T0)θ(J)
(6)

or

J = kT [θ(T − Tc) + θ(Tc − T )θ(T − T0)θ(J − τ J̇)]. (7)

Since the discontinuous θ-functions can be substituted
with tanh:

θ(x) = 1
2

[
1 + tanh

( x

L

)2n+1
]

where L is sufficiently small and the integer n ≥ 0 is suffi-
ciently large, the derived field equations can be written in an
explicitly smooth way.

4 Analytical treatment

It is easy to estimate the average Na number of active sites,
at least for the case of weak to moderate driving. The en-
ergy release from each site ≈ Tc−T0 occurs within the time
tl, so that the average power is Pav ≈ (Tc − T0)/tl. The
total energy loss per unit time (in time step) is dE/dt ≈
−(1 − a)Nav(Tc − T0)/tl + (dE/dt)b. The last term de-
scribes the energy loss at the boundaries and does not ex-
ceed −2kTc ∼ Tc/tl. Thus, for a sufficiently large system,
Nav(1 − a) & 1 the boundary losses can be neglected in
all cases. In the stationary state energy losses should be bal-
anced by the input, which is Lpq, so that one has

Nav ≈
Lpqtl

(1− a)(Tc − T0)
. (8)

This approximation should be valid for Nav � L, so that

pqtl � (1− a)Tc. (9)

Stronger predictions can be made when using the kinetic
equations for the cluster distribution (Gedalin et al., 2005)1

. The corresponding equation (simplified) for the number of
clusters, N(w), with the length w reads:

dN(w)
dt

= −[P (w → w + ∆) + P (w → w −∆)]N(w)

+ P (w −∆→ w)N(w −∆) + P (w + ∆→ w)N(w + ∆),
(10)

where P (w → w + ∆) and P (w → w −∆) are the proba-
bilities (per unit time) of growth and shrinking, and ∆ is the
typical change of length in one step. In our case ∆ = 1 or
∆ = 2. Since we are interested in estimates only and will
not solve the (discretized) kinetic equation (10) exactly, we
simply put ∆ ≈ 1. We proceed by Taylor expanding to ob-
tain

dN

dt
=

∆2

2
d2

dw2
((P+ + P−)N)−∆

d

dw
((P+ − P−)N) ,

(11)
where P+ and P− are the growth and shrinking probabilities,
respectively. In the stationary state, (dN/dt) = 0, one has

∆
2

d

dw
((P+ + P−)N) = ((P+ − P−)N) + C, (12)

where C = const is the probability of the spontaneous ap-
pearance of a cluster. Since only clusters of size one are born
from the passive background, we have to put C = 0. Then

N(w) =
A

α
exp(−

∫
βdw), (13)

where A = const, α = P+ + P−, and β = (P− − P+)/α.
Let us now estimate the growth and shrinking probabil-

ity. Let the average temperature be Tp. Since we assume
that Nav � L, this is effectively the average temperature
of a passive site. The heat flux from the cluster boundary
to the neighboring passive site is J = kT during about its
life time. The passive site becomes active if the heat flux ex-
ceeds the difference between the critical temperature and the
site temperature, which can happen during the time tg when
J > (Tc − Tp). Estimating the initial temperature of the
active site as ≈ Tc we have tg = (1/k) ln[kTc/(Tc − Tp)].
The growth probability then will be P+ ≈ tg/tl and does not
depend on the cluster size.

The shrinking probability is simply the probability to find
the active site at the boundary in the end of its life, so that
P− ∼ 1/tl. It also does not depend on the cluster size. The
condition of stationarity immediately gives Tp/Tc > 1 −
k exp(k). Respectively, α = (1 + tg)/tl and β = (1 −
tg)/(1 + tg), so that

N(w) ∝ exp[−(1− tg)w/(1 + tg)]⇒ lnN ∝ −w. (14)

1Gedalin, M., Balikhin, B., Coca, D., Consolini, G., and
Treumann, R.A., Kinetic description for avalaching systems,
http://arxiv.org/pdf/cond-mat/0501567, 2005
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This result appears dependent on the average temperature
Tp which itself should depend on the system dynamics.

In order to establish the relation of Tp to the system param-
eters we should consider the smallest size, w = 1, clusters.
For such clusters (11) is not applicable. Instead, we have

dN1

dt
= −P−N1 + γN0, (15)

where the last term describes the spontaneous (driving de-
termined) conversion of passive sites into active ones. Since
the average driving heat flux into a passive site is qp, and the
gap Tc − Tp should be exceeded to make the site active, we
can estimate the birth probability γ ∼ qp/(Tc − Tp). In the
stationary state we would then have

qpN0

Tc − Tp
=

N1

tl
. (16)

Since N(w) ∝ exp(−βw), we have

Nav =
∫ L

1

N(w)dw ≈ N1/β, (17)

Substituting (17) into (16), with the use of (8) and taking into
account that N0 ≈ L, we get eventually

Tc − Tp

Tc − T0
=

β

1− a
. (18)

Since β itself depends on Tp, the relation (18) is in fact a
(nonlinear) bootstrap equation for the average temperature.

As a by-note, the above analysis allows to predict the max-
imum size of the cluster. Indeed,

N(w) = N(1) exp[−β(w − 1)] ≈ Nav

β
exp[−β(w − 1)]

≈ Lpqtl
β(1− a)(Tc − T0)

exp[−β(w − 1)],

(19)

and one has N(wmax) = 1, so that

wmax ≈
1
β

ln
Lpqtl

β(1− a)(Tc − T0)
. (20)

Of course, this relation (as all previous) is of approximate
character only. It is clear, however, that the average number
of active sites depends on the driving more strongly than the
maximum cluster size.

5 Numerical analysis

The proposed model allows for a pretty good analytical treat-
ment, which nevertheless is based on a number of approx-
imations. Numerical analysis of avalanching models is a
usual tool and we expect it to be useful here, at least at the
illustrative level.

We start with illustrating the avalanching process by pre-
senting avalanche patterns for various drivings. We use the

following parameters: length of the system L = 100, critical
temperature Tc = 50, low critical temperature T0 = 0.3Tc,
fraction of energy release going to neighbors a = 0.9, in-
verse relaxation time k = 0.3, and heat amount input at each
step q = 2. The driving strength is then determined by the
probability of the input p. Figure 1 shows how the energy
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Fig. 1. Energy release for various drivings: top p = 0.0005 and
bottom p = 0.005.

release pattern changes with the driving increase by a factor
of ten.
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Although the difference in the activity level is quite
clearly seen visually from Figure 1, it is instructive to in-
troduce quantitative tools of comparisons. Let J(t, i) be
the two-dimensional array of intensities. Then Jav =∑

i,t J(t, i)/(LNt), where Nt is the number of time steps,
would have the meaning of the mean site intensity. The mean
radiated energy would be (1 − a)Jav . Respectively, nav =∑

i,t θ(J)/(LNt) would give the mean fractional number of
active sites. We remind the reader that the mean energy input
per site is qp. In the stationary regime (1− a)Jav ≈ qp (the
equality cannot be precise because of the losses at the bound-
aries - see complete analysis in section 4). The results of this
comparison are given in Table 1, where we list the follow-

Table 1. Quantitative comparison of activity level.
p = 0.0005 p = 0.001 p = 0.005 p = 0.01

qp 0.001 0.002 0.01 0.02
Jav 0.011 0.026 0.12 0.24
nav 0.0013 0.0032 0.0145 0.029
wmax 15 18 21 22
tmax 32 37 37 36

ing parameters: p is the driving probability, qp is the average
driving input per site, Jav is the average power released by
active sites, nav is the mean fractional number of active sites,
wmax is the largest cluster size (from all cluster sizes mea-
sured at all times), and tmax is the longest avalanche dura-
tion (measured for all sites). The last two are defined as fol-
lows. First we determine the largest cluster size max(w(t))
for each time t and then wmax = maxt(max(w(t))). The
longest duration max(t(i)), on the other hand, is determined
for each site separately, and then tmax = maxi(max(t(i))).
Thus, wmax corresponds to the time-average spatial pattern
which an observer would see instantaneously, while tmax

corresponds to the spatially-average time evolution which an
observer, sitting at some site, would see.

Figure 2 provides a close look at the avalanche-cluster dis-
tribution for different drivings. It is seen that, besides much
more frequent bursts of activity, in a number of cases the
avalanches for stronger driving behave in a more compli-
cated way. This can be seen from Figure 3 where individ-
ual avalanches are shown. The stronger driving case exhibits
first indications of avalanche merging. At stronger drivings
such merging would become more important, thus spoiling
our analytical treatment.

For the analysis of the distribution N(w) the size of the
system was increased to L = 400, in order to exclude the ef-
fects of the edges. Figure 4 shows the distribution for various
values of the probability p. As expected, the maximum clus-
ter size depends only weakly on the driving, and the func-
tional dependence lnN ∝ −w remains the same.

Figure 5 shows the behavior of the mean temperature. The
plots are artificially shifted since the dependence of the tem-
perature on the driving is negligible. It is seen that the system
is in the stationary regime, since the temperature fluctuates
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Fig. 2. Closer look at Figure 1.

around some constant value. With increase of driving the
fluctuations become more frequent.

We conclude the illustration of the system behavior with
plots of the duration of active and passive phases, which are
distinguished by Jt =

∑
i Ji. An active phase corresponds to

Jt > 0, that is, there is at least one active site. In the passive
phase there is no activity at all. The statistics is given in Fig-
ure 6. The distribution of the passive phase durations is Pois-
son in a wide range, as could be expected. The Poisson na-
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Fig. 3. Individual avalanche structure: top p = 0.0005 and bottom
p = 0.005.

ture of the PDF of passive phases suggests that the evolution
of the burning model as described in this manuscript does
not show any time correlation among the avalanche events.
However, further work is needed in order to investigate the
emergence of time correlation as a function of the driving
strength and/or different updating rules including diffusion
effects. The distribution of the active phase durations devi-
ates from Poisson toward smaller and larger durations. More
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Fig. 4. Distribution N(w) (log-linear scale) for p =
0.00025, 0.0005, 0.001, 0.0025, 0.005.
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Fig. 5. Mean temperature for various drivings (shifted).

detailed comparative analysis of the statistical behavior of
avalanches is provided in the companion paper.

6 Conclusions

In the present paper we proposed a new model which seems
to be more appropriate for phenomenological description
of magnetized plasma systems with localized reconnection
(such as solar flares and reconnection in Earth’s magneto-
tail), than the usually used sandpile models. The features of
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Fig. 6. Duration (pdf) of the active (top) and passive (bottom)
phases.

the model allow to formulate it in continuous form (as field
equations) and as a discrete mapping model as well. Rather
simple and precise analytical treatment appears to be possi-
ble, so that we can predict a certain shape of the cluster distri-
bution for the stationary regime. Numerical analysis supports
the results of the analytical study. The statistical properties
of this model are studied in the companion paper, in com-
parison with a similar sandpile model. The two-dimensional

generalization of the model will be published elsewhere.
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