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Instabilities at play [1]

Overview

The Kelvin-Helmholtz, the Rayleigh-Taylor and the Magnetic Reconnection
instabilities play a fundamental role in the nonlinear dynamics of a magnetized,
spatially inhomogeneous plasma

They can be driven directly or indirectly, i.e., as “secondary instabilities”, by
inhomogeneities of the plasma fluid velocity, of the density (or pressure) it the
plasma is subject to a (centrifugal) acceleration and, in the case of magnetic
reconnection, by inhomogeneities of the plasma currents.

These instabilities do not occur separately and the time evolution of the system
as a whole depends on their nonlinear interaction.
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This complex interaction is governed by the time scales of the different processes
at play.

These processes involve both large spatial scales from which e.g., the initial
drive of the primary Kelvin-Helmholtz instability originates, and small spatial
scales generated in the nonlinear evolution of the primary instability, where e.g.,
magnetic field line reconnection can occur.

The timing between these instabilities will determine the structure of the final
configuration that the system can reach.

The structural differences between the possible final states can in principle be used
as a diagnostic tool in order to determine experimentally how fast the different
instabilities evolve.
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In this presentation I will review recent results that have been obtained by means
of two-dimensional, two-fluid numerical simulations of the interplay between large
scale and small scale dynamics in the framework of the nonlinear evolution of a
magnetized plasma configuration with a velocity shear field.

Faganello M et al. 2008a Phys. Rev. Lett. 100 015001.

Faganello M et al. 2008b Phys. Rev. Lett. 101 105001.

Faganello M et al. 2008c Phys. Rev. Lett. 101 175003.

Pegoraro F et al. 2008 Journal Physics Conference, Series 133, paper 012024.

Califano F et al. 2009 Nonlin. Processes Geophys., 16 1 (2009).

Faganello M et al. 2009 New Journal Phys, 11 063008.

Tenerani A et al. 2010 submitted to Plasma Physics and Controlled Fusion.

The observational problem that can be addressed in this way concerns the mixing
that occurs between the solar wind plasma and the magnetospheric plasma and
its development as the solar wind streams downward past the Earth at the flank
of the Earth’s magnetosphere at low latitudes.
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The Kelvin-Helmholtz instability has been shown1 to play a crucial role in
the interaction between the solar wind and the Earth’s magnetosphere and to
provide a mechanism by which the solar wind can enter the Earth’s magnetosphere
(mixing of the solar wind and of the magnetospheric plasmas)2

In particular, the KH instability can grow along the flank magnetopause at low
latitude, where a velocity shear exists and where the nearly perpendicular magnetic
field does not inhibit the development of the instability3.
Several observations support this explanation and show that the physical quantities
observed along the flank magnetopause at low latitude are compatible with a
Kelvin-Helmholtz vortex4.

1H. Hasegawa et al., Nature 430, 755 (2004).
2D. G. Mitchell, J. Geophys. Res. 92, 7394 (1987); H. Hasegawa et al., Geophys. Res.Lett. 431, L06802 (2004)
3A. Miura, Phys. Rev. Lett. 16, 779 (1982); J.U. Brackbill et al., Phys. Rev. Lett.86, 2329 (2001); C.

Hashimoto et al., Adv. Space. Res 37, 527 (2006)
4H. Hasegawa et al., Nature 430, 755 (2004); D.H. Fairfield et al., J. Geophys. Res. 105, 21159 (2000); A.

Otto et al., J. Geophys. Res. 105, 21175 (2000).
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Figure 1: Solar wind interaction with the Earth magnetosphere, from H. Hasegawa
et al., Nature 430, 755 (2004).
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Plasma description and relevant control parameters

The investigation of the nonlinear plasma behaviour in regimes that can
shed light e.g., on the dynamics of the solar wind interaction with the Earth’s
magnetosphere would require a fully kinetic plasma treatment, three-dimensional
in coordinate space and three-dimensional in velocity space.

At present such an approach is not feasible, even numerically, because global
(large scale) and local (small scale) effects are both to be accounted for, as they
affect each other and thus their evolution cannot be separated.

Nevertheless relevant information can be obtained by performing fully nonlinear
numerical simulations in a simplified two dimensional geometry and by adopting
a two fluid plasma description.
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Within this description large scale hydrodynamic and magnetohydrodynamic
effects can be treated together with small scale effects.
Small scale effects are related to the decoupling between electrons and ions at
the ion inertial skin length scale di ≡ c/ωpi (Hall term in Ohm’ s law) and
the decoupling between the magnetic field and the electron fluid at the electron
inertial skin length scale de ≡ c/ωpe (that allows for magnetic reconnection to
occur even in the absence of dissipation).

Such a description makes it possible to explore different regimes by changing in
the simulations the values of a set of control parameters that characterize the
properties of the initial configuration.
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In the following I will consider an equilibrium given by a spatially
inhomogeneous magnetized plasma with an initial velocity field in the y-direction,
sheared in the x-direction:
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Pe/i(x) = n(x)Te/i, Bz = Bz(x), By = By0,

with n0, P0e/i the values at the right boundary of the simulation box of the electron and ion

density and pressure, B0 = Bz(0) the corresponding value of the magnetic field component

along z and Te/i the uniform electron and ion temperature.

The total pressure is initially uniform.
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Control Parameters (at fixed and equal electron and ion temperatures)

∆U controls the velocity inhomogeneity i.e. the onset of the Kelvin Helmholtz
(KH) instability,

∆n controls the density inhomogeneity, i.e. the onset of the Rayleigh Taylor (RT)
instability in the presence of a centrifugal acceleration,

Leq is the equilibrium velocity shear length,5

By0 controls the stabilizing effect on the KH instability of the field line tension
and, when sheared by the plasma motion, can give rise to magnetic reconnection,

Bz ensures pressure balance, controls plasma compressibility and the role of the
Hall term.

5it determines the wave length of the fastest growing mode of the KH vortices.
For simplicity it is taken equal to the density inhomogeneity scalelength.
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The plasma β parameter and the sonic and Alfvènic Mach numbers can be
expressed in terms of these parameters.

In the following the control parameters of the equilibrium configuration are
chosen in such a way that the equilibrium is KH unstable, but such that it is RT
stable (there is no gravity or, initially, a centrifugal acceleration) and magnetic
reconnection cannot occur (in-plane magnetic field initially uniform).

The nonlinear evolution of the KH instability changes this situation and allows
for both RT and reconnection to occur.

How RT and reconnection compete and, in particular, how they affect the
process of vortex merging that is the fundamental process in the nonlinear
evolution of the KH instability is the main aim of this presentation.

Physics Department University of Pisa pegoraro@df.unipi.it



Instabilities at play [11]

Primary and secondary instabilities

Figure 2: Left frame: initial density profile versus x for ∆n = 0.3 (dashed line) and for

∆n = 0.8 (solid line). Right frame: shaded isocontours of the plasma density. The white

(black) arrows represent the in-plane magnetic (velocity) field lines.
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I will use the shaded isocontours of the density in order to visualize the plasma
evolution.

Figure 3: Time evolution of the Fourier amplitudes m = 1 (solid line), m = 2 (short dashed

line), m = 3 (dot-dashed line) and m = 4 (long dashed line) of the x-averaged velocity field

along y for ∆n = 0.3 (left frame) and for ∆n = 0.8 (right frame).
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Examining the early stage (from t = 0 up to nearly t = 150) of the mode
evolution shown in Fig. 3, we obtain the value of m corresponding to the fastest
growing mode (FGM) of the KH instability and its growth rate.
For ∆n = 0.3 the FGM mode corresponds to m = 2 and has a growth rate
γ2 ∼ 0.028, while for ∆n = 0.8 the modes corresponding to m = 2 and m = 3
have nearly the same growth rates γ2 ∼ 0.029 and γ3 ∼ 0.030.
We see that the density jump does not influence the linear growth rate of the
FGM of the KH instability significantly which in this phase develops essentially
on the same time scale, almost independently of the value of ∆n.

At later times, t > 300, the fastest growing modes develop into fully rolled-up
vortices, as shown in Fig. 4. For ∆n = 0.3 we thus observe the growth of two
vortices (see Fig. 4 first row, left frame) and for ∆n = 0.8 the growth of three
unequal vortices (see Fig. 4 second row, left frame), consistently with the FGM
wave numbers calculated in the linear stage.
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Figure 4: Time evolution of the KH vortices for ∆n = 0.3 (first row, at t = 340, 437.5, 590

from left to right) and for ∆n = 0.8 (second row, at t = 310, 405, 640).
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Further in time, the system develops two kind of processes: the pairing of the
vortices and the development of secondary instabilities inside each vortex due to
the rolling-up of the plasma.

We can see in Fig. 4 that the vortices tend to merge together during their
non linear evolution and to generate a single large-scale vortex, following the
typical 2-D hydrodynamical6and MHD7 pairing process. In addition, as shown in
more detail in the following section, the rolling up of the vortices is able to create
favourable conditions for the development of secondary RT and KH instabilities
inside each vortex. In fact, the density and velocity differences between the vortex
arms, combined with the rotational motion of the vortex, allow the RT and KH
instabilities to grow along the vortex arms.

6C.D. Winant et al., J. Fluid Mech. 63, 237 (1974). F.K. Browand et al., J. Fluid Mech. 76, 127 (1976).
7A. Miura, Phys. Plasmas 4, 2871 (1997). A. Miura, J. Geophys. Res. 104, 395 (1999). A. Miura, Geophys.

Res. Lett. 26, 409 (1999).
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In such a complex picture reconnection of the field lines of the in-plane
magnetic field also take place.
Because of the frozen-in constraint which is satisfied during the formation of
the vortex, the magnetic field is carried and stretched by the plasma motion, so
that the in-plane magnetic field develops inversion regions where field lines can
reconnect.

When (before or during the pairing process) and where (inside the vortex arms
or between the pairing vortices) magnetic reconnection takes places depends on
the competition between the vortex pairing and the development of the secondary
RT instability.

The competition between the pairing process and the hydrodynamic secondary
instabilities plays a crucial role in determining the final state of the system.
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For ∆n = 0.3 the secondary KH and RT instabilities induced inside the
vortices are weak and the evolution of the primary KH instability leads to a typical
pairing process (see Fig. 4, first row). The two vortices begin to merge following
the pairing process (central frame) until they form a single vortex (right frame).

For ∆n = 0.8 the system of three vortices also follows the pairing process but
at the same time the perturbations growing inside the vortices tend to destroy
them. The two vortices located at the (periodic) boundaries along the y-direction
of the simulation box merge in one vortex while the RT instability strongly
perturbs the structure of the vortices (central frame).

Despite these growing perturbations, no complete disruption of the vortices
takes place because of the partial stabilizing effect of the in-plane magnetic field,
as will be discussed later, and a configuration characterized by a single structure
is achieved, strongly perturbed by the RT instability which creates macroscopic
sub-structures inside the main structure (right frame).
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Onset of secondary “hydrodynamic” instabilities

I will mainly refer to the results obtained in the case with ∆n = 0.8

The development of the KH instability leads to the formation of fully rolled up
vortices. During this process the red and the blue portions of the initial plasma
configuration envelop one another forming regions with alternating density values.
The plasma in the vortices is set into an approximately circular motion and the
associated centrifugal force acts as an effective gravity.
The simultaneous presence of regions with different densities and a “gravitational”
acceleration generates RT unstable configurations inside each vortex.

As the primary KH instability grows, the lesser dense plasma acquires a higher
velocity than the denser plasma.
In Fig. 5 the profiles of the density (blue line) and of the tangential velocity
(black line) taken along the line passing through the center of one of the vortices
are shown; the left frame refers to ∆n = 0.8 and the right frame to ∆n = 0.3.
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Figure 5: Left frame: profiles of the tangential velocity Uy(x) (black line) and density n(x)

(blue line) at time t = 350 along the line y = 47 passing through the vortex center for

∆n = 0.8. Right frame: profiles of the tangential velocity Uy(x) (black line) and density

n(x) (blue line) at time t = 370 along the line y = 64 passing through the vortex center for

∆n = 0.3. Note that Uy(x) changes sign at the vortex center.
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These plots show that the velocity in the lower density regions is in absolute
value larger than in the denser regions. This asymmetry causes the formation of
velocity shears inside the vortices where the plasma can become unstable to a
secondary KH instability.

By comparing the two velocity plots shown in Fig. 5 it is evident that not
only the density difference but also the velocity shears are stronger when the
density jump is greater. Therefore we can expect the hydrodynamic secondary
instabilities to be weaker for ∆n = 0.3 than for ∆n = 0.8. In fact from Fig. 6
which shows one of the vortices at t = 345, t = 369 and t = 405 for ∆n = 0.8,
we can see a growing perturbation inside the vortex with a typical wave length of
λ ∼ 5− 10, whereas in the case ∆n = 0.3 no strong perturbations develop (not
shown).
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Figure 6: Vortex development and rolling up for ∆n = 0.8: detailed evolution of the central

vortex at t = 345, 369, 405.

Note that the in-plane magnetic field has a stabilizing effect and that
completely inhibits perturbations with wave length λ < 1.
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Rayleigh-Taylor instability and the pairing process.

The in-plane magnetic field reduces the magnitude of RT growth rate for all
wavelengths and fully stabilizes it for the small wavelength λ < 1.
Since the in-plane magnetic field partially inhibits the RT instability, the energy
cascade process corresponding to the vortex pairing can proceed.
At the same time macroscopic structures inside the vortices with typical dimension
greater than unity, because of the stabilization of the small wavelengths, are
created by the RT instability.
The complete disruption that takes place in the unmagnetized case does not occur
and no filamentary mixing layer forms8. In the unmagnetized case ∆n = 0.8 is
large enough to lead to the disruption of the pairing process and of the vortices
themselves. Here the stabilizing effect of the magnetic tension prevents the vortex
disruption and preserves the pairing process.

8M. Faganello et al., Phys. Rev. Lett. 100, 015001 (2008).
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Rayleigh-Taylor induced reconnection.

During the vortex growth the high and the low density plasma regions roll
up carrying and stretching the in-plane magnetic field lines (see Fig. 6) and
thus causing the formation of inversion regions where reconnection can develop.
When and where magnetic reconnection takes place depends on the competition
between the vortex pairing and the development of the secondary RT instability.

In the case of a moderate initial density jump ∆n = 0.3, reconnection occurs
only during the pairing process and acts mainly in the region between the two
merging vortices, see Fig. 4, first row, central frame.
This evolution is similar to that which occurs in the case of a uniform density
configuration9.

9M. Faganello et al., Phys. Rev. Lett. 101, 105001 (2008), Phys. Rev. Lett. 101, 175003 (2008), New J.
Phys. 11, 063008 (2009).

Physics Department University of Pisa pegoraro@df.unipi.it



Instabilities at play [24]

On the contrary, when the initial density jump is larger, ∆n = 0.8, the RT
instability develops inside the vortices and perturbs the structure of each vortex.
As the deformations of the vortex arms driven by the RT instability grow, the
current layers inside each arm are compressed forcing the the development of the
reconnection process.
For large density jumps magnetic field line reconnection occurs before the pairing
process and inside each vortex, not between vortices. This reconnection process
is thus induced by the local RT instability in a way analogous to the case of
reconnection induced inside each vortex by the KH instability10 and occurs on the
fast time scale of the RT instability.
The correlation between the RT and reconnection can be seen qualitatively and quantitatively.

E.g., he typical time of the induced reconnection can then be estimated as 1/γrec ∼ 5, which is

consistent with the growth time of the RT instability.

10Z.X. Liu et al., Geophys. Res. Lett. 15, 752 (1988), Q. Chen et al., J. Geophys. Res. 102, 151 (1997), D.A.
Knoll et al., Phys. Rev. Lett. 88, 215003 (2002), F. Califano et al., Nonlin. Processes Geophys. 16, 1 (2009).
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Figure 7: A hydrodynamic perturbation around x = 44 and y = 60 induces magnetic

reconnection. The growing perturbation is shown for ∆n = 0.8 at t = 364 (left frame),

t = 369 (central frame) and at t = 374 (right frame).
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Conclusions

The nonlinear dynamics of a fluid 2D plasma configuration with a sheared velocity
field has been discussed with the help of numerical simulation results.

Main focus: the effects of the density inhomogeneity and of the in-plane magnetic
field on
1) the competition between the Kelvin-Helmholtz primary instability, with its
nonlinear evolution characterized by the vortex pairing process,
2) the onset of hydrodynamic secondary instabilities, such as the Rayleigh Taylor
instability (driven by the vortex rotation and the density inhomogeneity),
3) the onset of magnetic field line reconnection (driven by the stretching of the
frozen-in in-plane magnetic field due to the differential plasma motion caused by
the Kelvin-Helmholtz and the Rayleigh Taylor instabilities).
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The density inhomogeneity controls, through the development of the Rayleigh
Taylor instability, the amount of disruption of the pairing vortices before they
merge into a single structure.

The role of the in-plane magnetic field is multi faceted as it leads to the
formation of small scale magnetic islands through the development of induced
magnetic reconnection but at the same time preserves the global coherence of
the vortex merging process and suppresses small wavelength perturbations.

When and where magnetic reconnection takes place depends on the
competition between the vortex pairing and the development of the secondary RT
instability and it is thus itself controlled by the density inhomogeneity.

We are pleased to acknowledge the CINECA super computing center (Bologna, Italy) where part

of the simulations was performed.
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Model description. Details

We consider a 2D description of the system, with the inhomogeneity direction along x, the

periodic direction along y, and z an ignorable coordinate.

We adopt a two-fluid, quasineutral plasma model. The electric field E is calculated by means of

the following generalized Ohm’s law11 (ue electron velocity, ui ion velocity, j = ne(ui − ue) )“
1− d

2
e∇

2
”

E = −ui × B +
1

n
j× B−

1

n
∇Pe ,

where we use the following normalization quantities: ū = u
A

; ω̄ = Ωi ; l̄ = u
A
/Ωi =

c/ωi = di ; n̄ ; P̄p/e = n̄miu
2

A
; Ē = miuA

Ωi/e ; B̄ = micΩi/e.

• In the simulations, the boundary conditions, the symmetry of the initial configuration and

the simulation box size have been optimized in order not to affect the evolution of the system

artificially.

11see e.g., F. Valentini et al., J.Comp. Phys. 225, 753 (2007)
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In detail: 2+1/2 dimensional code, i.e. fields are three dimensional but they depend on the two

spatial variables x, y only (and on time).

The dimensions of the simulation box are Lx = 90 and Ly = 30π. The box length in the

periodic y-direction has been chosen in order to have two or three vortices (Ly ∼ 2λfgm).

We choose periodic boundary conditions in the y-direction. Boundary conditions along the

inhomogeneous x-direction: we assume that at the boundaries, far from the central region where

scale lengths of the order of di form, the system is described by the MHD model.

The set of MHD equations is of the hyperbolic type for which it is possible to define the

projected characteristic curves in the x direction12. Thus we can control the sonic and alfvénic

perturbations generated by the dynamics induced by the KH instability entering and leaving the

simulation domain and, as a consequence, build up transparent boundary conditions13.

In the code we employ a third-order Adams-Bashforth method for the temporal advancement.

In order to calculate the spatial derivatives the code makes use of sixth-order Compact Finite

Difference schemes14 in the x-direction and Fast Fourier Transforms in the periodic y-direction.

12S. Landi et al., A. J., 624, 392-401 (2005); K. W. Thompson, J. Comput. Phys., 68, 1 (1987).
13M. Faganello et al., NPJ, 11, 06338 (2009)
14S. K. Lele, J. Comput. Phys., 103, 16 (1992).
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The model equations written explicitly are:

∂n
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(4)

∇× E = −
∂B
∂t

, ∇× B = j. (5)

The values of the parameters that are kept fixed in the simulations are

Leq = 3, ∆U = 1.0, Te = Ti = 0.5, n0 = 1, (6)

B0 = 1, B0y = 0.02, Ms = 1, mp/me = 64.
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