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Direct analysis of mirror mode instabilities from the general dielectric tensor for several model distributions,
in the long wavelength limit is performed. The growth rate at the instability threshold depends on the derivative
of the distribution for zero parallel energy. The maximum growth rate is ∼ k‖vT‖ well above the instability
threshold. The instability threshold and growth rate and their dependence on the propagation angle depend on
the shapes of the ion and electron distribution functions.

I. INTRODUCTION

Numerous observations of waves in the the Earth magnetosheath, as well as at other planets have stimulated studies of long
wavelength and low-frequency modes in high β magnetized plasmas. It has been theoretically shown that the features of low-
frequency waves in hot plasmas differ significantly from those in cool plasmas, even in the limit corresponding to the usual
magnetohydrodynamic waves [1]. These findings have been subsequently proven by direct comparison with observations [2].
However, particular interest to the low-frequency modes in hot plasmas is explained by observations of the mirror modes, which
were found in planetary magnetosheaths [3–8], in the solar wind [9], in cometary comas [10, 11], and in the wake of Io [12, 13].
These modes are nonpropagating zero frequency modes (sometimes considered as the kinetic counterpart of the hydrodynamical
entropy mode), which are expected to grow in an anisotropic plasma with sufficiently high β⊥/β‖ (see, e.g., Hasegawa [14]).
Here ⊥ and ‖ refer to the magnetic field direction, and β⊥,‖ = 8πp⊥,‖/B2.

The usually observed high amplitudes of mirror modes show that they easily achieve the nonlinear regime. At the same time,
in several cases low-amplitude magnetic field structures with the same properties were observed which may mean that the linear
and nonlinear mirror mode features are generically related. Yet we do not know so far what makes these modes so ubiquitous
and what determines their nonlinear amplitudes.

The early explanation of the mirror instability [14] is based on the simple picture of the adiabatic response of the anisotropic
pressure of magnetized particles. Numerical analyses of the mirror instability in bi-Maxwellian plasmas [15–17] (the bi-
Maxwellian distribution function is f(v⊥, v‖) = (2π)−3/2[v2

T⊥vT‖]−1 exp(−v2
⊥/2v2

T⊥ − v2
‖/2v2

T‖), where ⊥ and ‖ refer to
the external magnetic field direction) have shown that the maximum of the growth rate occurs at k⊥ρi ∼ 1 (where ρi is the ion
thermal gyroradius), which was interpreted as an indication on the kinetic nature of the instability.

At the same time, Southwood and Kivelson [18] proposed a new explanation of the instability mechanism as a resonant one,
where the presence of a group of the resonant particles (with v‖ = 0) plays a destructive role in the mode excitation: the growth
rate of the instability is claimed to be inversely proportional to the number of the resonant particles. This explanation was
further reiterated with some modifications by Pantellini and Schwartz [19] and Pokhotelov et al. [20], and used by Kivelson and
Southwood [21] for the explanation of the nonlinear saturation mechanism. The analysis of Southwood and Kivelson [18] is
done in the regime where the phase velocity of the perturbation is much less than the parallel thermal velocity, in other words,
γ � k‖vTi‖, and therefore, is directly applied only near the threshold of the instability. Well above the threshold the maximum
growth rate occurs [17] in the range γ ∼ k‖vTi‖, which is not covered in the previous analytical studies.

The previous analytical and numerical considerations of the linear regime of the mirror instability, even in the long wavelength
limit, are, as a rule, restricted to the usage of the bi-Maxwellian distribution. At the same time particle distributions in a
collisionless plasma may substantially differ from a Maxwellian. For example, due to the ion heating mechanism at the shock
(see, e.g., Sckopke et al. [22]), the magnetosheath ion distributions may well deviate from a bi-Maxwellian. It is therefore of
interest to study the dependence of the instability on the shape of the ion and electron distributions.

Yet another argument in favor of the analysis of other distributions is that there is no good analytical approximations for the
dielectric tensor for a Maxwellian plasma in the range |ω|/k‖vT‖ ∼ 1, so that one usually has to consider more convenient
asymptotics (like |ω|/k‖vT‖ � 1) and further qualitatively extrapolate the results onto the range of interest. It is possible to find
shapes for the distribution that allow closed analytical presentation of the dielectric tensor in the whole range of phase velocities
and make the study of the instability physics more transparent.

In the present paper we study in detail the dependence of the mirror instability on the shape of the ion and electron distributions,
using model distribution functions that allow direct explicit analytical calculation of the dielectric tensor. We establish the generic
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relation of the mirror instability with the oscillatory modes when the Landau damping is absent and study the transition to the
unstable regime when such damping exists. We also propose an approximation that is useful for the analytical treatment of the
instability well above the threshold where γ ∼ k‖vTi‖. The analysis is carried out in the long wavelength limit. From numerical
analyses it is known that the absolute maximum of the growth rate is achieved when k‖vT‖ . k⊥vT⊥ . Ω [17] so that a short
wavelength analysis is needed for comparison with observations. Such analysis does not seem possible (analytically) at present.
However, the long wavelength consideration allows to understand the basic physics of the instability and qualitatively extrapolate
the results onto the short wavelength range.

The paper is organized as follows. In section II we derive the general dispersion relation in the long wavelength approximation
for an arbitrary distribution function. In sections III-IV we apply the general analysis to three different distributions. In section V
we derive the instability condition and the growth rate at the threshold for an arbitrary distribution. In section VI we develop a
useful approximation for the analysis of the bi-Maxwellian-like distributions in the region of maximum growth rate.

II. DISPERSION RELATION IN THE LONG WAVELENGTH LIMIT

In what follows we will be interested in the long wavelength limit where ω � Ω and kvT � Ω (where Ω = eB/mc
is the gyrofrequency and vT is the thermal velocity), while maintaining a finite phase velocity 0 < ω/k < ∞. The last
inequality means that the phase velocity does not tend to zero over the entire range of propagation angles but it certainly
may vanish for a particular set of parameters. For simplicity we assume that both ions and electrons are Maxwellian in the
perpendicular direction, so that 〈v2

⊥〉 = 2v2
T⊥ and 〈v4

⊥〉 = 8v4
T⊥. We also denote 〈v2

‖〉 = v2
T‖ and β‖,⊥ = 2v2

T‖,⊥ω2
p/c2Ω2

for each species (subscript i stands for ions and subscript e for electrons, ωp =
√

4πq2
sns/ms is the plasma frequency for

species s). Here 〈F 〉 =
∫

Ffv⊥dv⊥dv‖ denotes averaging over the distribution function which is assumed to be separable
f = f⊥(v⊥)f‖(v‖) and normalized so that 〈1〉 = 1. Let us introduce the refraction index vector N = kc/ω, such that
N = (N⊥, 0, N‖) = N(sin θ, 0, cos θ). With all this the components of the dispersion matrix Dij = N2δij −NiNj − εij take
the following form (see Appendices A and B):

D11 = N2
‖
(
1− 1

2 (β‖ − β⊥)
)
− 1−

ω2
pi

Ω2
i

−
ω2

pe

Ω2
e

, (1)

D12 = 0, (2)

D13 = −N‖N⊥
(
1− 1

2 (β‖ − β⊥)
)
, (3)

D22 = N2
[
1− 1

2 cos2 θ(β‖ − β⊥) + sin2 θβ⊥ (4)

− sin2 θ(riβi⊥χ̄i + reβe⊥χ̄e)
]
− 1−

ω2
pi

Ω2
i

−
ω2

pe

Ω2
e

,

D23 = −i
ω2

pi tan θ

Ωiω
(riχ̄i − reχ̄e) , (5)

D33 = N2
⊥
(
1− 1

2 (β‖ − β⊥)
)
− 1−

ω2
piβi‖

k2
‖v

2
Ti‖

(
χ̄i

βi‖
+

χ̄e

βe‖

)
(6)

+
ω2

pi tan2 θ

Ω2
i

riχ̄i +
ω2

pe tan2 θ

Ω2
e

reχ̄e,

where β‖ = βi‖ + βe‖, β⊥ = βi⊥ + βe⊥, ri = βi⊥/βi‖, re = βe⊥/βe‖, and

χ̄ = v2
T‖

∫
(ω/k‖ − v‖)−1 ∂f

∂v‖
dv‖. (7)

The integration in (7) is taken along the path below the singularity v‖ = ω/k‖. In what follows we shall also assume that
ω2

pi/Ω2
i � 1 and neglect unity relative to this large parameter (which corresponds to the assumption vA � c, where vA =

cΩi/ωpi is the Alfven velocity). In what follows we also neglect ω2
pe/Ω2

e = (ω2
pi/Ω2

i )(me/mi). In the above derivation we used
ω2

pi/Ωi = −ω2
pe/Ωe in the quasineutral electron proton plasma (this is not correct if any admixture of other charged particles is

present).
In the limit ω/Ωi → 0 (and ω/k finite) the dispersion relation D = det ‖Dij‖ = 0 splits into two. One describes the purely

transverse Alfven wave (the wave electric field vector in the kB0 plane, the wave magnetic field vector perpendicular to the
external magnetic field) with the dispersion

ω2 = k2v2
A cos2 θ

(
1− 1

2 (β‖ − β⊥)
)
. (8)
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In this wave the absolute value of the magnetic field does not change, but the magnetic field rotates.
The second dispersion relation is

Ψ(Z) =
[
2− cos2 θ(β‖ − β⊥) + 2 sin2 θβ⊥ − 2 sin2 θ(riβi⊥χ̄i + reβe⊥χ̄e)

−Z2βi‖ cos2 θ
] [ χ̄i

βi‖
+

χ̄e

βe‖

]
+ sin2 θ [riχ̄i − reχ̄e]

2 = 0,
(9)

where we introduce Z = ω/k‖vTi‖ for convenience (ω is complex, in general, so that Z = W + iG), and ri,e = βi,e⊥/βi,e‖.
Eq. (9) describes elliptically polarized waves with all three components of the wave electric field present, so that in general there
exists a nonzero component of the wave magnetic field Bz = N⊥Ey in the direction of the external magnetic field. These waves
not only rotate the magnetic field but change its magnitude as well.

The functions χ̄ play a crucial role in the subsequent analysis. They are defined by the integral containing the distribution
function f(v‖) and cannot be explicitly calculated without a particular choice of these distributions. It is common to choose f as
Maxwellian. In this case χ̄ is well-known and tabulated but has good asymptotic expansions only for |Z| � 1 or |Z| � 1 (for
electrons Z

√
me/mi(vTi‖/vTe‖) should be substituted for Z). This restricts possible analytical considerations of the mirror

instability to the range |Z| � 1. Yet, numerical analyses [15] show that when the system is well above the instability threshold,
the maximum growth rate is achieved in the vicinity of |Z| ∼ 1, which is unavailable to direct theoretical analysis when a
Maxwellian is chosen. On the other hand, there are indications that the qualitative features of long waves (instabilities) in
the high β plasma more or less sensibly depend on the lowest moments of the distribution function (provided it is sufficiently
“normal”: smooth, no beams, no holes, etc.). It therefore makes sense to investigate the dispersion relations for a suitably chosen
model distribution so that χ̄ can be calculated and analyzed in the range |Z| ∼ 1. In what follows we shall use three different
distributions for these purposes. The waterbag distribution f = Θ(v2

0 − v2
‖)/2v0 will be used for study of the behavior of long

wavelength modes and their dependence on the plasma parameters in the absence of Landau damping. Here Θ(x) = 1 if x > 0
and Θ(x) = 0 if x < 0. The hard-bell distribution f = 3(v2

0 − v2
‖)Θ(v2

0 − v2
‖)/4v3

0 will allow to include the Landau damping
effects, and the Lorentz-like distribution f = (2v3

0/π)(v2
0 + v2

‖)
−2 removes the upper limit on the particle velocities. The four

distributions (including Maxwellian f = (2πv2
T‖)

−1/2 exp(−v2
‖/2v2

T‖)) mentioned in this paper are shown in Figure 1.
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FIG. 1: Waterbag (solid line), hard bell (dashed), Lorentzian (dotted), and Maxwellian (dash-dotted) distributions.

III. WATERBAG DISTRIBUTION

The waterbag distribution f = Θ(v2
0 − v2

‖)/2v0 is somewhat peculiar since the Landau damping is absent. The analysis of
this distribution allows the establishing of the generic relation of the instability to nondamping propagating modes. It is easy to
show that in this case

χ̄i =
1

3− Z2
, χ̄e =

1
3− Z2µR

(10)
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where µ = me/mi ≈ 1/2000, R = βi‖/βe‖, and v2
T‖ = v2

0/3. In the limit Z = 0 one has d ≡ χ̄(Z = 0) = 1/3. It is
worth noting that for the Maxwellian distribution d = 1. In this section for electrons we use the approximation of the massless
bi-Maxwellian (instead of the above waterbag,which is used only for ions), for which χ̄e = 1. The resulting dispersion relation
(9) is a third order equation with respect to Z2 with real coefficients. Although this equation can be analyzed directly and even
solved analytically, graphical representation of the roots is much more convenient. The onset of the instability can be analyzed
in a quite general way (see section V).

Figure 2 shows the mode with the highest phase velocity (fast mode) for the case when βi‖ = βi⊥ = βe‖ = βe⊥ = 0.1
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FIG. 2: Phase velocity of the fast mode as a function of propagation angle for the case of the waterbag distribution with βi‖ = βi⊥ = βe‖ =
βe⊥ = 0.1 and massless bi-Maxwellian electrons.

and with massless bi-Maxwellian electrons. It it worth noting that ions are not isotropic since they are Maxwellian in the
perpendicular direction and waterbag in the parallel direction. The phase velocity of the fast mode is well above vTi‖ so that
it does not participate in the mirror instability. We do not consider this mode in the rest of the paper. We do not consider the
Alfven mode either. The remaining two low-phase velocity modes are shown in Figure 3 together with ω = k‖v0i (solid line).
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FIG. 3: Phase velocity (diamonds) of the two low-velocity modes as a function of propagation angle for the case of the waterbag distribution
with βi‖ = βi⊥ = βe‖ = βe⊥ = 0.1 and massless bi-Maxwellian electrons. The solid line is ω =

√
aik‖vTi‖ = k‖v0i.

For the upper curve the resonance v‖ = ω/k‖ is impossible. This is the waterbag analog of the slow mode. The lower mode is
inside the resonant region and would damp if there were a nonzero ∂f/∂v‖. Figure 2 and all subsequent figures are plotted for
ω � Ω and kvT � Ω.

Figure 4 shows the same two modes but in the case βi‖ = βi⊥ = βe‖ = βe⊥ = 0.5. There is not much difference in the
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FIG. 4: Phase velocity (diamonds) of the two low-velocity modes as a function of propagation angle for the case of the waterbag distribution
with βi‖ = βi⊥ = βe‖ = βe⊥ = 0.5 and massless bi-Maxwellian electrons. The solid line is ω =

√
aik‖vTi‖ = k‖v0i.

behavior of the two modes for these two cases, except a little stronger decrease of the phase velocities towards the perpendicular
propagation regime in the higher β⊥ case.

Figure 5 shows the behavior of the two modes in the anisotropic case βi‖ = βe‖ = 0.1, βi⊥ = βe⊥ = 0.5, and bi-Maxwellian
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FIG. 5: Behavior of the two low-velocity modes as a function of propagation angle for the case of the waterbag distribution with βi‖ = βe‖ =
0.1, βi⊥ = βe⊥ = 0.5, and massless bi-Maxwellian electrons. Diamonds mark the modes in the range where their frequencies are purely real,
stars show the growth rate of the aperiodic instability.

electrons. The lower mode now remains purely propagating mode for smaller angles (diamonds) but turns into an aperiodic
instability for larger angles of propagation (stars). The obvious conclusion from Figure 5 is that the unstable mode has its
propagation counterpart for the smaller angles of propagation. The relative growth rate G = γ/k‖vTi‖ ∼ 1 is large in the whole
range of instability, so that the approximation G � 1 [18] is not applicable.

It is of interest to compare this case with the massless waterbag electrons χ̄e = 1/3. The corresponding curves in Figure 6
show that there is no instability in this case. Thus, the analysis of the waterbag distribution shows that (a) there is, in general,
a propagating counterpart of the mirror instability if Landau damping is absent, (b) the instability threshold and growth rate
are sensitive to the details of the distribution and not only to the second moment (see the explanation in section V), and (c) the
instability is aperiodic, that is, in the unstable range W = 0 and G > 0. It can be shown that the last feature is generally valid
unless the distribution function is very peculiar (see Appendix C).
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FIG. 6: Behavior of the two low-velocity modes as a function of propagation angle for the case of the waterbag distribution with βi‖ = βe‖ =
0.1, βi⊥ = βe⊥ = 0.5, and waterbag electrons, de = 1/3. There is no instability.

IV. HARD-BELL AND LORENTZIAN DISTRIBUTIONS

The waterbag distribution does not allow Landau damping since ∂f/∂v‖ = 0 everywhere. In order to get rid of this restriction
we consider the hard-bell distribution f = 3(v2

0 − v2
‖)Θ(v2

0 − v2
‖)/4v3

0 , which has nonzero derivative but is is compact (f = 0
for |v‖| > v0). In this case

χ̄i =
3
5

[
1 +

Z

4
√

5
ln

(
√

5−W )2 + G2

(
√

5 + W )2 + G2

+
iZ

2
√

5

(
arctan

√
5−W

G
+ arctan

√
5 + W

G

)]
,

(11)

where Z = W + iG, W and G being real, G > 0, and v2
0 = 5v2

T‖. The corresponding d = χ̄(Z = 0) = 3/5. The corresponding
expression for χ̄e is obtained from (11) by substitution Z → Z

√
µR.

In order to analyze non-compact distributions too we shall consider the Lorentzian distribution f = (2v3
0/π)(v2

0 + v2
‖)
−2. In

this case

χ̄i =
16iZ

(1 + Z2)3
+

3i

i− Z
− 2Z

(i− Z)3
+

3iZ

(i− Z)2
, (12)

with v2
0 = v2

T‖ and d = 3. Again, χ̄e is obtained by substitution Z → Z
√

µR.
We shall also compare the results for these distributions with the bi-Maxwellian. In this case there is no compact analytical

expression for χ and we use direct numerical calculation.
In what follows we are interested only in the unstable region. The “subparticle” mode is expected to be strongly damped in

the propagation range. The “superparticle” mode is not damped in the hard-bell case and almost not damped in the Lorentzian
case.

As the first set of parameters for the unstable regime we choose βi‖ = βe‖ = 0.1, βi⊥ = βe⊥ = 0.5, and massless bi-
Maxwellian electrons χ̄e = 1. Figure 7 shows the growth rates for the three distributions. The highest growth rate is for the
Lorentzian, the lowest is for the waterbag. Figure 8 shows the same growth rates as in Figure 7 but normalized by kvTi‖ which
allows to compare growth rates of the modes with the same wavenumber k and different angles of propagation. It is seen that the
maximum growth rates is achieved approximately at θ ≈ 50− 60◦ for all distributions, moving sllightly towards smalles angles
for Maxwellian and Lorentzian. The threshold angle moves substantially towards more quasiparallel regimes for distributions
with stronger tails (Maxwellian and Lorentzian).

Figure 9 shows the dependence of the growth rate on β⊥ for the same anisotropy ratio and when βi⊥/βe⊥ = βi‖/βe‖ = 1
remain constant. Both curves correspond to the waterbag ions and massless bi-Maxwellian electrons. Diamonds stand for the
same parameters as in Figure 5, crosses correspond to βi⊥ = 1 and βi‖ = 0.2. The instability is stronger for higher β⊥.
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FIG. 7: Growth rates for the mirror instability in the case of βi‖ = βe‖ = 0.1, βi⊥ = βe⊥ = 0.5, and massless bi-Maxwellian electrons
de = 1, and four different distributions: waterbag (diamonds), hard-bell (crosses), Lorentzian (circles), and bi-Maxwellian (triangles).
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FIG. 8: Growth rates for the mirror instability in the case of βi‖ = βe‖ = 0.1, βi⊥ = βe⊥ = 0.5, and massless bi-Maxwellian electrons de =
1, and four different distributions: waterbag (diamonds), hard-bell (crosses), Lorentzian (circles), and bi-Maxwellian (triangles), normalized
by kvTi‖.

In the previous analysis we always used the approximation of massless bi-Maxwellian distribution corresponding to χe = 1.
Figures 10 and 11 show the growth rate of the instability when the electron distributions are chosen in the same form as the ion
distributions. The waterbag distributions become stable, while the growth rate in the case of Lorentzian drastically increases.
The ratio of the maximum growth rates shown in Figures 8 and 11 roughly corresponds to de = χe(Z = 0) which shows that
the maximum growth rate depends significantly on electrons (see sections V and VI).

For other combinations of ion and electron distributions the ratios may be even greater as is seen in Figure 12, where diamonds
correspond to waterbag ions and massless bi-Maxwellian electrons, while circles correspond to waterbag ions and Lorentzian
electrons. The β parameters are the same for both cases.



8

20 60 80

0.4

0.8

1.2

theta

ga
m

m
a

FIG. 9: Dependence of the growth rate on β⊥ for waterbag ions and massless bi-Maxwellian electrons: diamonds correspond to βi‖ = βe‖ =
0.1, βi⊥ = βe⊥ = 0.5, crosses correspond to βi‖ = βe‖ = 0.2, βi⊥ = βe⊥ = 1.
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FIG. 10: Growth rates for the mirror instability in the case of βi‖ = βe‖ = 0.1, βi⊥ = βe⊥ = 0.5, and three different combinations: hard-bell
ions and electrons (crosses), Lorentzian ions and electrons (circles), and bi-Maxwellian ions and (massive) electrons (triangles).

V. NEAR THE THRESHOLD

It is possible to obtain general results just above the threshold of the instability, where Z = iG → +0. For f = f(v2) it is
easy to show

χ =
∫

1
iG− v‖

∂f

∂v‖
dv‖

= −
∫

v‖

v2
‖ + G2

∂f

∂v‖
dv‖ = −

∫
df

dE
dv‖ + G

∫
G

v2
‖ + G2

df

dE
dv‖

= −
∫

df

dE
dv‖ + πG

df

dE
|v‖=0 = d− κG,

(13)

where E = v2
‖/2 is the energy (per unit mass). Substituting this into (9) and neglecting all terms of the order Z2 and higher, one

has

G = −A/B, (14)
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FIG. 11: Same as in Figure 10 but normalized by kvTi‖.
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FIG. 12: Growth rates for the mirror instability in the case of βi‖ = βe‖ = 0.1, βi⊥ = βe⊥ = 0.5, waterbag ions and two different electron
distributions: massless bi-Maxwellian (diamonds) and Lorentzian (circles).

A = [2− cos2 θ(β‖ − β⊥) + 2 sin2 θβ⊥ − 2 sin2 θ(riβi⊥di

+ reβe⊥de)]
(

di

βi‖
+

de

βe‖

)
+ sin2 θ(ridi − rede)2, (15)

B = − κi

βi‖
[2− cos2 θ(β‖ − β⊥) + 2 sin2 θβ⊥ − 2 sin2 θ(riβi⊥di

+ reβe⊥de)] + 2 sin2 θriβi⊥κi

(
di

βi‖
+

de

βe‖

)
− 2 sin2 θκi(ridi − rede), (16)

where we neglected κe ∼ κi

√
me/mi. The instability threshold for a given θ is found from the condition G = 0, that is, A = 0,

which gives

2 + β⊥ − β‖ + sin2 θ[β‖ + β⊥ − 2(riβi⊥di + reβe⊥de)

+ (ridi − rede)2/(di/βi‖ + de/βe‖)] = 0.
(17)
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Since 0 ≤ sin2 θ ≤ 1, the global instability criterion becomes (in the assumption that 2 + β⊥ > β‖):

2(riβi⊥di + reβe⊥de)− 2− 2β⊥ − (ridi − rede)2
(

di

βi‖
+

de

βe‖

)−1

> 0. (18)

When re = ri = β⊥/β‖ and de = di = d, one gets

dβ⊥
β‖

> 1 +
1

β⊥
. (19)

This condition is harder for more compact distributions (d = 1/3 for waterbag and d = 3/5 for hard-bell) and softer for
distributions with long tails (d = 1 for Maxwellian and d = 3 for Lorentzian). The global instability condition (18) can be
written in a more symmetric form as follows:

(ridi + rede)2 +
2(β2

i⊥ + β2
e⊥)dedi

βi‖βe‖

− 2(1 + β⊥)
(

de

βe‖
+

di

βi‖

)
> 0

(20)

which emphasizes the symmetric role of ions and electrons in the instability onset (cf. Pokhotelov et al. [20]).
Indeed, near the threshold γ/k‖vT‖ � 1 and the response of both electrons and ions is adiabatic, that is, their inertia does

not play any role. In these circumstances the mass of the particle is of not importance. Their role in the response to the parallel
electric field is, however, antisymmetric because of the different signs of the charge: the adiabatic response is obtained from
eEz − (1/n)(dp/dz) = eEz − ik‖p/n = 0. The parallel response plays a crucial role in the instability development. As is
known the instability occurs because of the breakdown of the local frozen-in condition and efficient drag of particles out of the
field enhancement into the field depletion region [18–20]. Thus, when the magnetic field is perturbed, Bz = B0 + δBz , the
perturbation of the density of the species s is

δns

n0s
=

δBz

B0
+

δn(ext)
s

n0s
, (21)

where δn(ext)
s is due to the motion along the field lines. In the adiabatic regime γ/k‖vT‖ � 1 this change can be considered as

a quasistatic response to the effective potential φeff = φ + µsδBz/qs, where φ is the electrostatic potential, µs = 〈v2
⊥〉s/2B0 is

the average magnetic moment, and qs is the charge of the species. The density response to this effective potential can be found
from the reduced Vlasov equation for the distribution function perturbation δfs of the species s (fs is the unperturbed ditribution
function)

∂δfs

∂t
+ v‖

∂δfs

∂z
= qs

∂φeff

∂z

∂fs

∂v‖
, (22)

which for ∂/∂t = γ and ∂/∂z = ik‖ gives

δn(ext)
s

n0s
= qsφeff

∫
ik‖

γ + ik‖v‖

∂fs

∂v‖
dv‖. (23)

It is easy to see that in the adiabatic regime near the threshold of the instability, γ → 0, this expression reduces to the following

δn(ext)
s

n0s
= − qsφeff

4πn0sq2
sr2

D

, (24)

where rD is the Debye length calculated with the parallel distribution function. It is easy to see that r2
D = v2

T‖/ω2
pd, where

d = χ̄(Z = 0). The electrostatic potential φ can be excluded using the quasineutrality condition δne = δni, which eventually
gives

δn

n
=

δBz

B0

[
1− Te⊥ + Ti⊥

4πe2n0(r2
De + r2

Di)

]
, (25)

where we have taken into account that µ = T⊥/B0. Eq. (25) shows that smaller Debye lengths rD (larger d) result in the stronger
drag of the particles into the weak field region, thus reducing the kinetic pressure response to the magnetic field enhancement
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and supporting instability. Therefore, stronger Debye screening (larger d) would lower the instability threshold, in agreement
with that found from rigorous calculations. This effect is responsible for the disappearance of the mirror instability in the case
of waterbag ions and waterbag electrons considered in section III.

It is worth noting that for bi-Maxwellian distributions Eq. (25) takes the following form:

δn

n
=

δBz

B0

[
1− Te⊥ + Ti⊥

Te‖ + Ti‖

]
, (26)

and in the case Te⊥ = Te‖ reproduces the expression found by Pantellini and Schwartz [19].
From (14)–(16) it is easily seen that the growth rate is inversely proportional to κi = −π(df/dE)|v‖=0, and not to the number

of particles with v‖ = 0 (cf. Southwood and Kivelson [18]). The latter is correct for the bi-Maxwellian distribution since
(df/dE) ∝ f in this case. For other distributions this relation may well be wrong (see also Rose [23] for stability of mirror
modes for general distribution functions). For example, for the waterbag distribution (df/dE)|v‖=0 = 0 and higher order terms
should be retained to investigate the behavior near the threshold. It is easy to see from (13) that in this case χ̄ = d−αG2, where
α = −

∫
v−2
‖ (df/dE)dv‖ is well-defined. The dispersion relation (9) becomes then a first order equation for G2, which has one

positive solution near the threshold. It is clear that in this case the growth rate is determined by the whole distribution and not
only by the behavior at v‖ = 0.

VI. HYDRODYNAMICAL REGIME

The previous analysis shows that maximum Z is of the order of unity or larger (unless the plasma is close to the stability
threshold), which means that ions no longer respond adiabatically to the magnetic field enhancements and their inertia begins to
play an important role. This also means that it is the thermal particles of the ion distribution body with v ∼ vTi‖ that are mainly
responsible for the instability development and not only the group of resonant particles with v‖ = 0. Figure 10 shows that for
some distributions the instability may be very fast so that the electron inertia should be taken into account.

The previous analysis gives a clue to the treatment of the instability in the range of maximum growth rates, where G & 1.
Let us assume that the distribution function is such that v‖f(v‖) has a sharp maximum at some vm ∼ vT‖. An example of a
distribution of this kind is the Maxwellian fi = (1/

√
2πvTi‖) exp(−v2

‖/2v2
Ti‖) for which there was no good approximation for

χ̄ in the range |Z| ∼ 1 so far. For the aperiodic mirror instability with Z = iG, G > 0, one has

χ̄ =
∫

1
iG− v‖

∂f

∂v‖
dv‖ = −

∫
1

G2 + v2
‖
v‖

∂f

∂v‖
dv‖. (27)

The physical sense of this expression is that the dynamical plasma response to the fast growing perturbations [24] should be
substituted for the static one (see section V).

For vm ∼ 1 . G (vm is normalized on vT‖) the function (G2 + v2
‖)
−1 varies slowly in the vicinity of the maximum of

v‖(∂f/∂v‖), so that one may approximate

χ̄ = − 1
G2 + v2

m

∫
v‖

∂f

∂v‖
dv‖ =

1
G2 + v2

m

. (28)

Figure 13 shows the comparison of the numerically found χ̄ for the Maxwellian distribution (v2
m = 2) and Z = iG,G > 0 with

the approximation (28). The approximation proves to be very good for G ≥ 1 and is only a factor 2 smaller at G → 0. Figure 14
shows a similar comparison for a Lorentzian. Now the maximum growth rate can be obtained by substituting χ̄i = 1/(G2+v2

mi)
in (9). If G is expected to be high, so that G2Rµ ∼ 1, as it occurs for the Lorentzian e− i distributions in Figure 10, the electron
inertia should be also taken into account by substituting χ̄e = 1/(G2Rµ + v2

me). If, however, the growth rates are relatively
modest (as in other cases studied in the present paper), the electrons still respond adiabatically and χ̄e = de. In the last case (9)
turns into a third order equation with respect to G2. Finding the maximum growth rate from this equation is a technical problem.
The physical sense of the above approximation is that it is the paticles with v‖ ∼ vm which conribute mainly to the dynamical
screening. The higher is vm the weaker is the screening [24]. As is shown in section V screening plays the destabilizing role,
so that we can expect that smaller vm would correspond to higher growth rates. This can be seen already from Figure 8 where
the growth rate for the Lorentzian ions, v2

m = 0.5, is larger than the growth rate for the Maxwellian, v2
m = 2 (with the same

massless Maxwellian electrons). Figure 15 shows the comparison of the growth rates obtained with the proposed approximation
for several v2

m = 2 (diamonds), 1.5 (crosses), 1 (triangles), 0.5 (circles), and massless Maxwellian electrons. Different vm model
different shapes of the distribution function. The parameters chosen are βi⊥ = βe⊥ = 0.5, βi‖ = βe‖ = 0.1. As expected the
decrease of vm results in the increase of the maximum growth rate.

Finally, Figure 16 shows the comparison of the growth rates obtained directly and with the above approximation for
Maxwellian (diamonds and crosses) and Lorentzian (triangles and circles) distributions, for the same parameter set. The agree-
ment is quite satisfactory.
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FIG. 13: Approximation of χ(G) for the Maxwellian distribution. The numerically calculated χ(G) (solid line) is compared to χ = (G2+2)−1

(crosses).
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FIG. 14: Approximation of χ(G) for the Lorentzian distribution. The numerically calculated χ(G) (solid line) is compared to χ = (G2 +
0.5)−1 (crosses).

VII. CONCLUSIONS

We have derived the most general dispersion relation for long wavelength modes in hot plasmas. We have derived the general
mirror instability condition for arbitrary ion and electron distributions and growth rate of the instability near the threshold.
The instability threshold depends not only on the ion and electron β but also on another integral characteristic of the distribution
function d =

∫
v−1
‖ (∂f/∂v‖)dv‖ for both species. Larger d corresponds to smaller Debye length. Smaller Debye length, in turn,

corresponds to stronger response of the density to the perturbations of the potential, which allows stronger density depletions
in the regions of the magnetic field enhancements. Therefore, the kinetic pressure response to the magnetic pressure buildup
weakens. Hence, the larger is d the lower is the instability threshold. The near-the-threshold growth rate is inversely proportional
to ∂f/∂E , where E = v2

‖/2 is the parallel energy.
The mirror instability is always aperiodic and (γ/k‖vTi‖)max ∼ 1 (and sometimes substantially greater) for the plasma well

above the instability threshold. Maximum growth rates are normally determined by the velocity vmi such that v‖∂fi/∂v‖ has
a sharp maximum in v‖ = vmi, and de (if the instability is very strong vme takes the place of de). This is related to the
dynamic redistribution in which the thermal particles participate. Growth rates are higher for distributions with tails and lower
for compact distributions (those, for which f = 0 if |v‖| > v0, where v0 is some upper limit). For noncompact distributions
the maximum growth rate is larger for smaller vm, which corresponds to a weaker dynamic screening of the parallel electric
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FIG. 15: Growth rates for the mirror instability in the case of βi‖ = βe‖ = 0.1, βi⊥ = βe⊥ = 0.5, calculated with the approximation
χ̄i = 1/(G2 + v2

m), for several v2
m = 2 (diamonds), 1.5 (crosses), 1 (triangles), and 0.5 (circles). The electrons are massless Maxwellian.
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FIG. 16: Comparison of the growth rates for the mirror instability in the case of βi‖ = βe‖ = 0.1, βi⊥ = βe⊥ = 0.5, calculated directly
and with the approximation χ̄i = 1/(G2 + v2

m), for Maxwellian (diamonds and crosses, respectively) and Lorentzian (triangles and circles,
respectively). The electrons are massless Maxwellian.

field. For the distributions analyzed in this paper the behavior of d and vm correlates (d increases when vm decreases) since all
these are single-parameter distributions. For more general distributions the behavior of de and vm may be uncorrelated. It is
also worth noting that it is not, in general, any specific group of particles which are responsible for the instability development.
Compare, for example, two similar distributions (velocity normalized by the thermal velocity vT‖): f1 = (2/π)(1 + v2

‖)
−2 with

d = 3 and v2
m = 0.5, and f2 = (

√
2/π)(1 + v4

‖)
−1 with d = 1 and v2

m = 1. While the behavior of the two is similar for
v‖ = 0 and v‖ → ∞ (the only difference is the factor

√
2), the first one is expected to be more unstable because of the three

times stronger Debye screening. At the same time the behavior of the second distribution near the threshold should be close to
that of the Maxwellian, d = 1, despite the very different suprathermal tails and (df/dE)|v‖=0.

We have also proposed a useful approximation for the dielectric function in the range G/k‖vTi‖ & 1 for distributions with
sharp maxima of v‖(∂f/∂v‖) (a Maxwellian is one such distribution). This approximation proves to be quite satisfactory for
Maxwellian type distributions and allows the analytical study of the behavior of the instability in the maximum growth rate range
in the long wavelength limit.
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Appendix A: General expressions

We start with the general expression for the dielectric tensor in the following form:

εij = δij +
∑

λij , (A1)

where the summation is on the species and

λij = −
ω2

p

ω2
δij + ηij . (A2)

The expression for ηij is well-known (see, e.g., Hasegawa [14]):

ηij = −
∑

n

ω2
p

ω2

∫
v⊥dv⊥dv‖

(
nΩ
v⊥

∂f0

∂v⊥
+ k‖

∂f0

∂v‖

)
Πij

nΩ− ζ
, (A3)

where ζ = ω − k‖v‖, and

Πij =

 (n2Ω2/k2
⊥)J2

n i(v⊥nΩ/k⊥)JnJ ′n (v‖nΩ/k⊥)J2
n

−i(v⊥nΩ/k⊥)JnJ ′n v2
⊥J ′n

2 −iv⊥v‖JnJ ′n
(v‖nΩ/k⊥)J2

n iv⊥v‖JnJ ′n v2
‖J

2
n

 . (A4)

Here Jn = Jn(x), x = k⊥ρ = k⊥v⊥/Ω, and J ′n = dJn/dx.
For the analysis in the low-frequency range ω/Ω � 1 let us write

ηij = η
(0)
ij + η

(n 6=0)
ij , (A5)

and expand

1
nΩ− ζ

=
1

nΩ

(
1 +

ζ

nΩ
+

ζ2

n2Ω2
+ · · ·

)
.

Let also f0 = f1(v⊥)f2(v2
‖), and denote 〈. . .〉 =

∫
(. . .)fdvj , where j =⊥, ‖.

One has

η
(0)
ij =

ω2
p

ω2

∫
v⊥dv⊥dv‖

k‖

ζ

∂f0

∂v‖
×

0 0
0 v2

⊥J ′0
2 −iv⊥v‖J0J

′
0

0 iv⊥v‖J0J
′
0 v2

‖J
2
0

 (A6)

and

η
(n 6=0)
ij = −

∑ ω2
p

ω2

∫
v⊥dv⊥dv‖

(
1
v⊥

∂f0

∂v⊥
+

k‖

nΩ
∂f0

∂v‖

)
×
(

1 +
ζ

nΩ
+

ζ2

n2Ω2

)
Πij .

(A7)

Now, up to Ω−2 one obtains

η
(n 6=0)
11 = −

∑
n

ω2
p

ω2

[
〈J2

n

∂

∂v⊥
〉
n2Ω2 + ω2 + k2

‖〈v
2
‖〉

k2
⊥

+
k2
‖

k2
⊥
〈v⊥J2

n〉

]
, (A8)

η
(n 6=0)
12 = −i

∑
n

ω2
p

ω2

ω

k⊥
〈v⊥JnJ ′n

∂

∂v⊥
〉, (A9)
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η
(n 6=0)
13 =

∑
n

ω2
p

ω2

k‖

k⊥

[
〈v⊥J2

n〉+ 〈v2
‖〉〈J

2
n

∂〉
∂v⊥

]
, (A10)

η
(n 6=0)
22 = −

∑
n

ω2
p

ω2

[
〈v2
⊥J ′n

2 ∂

∂v⊥
〉

(
1 +

ω2 + k2
‖〈v

2
‖〉

n2Ω2

)
+

k2
‖

n2Ω2
〈v3
⊥J ′n

2〉

]
, (A11)

η
(n 6=0)
23 = −i

∑
n

ω2
pk‖

ωn2Ω2

[
〈v2
⊥JnJ ′n〉+ 2〈v2

‖〉〈v⊥JnJ ′n
∂

∂v⊥
〉
]

, (A12)

η
(n 6=0)
33 = −

∑
n

ω2
p

ω2
〈v2
‖〉〈J

2
n

∂

∂v⊥
〉, (A13)

and

η
(0)
22 =

ω2
p

ω2
k‖〈v3

⊥J ′0
2〉χ, (A14)

η
(0)
23 = −i

ω2
p

ω
〈v2
⊥J0J

′
0〉χ, (A15)

η
(0)
33 =

ω2
p

ω2
〈v⊥J2

0 〉
(

1 +
ω2

k‖
χ

)
. (A16)

where

χ = 〈1
ζ

∂

∂v‖
〉. (A17)

Using summation rules [25] one obtains eventually the following general expression for λij in the limit of ω, k‖v‖ � Ω when
expanded up to the second order in ζ/Ω:

λ11 =
ω2

p

k2
⊥

(
1 +

k2
‖〈v

2
‖〉

ω2

)
〈J2

0

∂

∂v⊥
〉 −

ω2
p

ω2

k2
‖

k2
⊥
〈v⊥(1− J2

0 )〉, (A18)

λ12 = i
ω2

p

ωk⊥
〈v⊥J0J

′
0

∂

∂v⊥
〉, (A19)

λ13 =
ω2

p

ω2

k‖

k⊥

[
〈v⊥(1− J2

0 )〉 − 〈v2
‖〉〈J

2
0

∂

∂v⊥
〉
]

, (A20)

λ22 =
ω2

p

ω2
〈v2
⊥J ′0

2 ∂

∂v⊥
〉 −

ω2
p

ω2

∑
n

[
ω2 + k2

‖〈v
2
‖〉

n2Ω2
〈v2
⊥J ′n

2 ∂

∂v⊥
〉 (A21)

+
k2
‖

n2Ω2
〈v3
⊥J ′n

2〉

]
+

ω2
p

ω2
k‖〈v3

⊥J ′0
2〉χ,

λ23 = −i
∑

n

ω2
pk‖

ωn2Ω2

[
〈v2
⊥JnJ ′n〉+ 2〈v2

‖〉〈v⊥JnJ ′n
∂

∂v⊥
〉
]
− i

ω2
p

ω
〈v2
⊥J0J

′
0〉χ, (A22)

λ33 = −
ω2

p

ω2

[
1− 〈v2

‖〉〈J
2
0

∂

∂v⊥
〉
]

+
ω2

p

ω2
〈v⊥J2

0 〉
(

1 +
ω2

k‖
χ

)
. (A23)

The general dispersion relation is obtained from the determinant det |D| = 0, where Dij = N2δij −NiNj − εij .
Further simplifications are possible in the long wavelength limit.

Appendix B: long wavelength approximation

In this appendix we provide general expressions for the dielectric tensor in the long wavelength limit k⊥v⊥/Ω � 1, where
J±1 = ±k⊥v⊥/2Ω, J0 = 1− k2

⊥v2
⊥/2Ω2, and higher order Bessel functions may be neglected. In this limit one has

λ11 =
ω2

p

Ω2
+ 1

2N2
‖ (β‖ − β⊥), (B1)



16

λ12 = i
ω2

p

ωΩ
, (B2)

λ13 = − 1
2N‖N⊥(β‖ − β⊥), (B3)

λ22 =
ω2

p

Ω2
+ 1

2N2
‖ (β‖ − β⊥) (B4)

−N2
⊥β⊥ +

N2
⊥β⊥
4

〈v4
⊥〉

〈v2
⊥〉

χ],

λ23 = i
β⊥ tan θΩ

2ω
c2χ, (B5)

λ33 = 1
2N2

⊥(β‖ − β⊥) + (
ω2

p

k2
‖
− β⊥ tan2 θc2

2
)χ, (B6)

where N = kc/ω, N⊥ = k⊥c/ω = N sin θ, N‖ = lk‖c/ω = N cos θ, β‖ = 2ω2
p〈v2

‖〉/c2Ω2, β⊥ = ω2
p〈v2

⊥〉/c2Ω2, and 〈. . .〉
denotes usual averaging over the distribution. Here also ζ = u − v‖, where u = ω/k‖. The last term in (B6) is given for
completeness. In the limit used in this paper, ω/Ω → 0 and ω/k finite, it should be neglected. Throughout the paper we also
assume ωpi � Ωi.

Appendix C: Aperiodic nature of the mirror instability

In order to show that the mirror instability is aperiodic we analyze the behavior of the roots of (9) when the β parameters
are changed. In the waterbag case the transition from the stable to the unstable regimes occurs when W = 0, G = 0 and for
the mode whose phase velocity is less than the highest particle velocity, Re Z < v‖,max (“subparticle” mode), that is, in the
resonant region. In the general case, where Landau damping is nonzero, in the resonant range every propagating wave having
W 6= 0 has also nonzero damping rate G < 0 (we assume that there are no other kinetic instabilities in the mirror-stable
region). By continuously changing the plasma parameters (e.g., the anisotropy ratio β⊥/β‖) we can bring the system into the
unstable regime. Assuming continuous dependence of W and G on the plasma parameters we see that it is impossible for the
“subparticle” mode with W 6= 0 to transform into the unstable mode, since G < 0 and cannot be made positive continuously.
Thus, the only way to do that is to go through W = 0, G = 0.

Let us now consider the vicinity of the transition to the instability, |Z| � 1. In the most general way, expanding χ̄ in powers
of Z one gets:

χ̄ =
∫

1
Z − v‖

∂f

∂v‖
dv‖

= −
∫

1
v‖

∂f

∂v‖
dv‖ + Z

∫
1

Z − v‖

1
v‖

∂f

∂v‖
dv‖

→ d + iκZ,

(C1)

provided (∂f/∂v‖)|v‖=0 6= 0. The quantities d and κ are defined in (13). It is easy to see that (9) is the first order equation
for iZ (with real coefficients) in the lowest order on |Z| � 1, which means that there is a simple (one and only one) aperiodic
root in the vicinity of Z = 0. Such aperiodic solutions cannot be converted into non-aperiodic ones by continuous change of the
plasma parameters, for the same reason as above. Therefore, the unstable solutions must be aperiodic.

The function Ψ(Z), defined in (9), is an analytical function of Z = W + iG and a continuous function of its parameters
β and θ. Let us consider how Z moves from the lower half-plane (stable regime) to the upper half-plane (unstable regime)
with the change of β and θ = const. The transition to instability occurs, in general, in the vicinity of Z = 0 where Ψ(Z) =
Ψ(0) + (dΨ/dZ)|Z=0Z = A + BZ (see sec. V). In the transition point A = 0. Using (14)–(16) it is easy to show that in the
transition point B > 0 (provided κ > 0, this condition being violated if ∂f/∂E > 0 at v‖ = 0, corresponding to the regime
of two-hump instability), so that in the vicinity of the transition point A > 0 corresponds to the stable regime, while A < 0
corresponds to the instability. Because of the continuity, in the whole instability range A < 0.

Let us show now that (9) always has a solution Z = iG, G > 0 in the unstable range. Indeed, Ψ(0) < 0 as is shown above.
On the other hand, if G →∞ one has χ → 1/G2 and Ψ(∞) > 0. This means that there exists G > 0 such that Ψ(G) = 0.

In the absence of kinetic instabilities, in the stable regime all roots of (9) with nonzero W are either in the lower half-plane
(Landau damping or nonpropagation) or at the real axis (if (∂f/∂v‖)|v‖=W = 0). In the first case no root can cross the real axis
except at W = 0, when the parameters are changed continuously to bring the system in the unstable regime. As can be seen
from (14)–(16) there is only one root crossing the real axis at this point, provided ∂f/∂E < 0. Therefore, there is only one root
in the upper half-plane and it is purely imaginary.
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If ∂f/∂E = 0 there are two or more roots in the vicinity of Z = 0 (depending on the behavior of f ) but only one is positive,
G > 0. Since in this case the analytical continuation through Z = 0 into the lower half-plane is straightforward (no pole at
v‖ = 0), other roots correspond to damping solutions, and there is again only one root in the upper half-plane.

Finally, let us consider the case where there are roots with G = 0 and W = W0 6= 0. Such a situation can occur when
(∂f/∂v‖) = 0 in isolated points or in an interval (as for the compact waterbag and hard-bell). In the first case the imaginary
part of Z is negative for W close to W0, so that the continuous change of parameters does not bring the root to the upper half-
plane. In the second case the continuous change of parameters leaves the root on the real axis until it enters the range where
(∂f/∂v‖) 6= 0 or W = 0.
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