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1. Introduction

Mirror modes are observed almost everywhere where the plasma β and the temperature anisotropy ratio r = β⊥/β‖
are sufficiently high [Kaufmann et al., 1970; Tsurutani et al., 1982; Russell et al., 1987; Kivelson et al., 1996; Russell et
al., 1999; Balikhin et al., 2000]. The mirror instability in the proton-electron plasma has been extensively studied in the
long-wavelength limit [Rose, 1965; Hasegawa, 1975; Gary, 1992; Southwood and Kivelson, 1993; Pantellini and Schwartz,
1995; Pokhotelov et al., 2000; Gedalin et al., 2001]. Dispersion relation, instability criterion, and growth rate for weak
instability were derived for bi-Maxwellian distributions. Multispecies plasma is less studied and almost no analytical results
exist. It was shown that the presence of heavier ion species affects the competing ion-cyclotron instability [Gary, 1992;
Gary et al., 1993]. Huddleston et al. [1999] have shown that dominating heavy ions can cause mirror instability themselves.
These results were obtained using direct numerical solving of the complete Vlasov dispersion equation. However, the
existing solvers (like WHAMP) work efficiently only with combinations of (shifted) Maxwellian distributions and so far
there is no software which would allow to analyze highly non-Maxwellian distributions observed in the collisionless space
plasmas. This emphasizes the need in the analytical study (at least in the long-wavelength range) which would show the
general dependence of the mirror instability condition and growth rate on the plasma parameters. So far no systematic
comprehensive analysis has been performed yet of the mirror instability in a multispecies plasma. Although expressions for
the instability threshold were derived earlier [Pokhotelov and Pilipenko, 1976; Northrop and Schardt, 1980] in the integral
form, they are too general to be applicable directly to multispecies non-Maxwellian plasmas. Leubner and Schupfer [2000]
analyzed the instability threshold in a single species plasma (electrons and heavy species not taken into account) for a certain
class of non-Maxwellian distributions. Gedalin et al. [2001] studied the effect of the non-Maxwellian shape (in the parallel
direction for separable distributions) on the threshold and growth rate of the mirror instability in electron-proton plasmas,
taking into account the hot electron contribution. In the present paper we generalize the analysis of Gedalin et al. [2001]
onto the case of multispecies plasma when the shapes of the distributions may be arbitrary (but gyrotropic). We provide
simple expressions in terms of a limited number of distribution moments which can be used for the determination of the
instability threshold and (approximately) growth rate for any observed distribution, without necessity to approximate the
distributions by bi-Maxwellian.

2. General theory

In the analytical treatment of the long-wavelength mirror instability we closely follow Gedalin et al. [2001]. In what
follows we assume that for each species s the distribution function fs = fs(v⊥, v‖), where subscripts ⊥ and ‖ refer to the
ambient magnetic field direction. We are interested in the limit kvTs, ω � Ωs, 0 < ω/kvTs < ∞ for all species. Here
Ωs = qsB0/msc is the gyrofrequency and vTs =

√
Ts/ms is the thermal velocity for species s. The general dielectric

tensor has the form εij = δij +
∑

s λij,s, and in our limit the dominant terms are written as follows [Gedalin et al., 2001]:
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where ωps =
√

4πnsq2
s/ms is the plasma frequency for species s, and v2

T‖,⊥ =
∫

(v2
‖,⊥)fdv‖v⊥dv⊥ (f is normalized on

unity). The wavevector is chosen as k = (k⊥, 0, k‖) = k(sin θ, 0, cos θ). The functions χ
(n)
s are defined as follows:
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where Zs = ω/k‖vT‖s, v = v‖/vT‖s, u⊥ = v⊥/vT⊥s, 〈. . .〉 =
∫

(. . .)fu⊥du⊥dv, and the integration is taken along the
path below the singularity v = Zs. The factor αs = 〈v4

⊥s〉/2〈v2
⊥s〉2 describes the deviation of the distribution from the

Maxwellian in the perpendicular direction, α = 1 for the Maxwellian distribution and α = 1/2 for the monoenergetic ring.
The functions χs play the crucial role in the analysis. For separable distributions, f = f⊥(u⊥)f‖(v), one has
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It is now convenient to choose reference density n0, mass m0, and charge q0. These reference parameters can be parameters
of one of species, although this is not necessary. Otherwise they can be chosen arbitrarily from convenience arguments.
We further define the normalized density Ns = ns/n0, mass Ms = ms/m0, and charge Qs = qs/q0. The quasineutrality
condition requires that

∑
s NsQs = 0. We also define Z = ω/k‖vT‖0, Rs = T‖s/T‖0, rs = T⊥s/T‖s, and β0 =

2v2
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2, so that Zs = Z

√
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For the dispersion relation one needs Dij = (k2c2/ω2 − 1)δij − kikjc
2/ω2 −

∑
s λij,s, where k = (k⊥, 0, k‖) =

k(sin θ, 0, cos θ). It is easy to see that D12 ∝
∑

s NsQs = 0. Since λ23 ∝ Ω0/ω and λ33 ∝ (Ω0/ω)2, in the limit
ω/Ω0 → 0 the dispersion relation takes the form D22D33−D23D32 = 0. With all above taken into account and neglecting
1/∆ � 1 one eventually gets the dispersion relation in the following form
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Eq. (4) is the general dispersion relation for long-wavelength low-frequency mirror modes in a multispecies plasma. The
species distributions are arbitrary with the only limitation that fs = fs(u⊥, v), that is, the distributions are gyrotropic.

3. Instability criterion

Assuming that there exists an unstable mode with Z → 0 (nonpropagating limit) we expand (4) using the following
expansion of χ

(n)
s [Gedalin et al., 2001]:
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where the integrals over v are the principal values integrals and convergence is required for the expansion. For fs =
fs(u⊥, v2) the parameters a

(n)
s ≡ 0. It is now straightforward to find

Z = −Ψ(0)/Ψ′(0),
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where Cs = as + ibs. This is correct only near the threshold where |Z| � 1, that is, Ψ(0) � |Ψ′(0)|, otherwise the above
Taylor expansion is not justified. In general, the mirror mode has a real part (frequency) if the distribution functions are not
symmetric, so that not all as = Re Cs = 0. For usually considered symmetric distributions, fs = fs(u⊥, v2), the instability
is aperiodic.

The instability threshold at Z = 0 is found by solving Ψ(0) = 0 with respect to sin2 θ, and requiring 0 ≤ sin2 θ ≤ 1,
which gives
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provided that
∑

NsRs(rs − 1) − 2/β0 > 0, which is always satisfied for T⊥/T‖ ≥ 1. For separable distributions d
(n)
s =

ds = −
∫

v−1(∂f‖,s/∂v)dv, provided that the last integral converges, that is, (∂f‖,s/∂v)|v=0 = 0. If the last condition is
not fulfilled the instability is not aperiodic.

It is worth noting that when
∑

NsRs(rs−1)+2/β0 < 0 (which is possible only if at least one of the species has rs < 1)
and D < 0 the plasma is firehose unstable.

The expressions (6) and (7) are the most general expressions for weak mirror instability growth rate and instability
condition. These expressions are correct for any gyrotropic distribution and any number of species and generalize the
expressions found earlier [Southwood and Kivelson, 1993; Pantellini and Schwartz, 1995; Pokhotelov et al., 2000; Gedalin
et al., 2001].
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Let us consider the simplest case where all species have the same temperatures and temperature anisotropies, ∀s : rs = r,
Rs = 1, αs = α, d

(n)
s = d(n). One immediately finds the instability criterion in the following form

r2d(2)α− r − 1/β0 > 0, (8)

which emphasizes the equally adiabatic behavior of all species in the k, γ → 0 limit: the condition does not depend on
the species mass, charge, or relative density. On the other hand, the dependence on d and α is very important. For the bi-
Maxwellian distribution α = 1 and d = 1, so that we arrive at the usual instability criterion [Hasegawa, 1975; Southwood
and Kivelson, 1993; Pantellini and Schwartz, 1995; Pokhotelov et al., 2000; Gedalin et al., 2001]. For the monoenergetic
ring distribution f⊥(v⊥) = δ(v2

⊥ − v2
⊥0) the parameter α = 1/2 and the instability is suppressed. On the other hand, let us

consider the distribution which is Maxwellian in the perpendicular direction, α = 1, and generalized Lorentzian,

f‖(v‖) =
2n−1v2n−1

0

π(2n− 3)!!
1

(v2
‖ + v2

0)n
, (9)

n ≥ 2, in the parallel direction. It is easy to find that v2
T‖ = v2

0/(2n− 3), and d = (2n− 1)/(2n− 3) > 1. Thus, one can
expect that the generalized Lorentzian distributions would be more unstable than the Maxwellian of the same temperature
ratio r = T⊥/T‖. One interesting conclusion is that for β0 > 1/(d − 1) no temperature anisotropy, r 6= 1, is required to
excite mirror modes. For example, a generalized Lorentzian distribution with T⊥ = T‖ is mirror unstable if β0 > (2n−3)/2.
For the lowest possible value n = 2 this gives β0 > 0.5. It should be emphasized that equality of the temperatures (second
moments of the distribution) in the parallel and perpendicular direction, T⊥ = T‖, does not mean distribution isotropy as
is illustrated in Figure 1 where filled contour plots are shown for the (a) Maxwellian f = (2π)−3/2 exp(−v2

⊥/2 − v2
‖/2)
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Figure 1. Filled contour plots for the (a) Maxwellian and (b) Maxwellian-Lorentzian distributions for T⊥ = T‖.

and (b) Maxwellian-Lorentzian f = (1/π2) exp(−v2
⊥/2)(v2

‖ + 1)−2 distributions (for both velocities are normalized on
vT ). The Maxwellian distribution is obviously isotropic, f = f(v2

⊥ + v2
‖), while the Maxwellian-Lorentzian is not, despite

the fact that in both cases T⊥ = T‖. Thus, the instability is sensitive not only to the temperature anisotropy but also to the
anisotropy of the distribution shape.

For the above case of identical temperature anisotropies for all species the plasma can be firehose unstable only when
β0 > 2 and r < min(1− 2

β0
, r0), where r0 = (1 +

√
1 + 4dα/β0)/2dα.

4. Examples

The expression (4) is the general long-wavelength dispersion for any number of species and for arbitrary (gyrotropic)
distribution functions. In what follows we shall consider the behavior of the mirror instability assuming the distributions
separable, so that there is no necessity to distinguish χ(j) for different j. For the parallel distribution function we shall
use the Lorentzian shape with n = 2. We shall assume also that the instability is moderate so that the long-wavelength
low-frequency approximation qualifies. We believe, however, that the behavior of the instability in the range kvT , γ ∼ Ω
can be understood, at least qualitatively, using (4) (see below).



!! Please write \lefthead{<AUTHOR NAME(s)>} in file !!: GEDALIN ET AL: MIRROR MODES IN MULTISPECIES PLASMASX - 5

To begin with let us consider a three-component plasma consisting of electrons, protons, and He++. For the graphical
presentation of the growth rate we put β0 = 8πneTe‖/B2 = 0.15. We shall assume equal parallel temperatures for
all species. Electrons and protons are assumed Maxwellian in the perpendicular direction, αe = αp = 1, while a ring
distribution is used for He++, so that αh = 0.5.

Figure 2 shows the growth rate of the mirror instability as a function of the propagation angle for different sets of
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Figure 2. Growth rate of the mirror instability as a function
of the propagation angle for the following parameter sets: (a)
nh = 0, re = 1, and rp = 2 (stars), (b) nh = 0.1ne, re = 1,
rp = 2, and rh = 3 (diamonds), (c) nh = 0.1ne, re = 1.2,
rp = 2, and rh = 3 (circles), and (d) nh = 0, re = 1.2,
and rp = 2 (crosses). Here rs = Ts⊥/Ts‖ is the temperature
anisotropy ratio for species s.

the plasma parameter. Stars correspond to the electron-proton plasma with isotropic electrons and rp = 2. Diamonds
correspond to a small admixture of α-particles, nh = 0.1ne, with the temperature anisotropy ratio rh = 3. Circles stand
for the three-component plasma when electrons are also anisotropic with re = 1.2, while crosses show the effects of the
electron temperature anisotropy in the absence of α-particles. The presence of heavier ions (which replace a part of the
protons) reduces the growth rate (in agreement with what was found earlier for bi-Maxwellian plasmas [Gary, 1992; Gary
et al., 1993]) but the difference is small and not especially significant unless the fraction of heavy ions is substantial and/or
Q/M is significantly small (it is 1 for protons and 0.5 for α particles). On the other hand, heavy species can substantially
suppress the ion-cyclotron instability [Gary et al., 1993], so that the relative importance of the mirror instability increases.

It is worth noting that the instability range (minimum instability angle) also changes. If rs and αs were equal for all
species this angle would not depend on the heavy ion density.

The suppressing effect of heavy ions is because of their reduced mobility (larger mass) relative to protons, which is
crucial for the mirror instability [Gedalin et al., 2001]. On the other hand, electrons are much more mobile, so that the
strong effect of the electron anisotropy on the growth rate could be expected (see also Pokhotelov et al. [2000]). Indeed, the
instability growth rate depends on the efficiency of particle removal from the magnetic enhancement region [Southwood and
Kivelson, 1993], which means that a particle should move by a distance l‖ ∼ 1/k‖ during the time substantially less than the
perturbation growth time 1/γ. For the bulk of the distribution that means that γ . k‖vT‖. The last inequality is much better
fulfilled for electrons. Anisotropic electron distributions with Te⊥ > Te‖ are whistler unstable. Quasilinear relaxation does
not result in complete isotropization and the post-saturation distributions remain anisotropic with Te⊥/Te‖ − 1 ≈ β−0.5

e‖
[Gary and Wang, 1996]. Therefore, some electron anisotropy is not something extraordinary. Yet, their relative contribution
is more substantial than that of ions, so that even modest electron anisotropies should be taken into account.

One of the situations where heavy ions may result in the mirror mode excitation is encountered on the edge of the Io wake,
where mirror waves have been detected by the Galileo magnetometer [Kivelson et al., 1996]. While the background torus
plasma is nearly isotropic and stable to the mirror mode growth, highly anisotropic pickup ions are added at a high rate in
the flow passing close to Io [Russell et al., 1999]. Figure 3 shows an example of a series of mirror waves observed as Galileo
moved out of the Io wake inward to Jupiter on Dec 7, 1995. These structures are those labelled 7, 8, 9, and 10 in Russell et
al. [1999]. The magnetic field depressions have amplitudes that are a large fraction (up to 20 %) of the background field and
are spaced aperiodically. The magnetic field between the depressions seems to be undisturbed, so that we expect that the
local analysis of the background plasma parameters would indicate on instability. The growth rate of the mirror instability
for the background plasma parameters was calculated numerically by Huddleston et al. [1999] within the approximation of
the distributions as bi-Maxwellian (shifted bi-Maxwellian for ring distributions). Here we present the results of the analysis
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Figure 3. The magnetic field measured by Galileo as it passed
out of the Io wake on Dec 7, 1995. The coordinate system is
arranged so that the Z direction is antiparallel to the model field
direction through the center of Io. The X direction is along
the flow perpendicular to B, and Y direction is toward Jupiter
perpendicular to B. The Z component is not shown because of
the similarity to the total field.

of the same plasma using (4) and assuming Lorentzian distribution in the parallel direction. The below analysis should not
be considered as a direct comparison with observations, since distribution shapes are not known, and the mirror modes have,
probably, already grown to nonlinear amplitudes. Rather this should be considered as an example of the application of the
developed theory to the problem of stability of the background plasma. Russell et al. [1999] and Huddleston et al. [1999]
estimate the width of the mirror structures as several SO+

2 gyroradii, and the angle of maximum growth rate as ∼ 60◦, so
that our approach is expected to provide a rather good approximation.

For the illustration we use the parameters suggested by Huddleston et al. [1999] (see their Table 1 for the case A).
The plasma composition is as follows: n(e−) = 10, 000cm−3, n(H+) = 500cm−3, n(S+) = 2, 000cm−3, n(S++) =
1, 000cm−3, n(O+) = 5, 000cm−3, and n(SO+

2 ) = 500cm−3. The parallel temperatures of all ion species are the same and
equal T‖ = 100eV, which is taken as the “gauge” temperature T0. The electron parallel temperature is 5eV. Electrons and
protons are isotropic. The temperature anisotropies of other species are as follows: r(S+) = 4, r(S++) = 3, r(O+) = 3,
and the magnetic field B = 1200nT. The heavy species perpendicular distributions consist of background (Maxwellian) and
ring components, and the parameters α (which we do not give here) are calculated by integration over these distributions.
Figure 4 shows the growth rate of the mirror instability as a function of θ for the above parameters and various r(SO+

2 ) = 1
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Figure 4. Growth rate for the mirror instability with heavy ions
for various temperature anisotropy ratios r(SO+

2 ) = 1 (stars), 4
(diamonds), 8 (circles), and 12 (crosses). Other parameters see
in the text.

(stars), 4 (diamonds), 8 (circles), and 12 (crosses). It is easily seen that the effect of SO+
2 on the mirror instability is

negligible. At the same time Huddleston et al. [1999] find that the ion-cyclotron instability is extremely sensitive to the
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SO+
2 anisotropy. Thus, reduction the of SO+

2 anisotropy might substantially suppress the ion-cyclotron instability while not
affecting noticeably the mirror instability.

5. Discussion and conclusions

Throughout the present paper we used the long-wavelength low-frequency approximation where γ, kvTs � Ωs for all
species. From the previous numerical analyses [Gary, 1992; Pantellini and Schwartz, 1995] it is known that this is correct for
weak instabilities, when the anisotropies are not too high and the growth rate is only a small fraction of the gyrofrequency.
For higher anisotropies and stronger mirror instability the maximum growth rate occurs when kvT‖ constitutes a substantial
fraction of Ω. Gary [1992] finds that at βp‖ = 1 and rp = 2 − 2.5 the ratio k⊥vTp⊥/Ωp ∼ 0.5, while k‖vTp‖/Ωp ∼ 0.2.
The set of parameters used by Pantellini and Schwartz [1995] results in smaller ratios. In this range of parameters the
use of the long-wavelength expressions is still a quite good approximation. There are two kinds of modifications at higher
anisotropies or temperatures. The increase of k⊥vT⊥/Ω requires to use the complete Bessel functions instead of the lowest
order expansion. Such modification should not affect qualitatively the behavior of the growth rate but may result in some
numerical factor of the order of unity. The second kind of possible error is related to the denominators ω − k‖v‖ − jΩ,
which in the low-frequency limit are substituted by −jΩ, when j 6= 0 [Gedalin et al., 2001]. At the first sight presence of
such denominators may cause significant effects which cannot be predicted by the derived expressions. However, because
of the aperiodic nature of the mirror instability, ω = iγ, γ > 0, the denominator never approaches zero but remain of the
order of Ω, which also may result in a numerical factor but hardly change qualitatively the behavior of the growth rate. This
conclusion is more or less confirmed by previous numerical analyses of bi-Maxwellian distributions. We, therefore, expect
that the derived expressions would provide a satisfactory approximation even for a strong mirror instability. In any case, the
proposed dispersion relation is more transparent and easy to use than the direct application of the WHAMP software, which
can treat limited number of distribution shapes.

It can seem that inclusion of heavier species makes the approximation invalid, since kvT /Ω scales as
√

M/Q. However,
in the case when only a small admixture of heavy ions is included, their role is actually to reduce the number of protons
participating in the instability, and their own contribution is unimportant. If heavy ions dominate, the above arguments hold
if we substitute everywhere the word “protons” to “heavy particles”. Thus, the derived expressions are expected to be useful
not only for weak and moderate instability but also in the strong instability regime, if they are understood more qualitatively
than quantitatively. Eq. (4) is not limited by any distribution shape, provided it is gyrotropic.

It is worth noting that the global instability criterion (7) is exact since it describes the instability near the threshold where
kvT , γ → 0.

It is known [Price et al., 1986; McKean et al., 1992; Gary et al., 1993] that the ion-cyclotron instability usually dominates
over the mirror instability unless the former is suppressed by, for example, damping produced by heavies species. This
question has been studied earlier numerically for bi-Maxwellian distributions and is beyond of the scope of the present
paper. It seems that in the presence of a single ion species the ion cyclotron mode for that species will generally dominate
over the mirror mode. However, if there are multiple ion species present, there are multiple ion cyclotron modes possible
(perhaps no one is particularly dominant over the others) and yet at the same time, all of these species might still contribute
to the mirror mode (to varying degrees). In such circumstances the mirror mode may dominate in multispecies plasmas.

The developed theory is linear while in most cases observed mirror modes are of large amplitude. Complete analysis
of the instability and relative importance of ion-cyclotron and mirror modes in the final states, as well as comparison with
observations, requires development of a nonlinear theory of saturation. One-dimensional hybrid simulations [Price et al.,
1986] have shown that in the electron-proton anisotropic plasma ion-cyclotron waves dominate after quasilinear relaxation
(see also Yoon [1992]), while presence of heavier species can reverse the situation in favor of mirror modes. McKean et
al. [1995] conclude that mirror modes are excited at the shock and further convected deeper into magnetosheath. In this
case the local instability is not related to the developed structures. At the same time in some cases mirror modes seem to
be excited locally. After quasilinear relaxation the system would be expected to be in a marginally stable state so that local
instability analysis would misleadingly show that the growth rate is too low. However, in the case of a strong instability the
mirror mode amplitude may quickly grow so that the plasma becomes strongly inhomogeneous and intermittent, with strong
magnetic depressions or elevations neighboring almost undisturbed plasma regions. In this case anisotropy does not have to
be removed in the undisturbed regions and the ambient plasma may remain locally unstable. The last argument shows that it
is reasonable to check the instability criterion in the quiet plasma regions between the large aperiodically spaced magnetic
depressions, as is seen in a number of observations (see, e.g. Russell et al. [1999]). If the instability is weaker and magnetic
depressions and elevations fill the space more or less evenly, such instability test would be misleading.

In conclusion, we derived the most general dispersion relation and mirror instability condition in the long wavelength
low-frequency limit, for a multispecies plasma with arbitrarily non-Maxwellian distributions of all species (the distributions
are assumed gyrotropic though). The dispersion relation describes properly the weak instability and can be used as an
approximation for moderate and even strong instability (which occurs in the range of the wavelengths comparable to the ion
gyroradius), when numerical analysis (using WHAMP) is difficult because of the non-Maxwellian distribution shape. The
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dispersion is determined by a number of specially constructed integral characteristics of the distribution functions, and not
only β. We derived an exact general mirror instability criterion, which is valid for arbitrary distributions.

We found that when replacing a part of the protons by heavier ions, the maximum growth rate of the instability reduces.
The reduction is weak which, along with the substantial suppression of the ion-cyclotron instability [Gary et al., 1993]
may make mirror instability more favorable. When highly anisotropic heavy species dominate they themselves may be
responsible for the mirror instability. Anisotropic electrons are more efficient in producing the instability than ions and their
contribution may be important.
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